| 研究生: |
張仲芩 Chang, Chung-Chin |
|---|---|
| 論文名稱: |
寬能隙半導體在永續發展元件上之應用 The Application of Wide Band Gap Semiconductors in Sustainable Development Device |
| 指導教授: |
洪茂峰
Houng, Mau-Phon |
| 共同指導教授: |
王納富
Wang, Na-Fu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 金屬輔助化學蝕刻 、AZOY 、蕭特基二極體 、β 型氧化鎵 |
| 外文關鍵詞: | β-Ga2O3, Schottky diode, AZOY, Metal-Assisted Chemical Etching |
| 相關次數: | 點閱:229 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以寬能隙半導體之β-Ga2O3 及 AZOY 為主,分為兩部分,第一部分為β-Ga2O3 蕭特基二極體,第二部分為奈米線+AZOY 之太陽能電池。二極體方面,以低成本之液相沉積法製備 GaOOH 晶粒,經退火後轉變為β-Ga2O3,接著鍍上鋁、鈦、鎢、鎳四種金屬作為蕭特基二極體的前電極且以鋁金屬作為背電極,並以 TLM 之方式量測其接觸電阻率後得知,金屬功函數與金屬和β-Ga2O3 之接觸電阻率成反比而鎳與β-Ga2O3為蕭特基接觸,最後進行電壓-電流量測,鎳作為電極具有最低逆向飽和電流密度 7.3*10^-7 A/cm^2,電流開關比為 26.6。
太陽能電池方面,本研究透過低成本之金屬輔助化學刻蝕的方式製造矽奈米線,並在表面加上 AZOY 後量測其反射率及二極體特性,蝕刻20 秒之矽奈米線具有最低可見光平均(360nm-760nm)反射率 8.6% ,加上AZOY 後反射率為 8.9%,與裸矽相比優化了約 5 倍,可增加空乏區的光能吸收從而提高短路電流。
This research uses wide band gap silicon semiconductor β-Ga2O3 and AZOY as the main materials, and is divided into two parts. The first part is β-Ga2O3 Schottky diode, and the second part is silicon nanowire + AZOY solar cell.
For the diode part, GaOOH crystal grains are prepared by low-cost Liquid Phase Deposition(LPD) method, which is converted into β-Ga2O3 after annealing, and then plated with aluminum, titanium, tungsten, and nickel as the front electrode of the Schottky diode. Using aluminum as the back electrode and measuring its contact resistivity by TLM, it is found that work function of metals is inversely proportional to the contact resistivity of metal and β-Ga2O3, nickel with β-Ga2O3 is Schottky contact.
Finally, I performed voltage-current measurement, nickel as the electrode has the lowest leakage current density of 7.3*10^-7 A/cm^2, and the on-off ratio is 26.64.
For solar cells, this research uses low-cost Metal-Assisted Chemical Etching(MAC etching) to make silicon nanowires. Before sputtering AZOY to the surface to measure the reflectivity and diode characteristics, the silicon nanowires are etched for 20 seconds.
It has the lowest average visible light (360nm-760nm) reflectance of 8.6%, and 8.9% after sputtering AZOY, which is about 5 times better than bare silicon. It can increase the light energy absorbed in the depletion region to increase the short-circuit current.
[1]Roy, Rustum, V. G. Hill, and E. F. Osborn. "Polymorphism of Ga2O3 and the system Ga2O3—H2O." Journal of the American Chemical Society 74.3 (1952): 719-722.
[2]Choi, Minseok, and Junwoo Son. "Doping-induced bandgap tuning of α-Ga2O3 for ultraviolet lighting." Current Applied Physics 17.5 (2017): 713-716.
[3] RANABHAT, Kiran, et al. An introduction to solar cell technology. Journal of Applied Engineering Science, 2016, 14.4: 481-491.
[4] http://www.kaneka.co.jp/kaneka-e/images/topics/ 1473811995/1473811995_101.pdf (accessed 25 October 2016).
[5]http://en.sjtu.edu.cn/news/a-breakthrough-in-largearea-perovskite-solar-panels-by-sjtu-team/ (accessed 25 October 2016).
