| 研究生: |
吳天傑 Wu, Tien-chieh |
|---|---|
| 論文名稱: |
Ba(Mg1/3Nb2/3)O3與Ba(Co1/3Nb2/3)O3 陶瓷材料之製備、結構與微波介電性質 Preparation, Crystal Structure, and Microwave Dielectric Properties of Ba(Mg1/3Nb2/3)O3 and Ba(Co1/3Nb2/3)O3 Ceramics |
| 指導教授: |
黃啟原
Huang, Chi-yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 鈣鈦礦 、微波介電陶瓷 、有序 、無序 |
| 外文關鍵詞: | perovskite, order, microwave, dielectric, ceramic, disorder |
| 相關次數: | 點閱:82 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用傳統固態反應法合成 Ba(Mg1/3Nb2/3)O3與 Ba(Co1/3Nb2/3)O3系統,並分別利用控制降溫速度於 0.2 ℃/min和自然爐冷的燒結方式,以及在 Ba(Mg1/3Nb2/3)O3系統中,利用不同去凝聚方法改善晶粒大小的均勻度,觀察其結晶結構上的有序-無序相轉換情形。並藉由X光粉末繞射、拉曼光譜之分析和有序程度參數 (ordering parameter,S)、domain size之計算以及穿透式電子顯微鏡 (TEM) 的觀察,判斷晶體結構之有序程度變化與微波介電性質的關聯性。發現隨著燒結溫度的不同和冷卻速率的降低,以及晶粒大小的均勻度,將會影響 B-site陽離子有序程度以及 domain size的變化,進而改變 Q × f值。
綜合各項結果顯示,在 Ba(Mg1/3Nb2/3)O3系統中,在樣品 1600S-A之domain size有其最佳尺寸約為 57 nm,其介電性質為 Q × f = 78,000 GHz,εr = 32,τf = 23 ppm/℃。Ba(Co1/3Nb2/3)O3系統中,在樣品 1350S有最佳的介電性質:Q × f = 36,000 GHz,εr = 31,τf = -5.5 ppm/℃。
The effect of conventional solid state methods and different heat treatment conditions by controlling the cooling rate at 0.2 ℃/min with no soaking time and without control of cooling rate significantly of Ba(Mg1/3Nb2/3)O3 and Ba(Co1/3Nb2/3)O3 systems are investigated. Besides, in BMN system, we observe the order-disorder transition condition in crystal structure by improving the homogeneity of the grain size with different de-agglomerating methods. The samples are characterized the relationship between the ordering degree of the crystal structure and the microwave dielectric properties by the analysis of X-ray powder diffractiometer, Raman spectroscopy, transmission electron microscopy (TEM) , the calculation of the ordering degree and the domain size. This study investigates that different sintering temperature, decrease in the cooling rate and the homogeneity of the grain size induce the ordering degree of the B-site cations, the variation of the domain size and Q × f values.
In this investigation of BMN, the sample of 1600S-A obtains the best dielectric properties (Q × f = 78,000 GHz,εr = 32,τf = 23 ppm/℃ ). In BCN system, the sample of 1350S obtains the best dielectric properties (Q × f = 36,000 GHz,εr = 31,τf = -5.5 ppm/℃ ).
[1] L. Chai, M. A. Akbas, P. K. Davies and J. B. Parise, “Cation Ordering Transformation in Ba(Mg1/3Ta2/3)O3 – BaZrO3 Perovskite Solid Solutions,” Mater. Res. Bull., 32, [9], 1261-69 (1997).
[2] 林勇名,Ba[Mg(1-x)/3Cox/3Nb2/3]O3 陶瓷材料的結構與微波 介電性質,國立成功大學資源工程研究所碩士論文 (2008)。
[3] Chun-Te Lee, Yi-Chang Lin, Chi-Yuen Huang, Che-Yi Su, and Ching-Li Hu, “Cation Ordering and Dielectric Characteristics in Barium Zinc Niobate,” J. Am. Ceram. Soc., 90 [2], 483-489 (2007).
[4] S. Nomura, “Ceramics for Microwave Dielectric Resonator,” Ferroelectrics, 49, 61-70 (1983).
[5] Cheng-Chyi You, Cheng-Liang Hunag, Chung-Chuang Wei, and Jin-Wen Hunag, “Improved High-Q Dielectric Resonator Sintered at Low Firing Temperature,” Jpn. J. Appl. Phys., 34, 1911-1915 (1995).
[6] Cheol-Woo Ahn, Sahn Nahm, Yun-Soo Lim, Woong Choi, Hyun-Min Park, and Hwack-Joo Lee, “Microstructure and Microwave Dielectric Properties of Ba(Co1/3Nb2/3)O3 Ceramics,” Jpn. J. Appl. Phys., 41, 5277-5280 (2002).
[7] H. Yoshioka, “Ordering of Cations in Ba(Mg1/3Nb2/3)O3 and Ba(Zn1/3Nb2/3)O3,” Bull. Chem. Soc. Jpn., 60, 3433-3434 (1987).
[8] F. Galasso and W. Darby, “Ordering of the Octahedrally Coordinated Cation. Position in the Perovskite Structure,” J. Phys. Chem., 66, 131-132 (1962).
