簡易檢索 / 詳目顯示

研究生: 薛婷婷
Hsiue, Ting-Ting
論文名稱: 以電紡絲法製備生物可分解性複合纖維:聚乳酸/聚羥基丁酸酯
Preparation of biodegradable composite fibers via electrospinning : poly(D,L-lactic) acid/poly(3-hydroxybutyrate)
指導教授: 王紀
Wang, Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 128
中文關鍵詞: 電紡絲聚乳酸聚羥基丁酸酯摻合芯鞘型纖維
外文關鍵詞: electrospinning, poly(D,L-lactic acid), poly(3-hydroxybutyrate), blend, core/shell fiber
相關次數: 點閱:107下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗將PHB與PLA兩種高分子溶於chloroform與DMF的共溶劑系統,固定高分子濃度為7 wt%,探討不同PHB/PLA組成溶液對電紡製程中溶液性質、纖維形態、分子鏈順向度、結晶度等影響。實驗發現:不同組成溶液皆可藉由電紡製備出纖維,當PLA含量愈多,纖維直徑愈細。
    利用DMF可將複合纖維中的PLA成分萃取出來,經處理後的纖維直徑下降且表面無孔洞結構,顯示電紡所得複合纖維為一種特殊的PHB/PLA芯鞘型纖維,其中芯部為PHB而鞘層為PLA成分。由FT-IR可分析此芯鞘型纖維之內徑、組成重量分率與晶體順向度。
    由纖維膜應力-應變曲線得知,PHB纖維膜的較硬脆,PLA則較軟韌。添加PLA於PHB中可改善纖維膜韌性,當PHB/PLA比例為50/50時纖維膜的韌性最大。

    This research is to study the correlation between the solution properties and the fiber morphologies, crystal orientation as well as crystallinity in electrospinning of the 7 wt% PHB/PLA blend solutions. Uniform fibers can be obtained by changing the blend composition. The fiber diameters become thinner as the PLA content is increased.
    PLA component of composite fibers can be extracted out by DMF. The fiber diameter decreases and porous structure is not observed, suggesting that the as-spun composite fiber forms the PHB/PLA core/shell fiber. Fourier transform infrared spectroscopy is used to analyze the inner diameter of core/shell fiber, weight fraction of polymer and crystal orientation.
    From the stress-strain curves of fiber mats, we conclude that PHB is stiff and brittle, but PLA is soft and ductile. With incorporation of PLA into the PHB fiber, the toughness of fiber mats can be improved. When the blend ratio of PHB/PLA is 50/50, maximum toughness is obtained.

    摘要 ........................ i Abstract...................... ii 誌謝 .......................... iii 目錄 .......................... iv 表目錄 .......................... vii 圖目錄 .......................... viii 符號 .......................... xii 一、前言...................................1 二、簡介.................................2 2.1電紡絲模式.................................2 2.2電紡絲實驗觀察..............................3 2.2.1cone和jet形態......................3 2.2.2jet甩動過程........................3 2.2.3纖維形態...........................3 三、文獻回顧................6 3.1聚乳酸(polylactic acid,PLA)簡介................6 3.2聚羥基丁酸酯(poly-3-hydroxybutyrate,PHB)簡介....6 3.3高分子摻合相關電紡絲.............................7 3.4 PLA與PHB相關之順向度分析...................... 9 四、實驗..................................... 35 4.1實驗藥品..................................... 35 4.2實驗材料及儀器............................... 36 4.2.1量測溶液性質之儀器................... 36 4.2.2實驗設備與器材...................... 36 4.2.3分析儀器........................... 37 4.3 溶液配製.................................... 39 4.3.1PHB/PLA溶液配製.................... 39 4.3.2PLA溶液配製.........................39 4.4CF飽和蒸汽的產生.............................. 39 4.5電紡絲實驗步驟................................ 40 4.6移除複合纖維中的PLA成份....................... 40 4.7儀器操作步驟................................. 41 4.7.1FT-IR實驗步驟...................... 41 4.7.2DSC實驗步驟....................... 41 4.7.3拉力機實驗步驟...................... 41 五、結果與討論.................................... 44 5.1溶液性質.................................... 44 5.1.1溶液導電度、表面張力與黏度.........44 5.1.2溶液相分離....................44 5.2不同PHB/PLA組成溶液對電紡製程的影響.......45 5.2.1PHB/PLA系統電紡可操作範圍...........45 5.2.2cone與jet的變化................45 5.3不同PHB/PLA組成溶液對電紡纖維的影響...........46 5.3.1纖維形態..........................46 5.3.2以DMF萃取複合纖維的PLA成分............46 5.3.3移除PLA後的纖維形態..................47 5.3.4TEM與AFM分析..................47 5.3.5FT-IR分析......................... 48 5.3.5.1 解決基線傾斜與凹陷問題...........48 5.3.5.2 以軟體分離纖維膜 C=O官能基吸收峰.. 48 5.3.5.3以FT-IR計算PHB的相對結晶度...... 49 5.3.5.4以FT-IR預測芯鞘型纖維內直徑.....50 5.3.5.5以FT-IR計算高分子的重量分率......51 5.3.6WAXD與SAXS分析...............51 5.3.7DSC分析......................52 5.4纖維內部分子鏈順向度.....................52 5.4.1順向性纖維的收集..............52 5.4.2以FT-IR計算分子鏈順向度.......53 5.4.3WAXD與SAXS分析...............54 5.5纖維膜機械性質分析.......................55 六、結論........................102 七、參考文獻......................103 八、自述........................107 九、附錄........................108