[6]Sai H, Matsui T, Koida T, Matsubara K, Kondo M, Sugiyama S, Katayama H, Takeuchi Y, Yoshida I. Triple-junction thin-film silicon solar cell fabricated on periodically textured substrate with a stabilized efficiency of 13.6%. Applied Physics Letters 2015; 106: 213902. DOI:10.1063/1.4921794
[7] Sun K, Yan C, Liu F, Huang J, Zhou F, Stride JA, Green M, Hao X. Over 9% efficient kersterite Cu2ZnSnS4 solar cell fabricated by using Zn1-xCdxS buffer layer. Advanced Energy Materials 2016; 61600046. DOI:10.1002/aenm.201600046
[8] Zhang S, Pan X, Jiao H, Deng W, Xu J, Chen Y, Altermatt PP, Feng Z, Verlinden PJ. 335 watt world record p-type mono-crystalline module with 20.6% efficient PERC solar cells. IEEE Journal of Photovoltaics, to be published.
[9]Moslehi MM, Kapur P, Kramer J, Rana V, Seutter S, Deshpande A, Stalcup T, Kommera S, Ashjaee J, Calcaterra A, Grupp D, Dutton D, Brown R. World-record 20.6% efficiency 156 mm × 156 mm full-square solar cells using low-cost kerfless ultrathin epitaxial silicon & porous silicon lift-off technology for industry-leading high-performance smart PV modules. PV Asia Pacific Conference (APVIA/PVAP), 24 October 2012.
[10] Keevers MJ, Young TL, Schubert U, Green MA. 10% efficient CSG minimodules. 22nd European Photovoltaic Solar Energy Conference, Milan, September 2007.
[11]. Kayes BM, Nie H, Twist R, Spruytte SG, Reinhardt F, Kizilyalli IC, Higashi GS. 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination. Proceedings of the 37th IEEE Photovoltaic Specialists Conference, 2011.
[12] Venkatasubramanian R, O’Quinn BC, Hills JS, Sharps PR, Timmons ML, Hutchby JA, Field H, Ahrenkiel A, Keyes B. 18.2% (AM1.5) efficient GaAs solar cell on optical-grade polycrystalline Ge substrate. Conference Record, 25th IEEE Photovoltaic Specialists Conference, Washington, May 1997, 31–36.
[13] Keavney CJ, Haven VE, Vernon SM. Emitter structures in MOCVD InP solar cells. Conference Record, 21st IEEE Photovoltaic Specialists Conference, Kissimimee, May, 1990, 141–144.
[14]Solibro press release, “Solibro beats world record for solar cells”, dated 12 June 2014.
[15] Wallin E, Malm U, Jarmar T, Lundberg O, Edoff M, Stolt L. World-record Cu(In,Ga)Se2-based thin-film sub-module with 17.4% efficiency. Progress in Photovoltaics: Research and Applications 2012; 20: 851–854.
[16] First solar press release, First Solar builds the highest efficiency thin film PV cell on record, 5 August 2014.
[17] Larramona G, Levcenko S, Bourdais S, Jacob A, Choné C, Delatouche B, Moisan C, Unold T, Dennler G. Fine-tuning the Sn content in CZTSSe thin films to achieve 10.8% solar cell efficiency from spraydeposited water–ethanol-based colloidal inks. Advanced Energy Materials 2015; 5: 1501404.
[18] Matsui T, Sai H, Suezaki T, Matsumoto M, Saito K, Yoshida I, Kondo M. Development of highly stable and efficient amorphous silicon based solar cells. Proc. 28th European Photovoltaic Solar Energy Conference 2013; 2213–2217.
[19] Sai H, Maejima K, Matsui T, Koida T, Kondo M, Nakao S, Takeuchi Y, Katayama H, Yoshida I. Highefficiency microcrystalline silicon solar cells on honeycomb textured substrates grown with high-rate VHF plasma-enhanced chemical vapor deposition. Japanese Journal of Applied Physics 2015; 54: 08KB05.
[20] Yang WS, Noh JH, Jeon NJ, Kim YC, Ryu S, Seo J, Seok SI. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015;348(6240): 1234–1237.