[9] A. M. Glazer, “The Classification of Tilted Octahedra in Perovskite,” Acta Cryst., B28, 3384-3392 (1972).
[10] A. M. Glazer, “Simple Ways of Determining Perovskite Structure,” Acta Cryst., A31, 756-762 (1975).
[11] H. J. Lee, H. M. Park, Y. W. Song, Y. K. Cho, J. H. Paik, S. Nahm, and J. D. Byun, “Microstructure of Lanthanum Magnesium Niobate at Elevate Temperature,” J. Am. Ceram. Soc., 83 [4], 943-945 (2000).
[12] H. J. Lee, H. M. Park, Y. W. Song, Y. K. Cho, J. H. Paik, S. Nahm, and J. D. Byun, “Two Types of Domain Boundaries in Lanthanum Magnesium Niobate,” J. Am. Ceram. Soc., 83 [11], 2875-2877 (2000).
[13] O. Prytz and J. Tafto, “Accurate Determination of Orientation Relationships between Ferroelastic Domains: The Tetragonal to Monoclinic Transition in LaNbO4 as an example,” Acta Mat., 53, 297-302 (2005).
[14] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, 2nd Ed., John Wiley and Sons, New York (1976).
[15] C. G. Bergeron and S. H. Risbud, Introduction to Phase Equilibria in Ceramics, The American Ceramic Society Inc., Columbus (1984)
[16] O. Muller and R. Roy, The Major Ternary Structural Families, Springer, New York (1974).
[17] I. M. Reaney, E. L. Colla, and N. Setter, “Dielectric and Structural Characteristics of Ba and Sr-based Complex Perovskite as a Function of Tolerance Factor,” Jpn. J. Appl. Phys., 33, 3984–3990 (1994).
[18] 黃恩萍,角閃石類礦物之拉曼光譜研究,國立成功大學地球科學研究所碩士論文 (2003)
[19] I. M. Reaney and David Iddles, “Microwave Dielectric Ceramics for Resonators and Filters in Mobile Phone Networks,” J. Am. Ceram. Soc., 89 [7], 2063-2072 (2006).
[20] David I. Woodward and I. M. Reaney, “Electron Diffraction of Tilted Perovskites,” Acta Cryst., B61, 387-399 (2005).
[21] C. T. Chia, Y. C. Chen, H. F. Cheng, and I. N. Lin, “Correlation of Microwave Properties and Normal Vibration Modes of xBa(Mg1/3Ta2/3)O3-(1-x)Ba(Mg1/3Nb2/3)O3 Ceramics: I. Raman Spectroscopy,” J. Appl. Phys., 94 [5], 3360-3364 (2003).
[22] I. G. Siny, R. Tao, R. S. Katiyar, R. Guo, and A. S. Bhalla, “ Raman Spectroscopy of Mg-Ta Order-Disorder in Ba(Mg1/3Ta2/3)O3,” J. Phys. Chem. Solids, 59 [2], 181-195 (1998).
[23] A. J. Bosman and E. E. Havinga, “Temperature Dependence of Dielectric Constants of Cubic Ionic Compounds,” Phys. Rev., 129[4], 1593–1600 (1963).
[24] Shannon, R. D., “Dielectric Polarizabilities of Ions in Oxides and Fluorides.” J. Appl. Phys., 73, 348-366 (1993).
[25] 吳朗,電子陶瓷,全欣科技圖書 (1994)。
[26] D. K. Cheng, Field and Wave Electromagnetic, Addison Wesley, Mass., 407-412 (1989).
[27] 劉適嘉,Ba[ZrxZn(1-x)/3Nb2(1-x)/3]O3 介電陶瓷之微波特性及其應用,國立成功大學電機工程研究所碩士論文 (2001)。
[28] D. Kajfez, “Computed Modal Field Distribution for Isolated Dielectric Resonators,” IEEE. Trans. MTT, MTT-32, 1609-1616 (1984).
[29] D. Kajfez, “Basic Principle Give Understanding of Dielectric Wave-guides and Resonators,” Microwave System News, 13, 152-161 (1983).
[30] D. Kajfez and P. Guillon, Dielectric Resontors, Artech House, Dedham, Mass. (1979).
[31] C. Y. Huang, Thermal Expansion Behavior of Sodium Zirconium Phosphate Structure type Materials, Ph. D. Thesis, The Pennsylvania State University, U.S.A. (1990).
[32] 王俊傑,ZnNb2O6 介電陶瓷材料燒結與微波特性之研究,國立成功大學電機工程研究所碩士論文 (2003)。
[33] A. S. Bhalla, R. Guo, and R. Roy, “The Perovskite Structure - a Review of its Role in Ceramic Science and Technology,” Mat. Res. Innovat., 4, 3-26 (2000).
[34] Lu, C. H. and Tsai, C. C., “Reaction Kinetics, Sintering Characteristics, and Ordering Behavior of Microwave Dielectrics: Barium Magnesium Tantalite,” J. Mater. Res., 11, 1219–1227 (1996).
[35] I. M Reaney, P. L. Wise and R. Ubic, “On the Temperature Coefficient of Resonant Frequency in Microwave Dielectrics,” Philos. Mag. A. 81(2), 501-510 (2001).