    [1] 林坤賢, 以電紡絲法製備PBO纖維, 國立成功大學碩士論文, (2005).
    [2] 洪崇豪, 以電紡絲法製備彈性奈米SBS纖維膜, 國立成功大學碩士論文, (2004).
    [3] H. Tsuji, “Poly(lactide) stereocomplexes : Formation, structure, properties, degradation, and applications.” Macromolecular Bioscience, 5, 569 (2005).
    [4] S. Randriamahefa, E. Renard, P. Guérin, V. Langlois, “Fourier transform infrared spectroscopy for screening and quantifying production of PHAs by pseudomonas grown on sodium octanoate.” Biomacromolecules, 4, 1092 (2003).
    [5] D. Ishii, W. Lee, K. Kasuya, T. Iwata, “Fine structure and enzymatic degradation of poly[(R)-3-hydroxybutyrate] and stereocomplexed poly(lactide) nanofibers.” Journal of Biotechnology, 132, 318 (2007).
    [6] L. L. Zhang, C. D. Xiong, and X. M. Deng, “Miscibility, crystallization and morphology of poly(beta-hydroxybutyrate)/poly(d,l-lactide) blends.” Polymer, 37, 235 (1996).
    [7] P. J. Barham, A. Keller, E. L. Otun, and P. A. Holmes, “Crystallization and morphology of a bacterial thermoplastic poly-3-hydroxybutyrate” Journal of materials science, 19, 2781 (1984).
    [8] J. Zeleny, “The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces.” Journal of Physical Review, 3, 69 (1914).
    [9] A. Formhals, US patent No. 1975504 (1934).
    [10] D. H. Renekerand, I. Chun, “Nanometre diameter fibres of polymer, produced by electrospinning.” Nanotechnology,7, 216 (1996).
    [11] M. Bognitzki, T. Frese, M. Steinhart, A. Greiner, and J. H. Wendorff, “Preparation of fibers with nanoscaled morphologies: electrospinning of polymer blends.” Polymer Engineering and Science, 41, 982 (2001).
    [12] Y. Z. Zhang, Y. Feng, Z. M. Huang, S. Ramakrishna, and C. T. Lim, “Fabrication of porous electrospun nanofibers.” Nanotechnology, 17, 901 (2006).
    [13] L. Zhang and Y. L. Hsieh, “Nanoporous ultrahigh specific surface polyacrylonitrile.” Nanotechnology, 17, 4416 (2006).
    [14] M. Wei, B. Kang, C. Sung, and J. Mead, “Core-sheath Structure in electrospun nanofibers from polymer blend.” Macromolecular materials and engineering, 291, 1307 (2006).
    [15] A.V. Bazilevsky, A. L.Yarin, and C. M. Megarids, “Co-electrospinning
    of core-shell fibers using a single-nozzle technique.” Langmuir, 23, 2311 (2007).
    [16] X. Xu, X. Zhuang, X. Chen, X. Wang, L. Yang, and X. Jing, “Preparation of core-sheath composite nanofibers by emulsion electrospinning.” Macromolecular Rapid Communications, 27, 1637 (2006).
    [17] P. Peng, Y. Z. Chen, Y. F. Gao, J. Yu, and Z. X. Guo, “Phase morphology and mechanical properties of the electrospun polyoxymethylene/polyurethane blend fiber mats.” Journal of polymer science: part B: polymer physics, 47, 1853 (2009).