[21] Komiya R, Fukui A, Murofushi N, Koide N, Yamanaka R and Katayama H. Improvement of the conversion efficiency of a monolithic type dyesensitized solar cell module. Technical Digest, 21st International Photovoltaic Science and Engineering Conference, Fukuoka, November 2011; 2C-5O-08.
[22] Kawai M High-durability dye improves efficiency of dye-sensitized solar cells. Nikkei Electronics 2013; Feb. 1 (http://techon.nikkeibp.co.jp/english/NEWS_ EN/20130131/263532/) (accessed 23 October, 2013)
[23] Mori S, Oh-oka H, Nakao H, Gotanda T, Nakano Y, Jung H, Iida A, Hayase R, Shida N, Saito M, Todori K, Asakura T, Matsui A, Hosoya M. Organic photovoltaic module development with inverted device structure. MRS Proceedings 2015; 1737: . DOI:10. 1557/opl.2015.540
[24] Hosoya M, Oooka H, Nakao H, Gotanda T, Mori S, Shida N, Hayase R, Nakano Y, Saito M. Organic thin film photovoltaic modules. Proceedings of the 93rd Annual Meeting of the Chemical Society of Japan 2013; 21–37
[25] Chiu PT, Law DL, Woo RL, Singer S, Bhusari D, Hong WD, Zakaria A, Boisvert JC, Mesropian S, King RR, Karam NH. 35.8% space and 38.8% terrestrial 5 J direct bonded cells. Proc. 40th IEEE Photovoltaic Specialist Conference, Denver, June 2014; 11–13.
[26] Sasaki K, Agui T, Nakaido K, Takahashi N, Onitsuka R, Takamoto T. Proceedings, 9th International Conference on Concentrating Photovoltaics Systems. Miyazaki: Japan, 2013.
[27] GREEN, Martin A., et al. Solar cell efficiency tables (version 49). Progress in photovoltaics: research and applications, 2017, 25.1: 3-13.
[28] https://www.taipower.com.tw/tc/Chart.aspx?mid=194
[29] KABALCI, Ersan. Design and analysis of a hybrid renewable energy plant with solar and wind power. Energy Conversion and Management, 2013, 72: 51-59.
[30] BINZ, Christian; TANG, Tian; HUENTELER, Joern. Spatial lifecycles of cleantech industries–The global development history of solar photovoltaics. Energy Policy, 2017, 101: 386-402.
[31] STEPANOV, S., et al. Gallium OXIDE: Properties and applica 498 a review. Rev. Adv. Mater. Sci, 2016, 44: 63-86.
[32] Battiston, G. A., et al. "Chemical vapour deposition and characterization of gallium oxide thin films." Thin Solid Films 279.1-2 (1996): 115-118.
[33] Ogita, M., et al. "Ga2O3 thin film for oxygen sensor at high temperature." Applied Surface Science 175 (2001): 721-725.
[34] Matsuzaki, Kosuke, et al. "Growth, structure and carrier transport properties of Ga2O3 epitaxial film examined for transparent field -effect transistor." Thin solid films 496.1 (2006): 37-41.
[35] L. Sivananda Reddy , et al. "Hydrothermal synthesis and photocatalytic property of β-Ga 2 O 3 nanorods." Nanoscale research letters 10.1 (2015): 1-7.
[36] Oshima, Takayoshi, et al. "Surface morphology of homoepitaxial β-Ga2O3 thin films grown by molecular beam epitaxy." Thin Solid Films 516.17 (2008): 5768-5771.
[37] Shinobu Fujihara, Yoshiki Shibata, Eiji Hosonoa, Chemical Deposition of Rodlike GaOOH and β-Ga2O3 Films Using Simple Aqueous Solutions,Journal of The Electrochemical Society (2005).
[38] K. L. Chopra, S. Magor and D. K. Pandya, Thin Solid Films, 102, 1(1983).
[39]HASEGAWA, Hideki; SATO, Taketomo; KANESHIRO, Chinami. Properties of nanometer-sized metal–semiconductor interfaces of GaAs and InP formed by an in situ electrochemical process. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1999, 17.4: 1856-1866.
[40]AYALEW, Tesfaye. SiC semiconductor devices technology, modeling and simulation. na, 2004.
