| 研究生: |
蔡承勲 Tsai, Cheng-Syun |
|---|---|
| 論文名稱: |
應用關聯規則探勘技術於數位行銷-以A公司為例 Applying association rule mining to digital marketing - a case study of company A |
| 指導教授: |
徐立群
Shu, Lih-Chyun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 會計學系 Department of Accountancy |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 精準行銷 、關聯規則分析 、最小支持度 、經驗貝葉氏修正 、偽相關 |
| 外文關鍵詞: | Precision marketing, association rule analysis, minimum support, empirical Bayesian adjustment, spurious correlation |
| 相關次數: | 點閱:46 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討如何利用購物籃分析法來深入了解顧客的消費行為,並進一步提升企業的行銷策略。現代行銷學之父Philip Kotler將行銷定義為滿足目標族群需求並獲利的科學與藝術,這一觀點在過去數十年中被廣泛認同並應用於企業實踐中。隨著數位技術的迅猛發展,企業開始借助這些技術來支援行銷活動,從而獲得競爭優勢並提高顧客滿意度。本研究採用了購物籃分析法,通過分析零售資料中的物品關聯,幫助商家理解哪些產品經常一起被購買,藉此制定存貨管理和促銷策略。我們專注探討了支持度、信賴度和提升度三個指標,並引入經驗貝葉氏方法修正提升度以提高結果的準確性。我們的研究發現,現有的促銷活動會對資料分析結果產生偏差,因此我們提出了相應的解決方案來排除這些影響。此外,我們通過後處理有效地辨別和排除偽相關規則,確保所得的關聯規則是真實且有意義的。實證研究結果顯示,利用常態分配檢驗可以有效篩選出受到促銷影響的產品組合,並且在資料稀疏的情況下結合信賴度來排除偽相關組合。另外,我們提出了一個提升結果啟發性的概念,使最後的分析結果可以帶給企業對顧客行為更深入的洞察。
This study explores how market basket analysis can be utilized to gain deeper insights into customer purchasing behavior and enhance marketing strategies. As defined by Philip Ko-tler, marketing involves identifying and fulfilling customer needs profitably. With advance-ments in digital technology, businesses increasingly leverage data to support their market-ing efforts, gaining a competitive edge and improving customer satisfaction.
Market basket analysis, a widely-used technique, reveals product associations in retail data, helping businesses understand which products are frequently purchased together. By ana-lyzing support, confidence, and lift metrics, this study refines traditional approaches, incor-porating methods to eliminate biases from promotional activities and identify spurious cor-relations. The findings demonstrate how this enhanced analysis can lead to more effective inventory management, promotional strategies, and customer insights, ultimately driving better business outcomes.
中文文獻
吳奇廷(2018)。應用機器學習於精準行銷之研究[為出版之碩士論文]。國立成功大學會計學研究所。
吳俊儀. (2021). 家樂福與Appier協力解鎖顧客品牌忠誠度 優化行銷強化電商市場. Retrieved from https://www.ctee.com.tw/news/20210714700387-431207
英文文獻
Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. Paper presented at the Proc. 20th int. conf. very large data bases, VLDB.
Balaji, M., & Roy, S. K. (2017). Value co-creation with Internet of things technology in the retail industry. Journal of Marketing Management, 33(1-2), 7-31.
Borah, A., & Nath, B. (2018). Identifying risk factors for adverse diseases using dynamic rare association rule mining. Expert systems with applications, 113, 233-263.
Cil, I. (2012). Consumption universes based supermarket layout through association rule mining and multidimensional scaling. Expert systems with applications, 39(10), 8611-8625.
Dogan, O., Ayçin, E., & Bulut, Z. (2018). Customer segmentation by using RFM model and clustering methods: a case study in retail industry. International Journal of Contemporary Economics and Administrative Sciences, 8.
DuMouchel, W. (1999). Bayesian data mining in large frequency tables, with an application to the FDA spontaneous reporting system. The American Statistician, 53(3), 177-190.
DuMouchel, W., & Pregibon, D. (2001). Empirical bayes screening for multi-item associations. Paper presented at the Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining.
Feng, F., Cho, J., Pedrycz, W., Fujita, H., & Herawan, T. (2016). Soft set based association rule mining. Knowledge-Based Systems, 111, 268-282.
Feng, Y., Yin, Y., Wang, D., & Dhamotharan, L. (2022). A dynamic ensemble selection method for bank telemarketing sales prediction. Journal of Business Research, 139, 368-382.
Fournier-Viger, P., Wu, C.-W., & Tseng, V. S. (2012). Mining top-k association rules. Paper presented at the Advances in Artificial Intelligence: 25th Canadian Conference on Artificial Intelligence, Canadian AI 2012, Toronto, ON, Canada, May 28-30, 2012. Proceedings 25.
Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate generation. ACM sigmod record, 29(2), 1-12.