    [18] J. W. Park, T. Tanaka, Y. Doi, and T. Iwata, “Uniaxial drawing of poly[(R)-3-hydroxybutyrate]/cellulose acetate butyrate blends and their orientation behavior.” Macromolecular Bioscience, 5, 840 (2005).
    [19] C. Vogel, E. Wessel, and H. W. Siesler, “FT-IR spectroscopic imaging of anisotropic poly(3-hydroxybutyrate)/poly(lactic acid) blends with polarized radiation.” Macromolecules,41, 2975 (2008).
    [20] C. Wang, H. S. Chien, K. W. Yan, C. L. Hung, K. L. Hung, S. J. Tsai, and H. J. Jhang, “Correlation between processing parameters and microstructure of electrospun poly(D,L-lactic acid) nanofibers.” Polymer, 50, 6100 (2009).
    [21] E. Meaurio, E. Zuza, N. López-Rodríguez, and J. R. Sarasua, “Conformational behavior of poly(L-lactide) studied by infrared spectroscopy.” Journal of Physical Chemistry B, 110, 5790 (2006).
    [22] C. Wang, K. W. Yan, Y. D. Lin, and Patrick C. H. Hsieh, “Biodegradable core/shell fibers by coaxial electrospinng:Processing, fiber characterization and its application in sustained drug release.” Macromolecules,in press.
    [23] H. Sato, J. Dybal, R. Murakami, I. Noda and Y. Ozaki, “Infrared and
    Raman spectroscopy and quantum chemistry calculation studies of
    C–H O hydrogen bondings and thermal behavior of biodegradable
    polyhydroxyalkanoate.”Journal of Molecular Structure, 744-747, 35 (2005).
    [24] H. Huang, Y. Hu, J. Zhang, H. Sato, H. Zhang, I. Noda, and Y. Ozaki,
    “Miscibility and Hydrogen-Bonding Interactions in Biodegradable Polymer Blends of Poly(3-hydroxybutyrate) and a Partially Hydrolyzed Poly(vinyl alcohol).” Journal of Physical Chemistry B, 109, 19175 (2005).
    [25] N. Yoshie, Y. Oike, K. Kasuya, Y. Doi, and Y. Inoue, “Change of surface structure of poly(3-hydroxybutyrate) film upon enzymatic, hydrolysis by PHB depolymerase” Biomacromolecules, 3, 1320, (2002).
    [26] W. E. Teo, S. Ramakrishna, “Electrospun fiber bumdle made of aligned nanofibers over two fixed points.” Nanotechnology, 16, 1878 (2005).
    [27] W. E. Teo, S. Ramakrishna, “A review on electrospinning design and nanofibre assemblies.” Nanotechnology, 17, R89 (2006).
    [28] P. Katta, M. Alessandro, R. D. Ramsier, and G. G. Chase, “Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector” Nano Letters, 4, 2215 (2004).
    [29] S. R. Samanta, W. W. Lanier, R. W. Miller, and M. E. Gibson, “Fiber structure study by polarized infrared attenuated total reflection spectroscopy: orientation development of nylon 66 at various spinning speeds” Applied spectroscopy, 44, 1137 (1990).

    下載圖示 校內:2011-08-04公開
    校外:2012-08-04公開
    QR CODE