[41]AGRAWAL, A., et al. Barrier height reduction to 0.15 eV and contact resistivity reduction to 9.1× 10− 9 Ω-cm 2 using ultrathin TiO 2− x interlayer between metal and silicon. In: 2013 Symposium on VLSI Technology. IEEE, 2013. p. T200-T201.
[42] SARASWAT, Krishna C.; SHINE, Gautam. Low resistance contacts to nanoscale semiconductor devices. ECS Transactions, 2016, 75.8: 513-523.
[43] CHO, Jinyoun, et al. Contact resistivity reduction on lowly-doped n-type Si using a low work function metal and a thin TiOX interfacial layer for doping-free Si solar cells. Energy Procedia, 2017, 124: 842-850.
[44] SALEEM-RASHID, T., et al. Innovative method to study irradiation damage in silicon pixel detectors for HEP: TLM. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 958: 162863.
[45] YU, Hao, et al. A simplified method for (circular) transmission line model simulation and ultralow contact resistivity extraction. IEEE Electron Device Letters, 2014, 35.9: 957-959.
[46] VINOD, P. N. Specific contact resistance measurements of the screen-printed Ag thick film contacts in the silicon solar cells by three-point probe methodology and TLM method. Journal of Materials Science: Materials in Electronics, 2011, 22.9: 1248-1257.
[47] EVANS, Laura J.; OKOJIE, Robert S.; LUKCO, Dorothy. Development of an extreme high temperature n-type ohmic contact to silicon carbide. In: Materials Science Forum. Trans Tech Publications Ltd, 2012. p. 841-844.
[48] LIU, Yousong, et al. Fabrication and photocatalytic properties of silicon nanowires by metal-assisted chemical etching: effect of H2O2 concentration. Nanoscale research letters, 2012, 7.1: 1-9.
[49] MCSWEENEY, William; GEANEY, Hugh; O’DWYER, Colm. Metal-assisted chemical etching of silicon and the behavior of nanoscale silicon materials as Li-ion battery anodes. Nano Research, 2015, 8.5: 1395-1442.
[50] LOTTY, Olan, et al. Porous to nonporous transition in the morphology of metal assisted etched silicon nanowires. Japanese Journal of Applied Physics, 2012, 51.11S: 11PE03.
[51] PARK, Ki Cheol; MA, Dae Young; KIM, Kun Ho. The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering. Thin solid films, 1997, 305.1-2: 201-209.
[52] G. Fang, D. Li, B.L. Yao, Vacuum 68 (2003) 63.
[53] X. Yu, J. Ma, F. Ji, Y. Wana, X. Zhang, C. Cheng, H. Ma, Appl. Surf. Sci.239 (2005) 222.
[54] Electrical 4U, “Solar Cell: Working Principle & Construction (Diagrams Included)”.
[55] Mazen Shanawani, Diego Masotti, Alessanfra Costanzo, ”THz Rectennas and Their Design Rules.” MDPI electronics.
[56]Donald A. Neamen, Semiconductor Physics and Device: Basic Principles.
[57]Shinobu Fujihara, Yoshiki Shibata, Eiji Hosonoa, Chemical Deposition of Rodlike GaOOH and β-Ga2O3 Films Using Simple Aqueous Solutions,Journal of The Electrochemical Society (2005).
[58] ZHAO, Bo. Manipulating Conduction in Metal Oxide Semiconductors: Mechanism Investigation and Conductance Tuning in Doped Fe2O3 Hematite and Metal/Ga2O3/Metal Heterostructure. 2017. PhD Thesis.
[59] JEONG, Sangmoo; MCGEHEE, Michael D.; CUI, Yi. All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency. Nature communications, 2013, 4.1: 1-7.
[60] SHEN, Hao, et al. Growth and characterization of β-Ga2O3 thin films by sol-gel method for fast-response solar-blind ultraviolet photodetectors. Journal of Alloys and Compounds, 2018, 766: 601-608.
[61] CHEN, Dazheng, et al. Thin-film transistors based on wide bandgap Ga2O3 films grown by aqueous-solution spin-coating method. Micro & Nano Letters, 2019, 14.10: 1052-1055.
校內:2026-07-14公開