Hikmawati, E., Maulidevi, N. U., & Surendro, K. (2021). Minimum threshold determination method based on dataset characteristics in association rule mining. Journal of Big Data, 8(1). doi:10.1186/s40537-021-00538-3
Jagabathula, S., Subramanian, L., & Venkataraman, A. (2018). A model-based embedding technique for segmenting customers. Operations Research, 66(5), 1247-1267.
Jeeva, S. C., & Rajsingh, E. B. (2016). Intelligent phishing url detection using association rule mining. Human-centric Computing and Information Sciences, 6, 1-19.
Kotsiantis, S., & Kanellopoulos, D. (2006). Association rules mining: A recent overview. GESTS International Transactions on Computer Science and Engineering, 32(1), 71-82.
Lee, Y.-C., Hong, T.-P., & Lin, W.-Y. (2005). Mining association rules with multiple minimum supports using maximum constraints. International Journal of Approximate Reasoning, 40(1-2), 44-54.
Li, J., Heap, A. D., Potter, A., & Daniell, J. J. (2011). Application of machine learning methods to spatial interpolation of environmental variables. Environmental Modelling & Software, 26(12), 1647-1659.
Li, K., Liu, L., Wang, F., Wang, T., Duić, N., Shafie-khah, M., & Catalão, J. P. (2019). Impact factors analysis on the probability characterized effects of time of use demand response tariffs using association rule mining method. Energy conversion and management, 197, 111891.
Li, L., & Zhang, M. (2011). The strategy of mining association rule based on cloud computing. Paper presented at the 2011 international conference on business computing and global informatization.
Ma, L., & Sun, B. (2020). Machine learning and AI in marketing–Connecting computing power to human insights. International Journal of Research in Marketing, 37(3), 481-504.
Miglautsch, J. R. (2000). Thoughts on RFM scoring. Journal of Database Marketing & Customer Strategy Management, 8, 67-72.
Miklosik, A., & Evans, N. (2020). Impact of big data and machine learning on digital transformation in marketing: A literature review. Ieee Access, 8, 101284-101292.
Nguyen, L. T., Vo, B., Nguyen, L. T., Fournier-Viger, P., & Selamat, A. (2018). ETARM: an efficient top-k association rule mining algorithm. Applied Intelligence, 48, 1148-1160.
Ramachandra, H., Balaraju, G., Rajashekar, A., & Patil, H. (2021). Machine learning application for black friday sales prediction framework. Paper presented at the
2021 International Conference on Emerging Smart Computing and Informatics (ESCI).
Rouhani, S., Ashrafi, A., Zare Ravasan, A., & Afshari, S. (2016). The impact model of business intelligence on decision support and organizational benefits. Journal of Enterprise Information Management, 29(1), 19-50.
Ryang, H., & Yun, U. (2015). Top-k high utility pattern mining with effective threshold raising strategies. Knowledge-Based Systems, 76, 109-126.
Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3-4), 591-611.
Spring, M., Hughes, A., Mason, K., & McCaffrey, P. (2017). Creating the competitive edge: A new relationship between operations management and industrial policy. Journal of Operations Management, 49, 6-19.
Trivedi, J., & Patel, B. (2017). An automated support threshold based on apriori algorithm for frequent itemsets. Int J Adv Res Innovative Ideas Educ, 3(6), 446-452.
Tseng, M.-C., & Lin, W.-Y. (2007). Efficient mining of generalized association rules with non-uniform minimum support. Data & Knowledge Engineering, 62(1), 41-64.
Van den Poel, D., & Lariviere, B. (2004). Customer attrition analysis for financial services using proportional hazard models. European journal of operational research, 157(1), 196-217.
Verma, S., Sharma, R., Deb, S., & Maitra, D. (2021). Artificial intelligence in marketing: Systematic review and future research direction. International Journal of Information Management Data Insights, 1(1), 100002.
Yang, S. J. (2021). Precision education-a new challenge for AI in education. Journal of Educational Technology & Society, 24(1).
Yang, X., Li, H., Ni, L., & Li, T. (2021). Application of artificial intelligence in precision marketing. Journal of Organizational and End User Computing (JOEUC), 33(4), 209-219.
Zhang, C., Xue, X., Zhao, Y., Zhang, X., & Li, T. (2019). An improved association rule mining-based method for revealing operational problems of building heating, ventilation and air conditioning (HVAC) systems. Applied Energy, 253, 113492.
Zhang, L., Priestley, J., DeMaio, J., Ni, S., & Tian, X. (2021). Measuring customer similarity and identifying cross-selling products by community detection. Big data, 9(2), 132-143.
Zhang, S., Wu, X., Zhang, C., & Lu, J. (2008). Computing the minimum-support for mining frequent patterns. Knowledge and Information Systems, 15(2), 233-257.
校內:2029-08-13公開