簡易檢索 / 詳目顯示

研究生: 林冠宇
Lin, Kuan-Yu
論文名稱: 於多重動態供電壓設計下考量時序差最小化的應用可調整式緩衝器之負載平衡時鐘樹合成
Load-Balanced Clock Tree Synthesis with Adjustable Delay Buffer Insertion for Clock Skew Minimization in Multiple Dynamic Supply Voltage Designs
指導教授: 何宗易
Ho, Tsung-Yi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 38
中文關鍵詞: 負載平衡時鐘樹合成省電設計多重動態供電壓可調整式緩衝器
外文關鍵詞: Load-Balanced, Clock Tree Synthesis, Low Power, Multiple Dynamic Supply Voltage, Adjustable Delay Buffer
相關次數: 點閱:70下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現代晶片設計中,電源消耗已成為一嚴重的問題。為處理此問題,多重動態供電壓設計被提出,且被視為在現代晶片中的有效解決方案;然而,在電源模式切換間所產生的時序差問題,增加了在多重動態供電壓設計中減低時序差的複雜度。在本篇論文中,我們提出了一個由負載平衡時鐘樹合成,並結合可調整式緩衝器插入方案,來解決多重動態供電壓設計下的時序差問題。本時鐘樹合成器採用了最小擴張樹來進行繞線長估計,並用以進行以圖形理論為底之叢集建立;當初始的時鐘樹完成時,階級式緩衝器將會插入以減低時序延遲,之後再插入可調整式緩衝器以解決多重動態供電壓設計下的時序差問題。可調整式緩衝器可用來產生多餘的延遲,因此可用以調整時鐘樹中的時序延遲與時序差。我們提出了一個有效的可調整式緩衝器插入演算法,其可減低時序差、額外消耗面積與運算時間;與之前最佳的可調整式緩衝器插入演算法比較,實驗結果顯示我們可減少最高 42.40% 的額外消耗面積,並達到最高 117.84 倍的運算時間提升。

    Power consumption is known to be a crucial issue in current IC designs. To tackle this problem, multiple dynamic supply voltage (MDSV) designs are proposed as an efficient solution in modern IC designs. However, the increasing variability of clock skew during the switching of power modes leads to an increase in the complication of clock skew reduction in MDSV designs. In this paper, we propose a load-balanced clock tree synthesizer with adjustable delay buffer (ADB) insertion for the minimization of clock skew in MDSV designs. The clock tree synthesizer adopts the minimum spanning tree (MST) metric to estimate the interconnect capacitance and execute the graph-theoretic clustering. Once the initial clock tree construction is complete, the leveled buffers are inserted for clock latency reduction. Then the ADBs with delay value assignments are inserted to reduce clock skew in MDSV designs. The ADBs can be used to produce additional delays, hence the clock latencies and skew become tunable in a clock tree. An efficient algorithm of ADB insertion for the minimization of clock skew, area, and runtime in MDSV designs has been presented. Comparing with the state-of-the-art algorithm of ADB insertion, experimental results show maximum 42.40% area overhead improvement and 117.84 times runtime speedup.

    List of Tables . . . . . . . . . . . . . . . . . . . . . . v List of Figures . . . . . . . . . . . . . . . . . . . . . vi Chapter 1. Introduction . . . . . . . . . . . . . . . . . .1 1.1 Previous Work . . . . . . . . . . . . . . . . . . . . .2 1.2 Our Contributions . . . . . . . . . . . . . . . . . . .4 Chapter 2. Preliminaries . . . . . . . . . . . . . . . . . 8 2.1 Multiple Dynamic Supply Voltage Designs . . . . . . . .8 2.2 Clock Latency and Skew Issues in MDSV Designs . . . . .9 2.3 A Model of Adjustable Delay Buffer . . . . . . . . . .10 Chapter 3. Problem Formulation . . . . . . . . . . . . . .12 Chapter 4. The Algorithm Flow . . . . . . . . . . . . . . 13 Chapter 5. Load-Balanced Clock Tree Synthesis . . . . . . 15 5.1 Load-Balanced Sink Clustering . . . . . . . . . . . . 15 5.2 Graph-theoretic Clustering . . . . . . . . . . . . . .15 5.3 Power-mode-guided Optimization . . . . . . . . . . . .18 5.4 Leveled Clock Tree Routing and Buffer Insertion . . . 19 Chapter 6. Clock Skew Minimization in Multiple Dynamic Supply Voltage Designs . . . . . . . . . . . . . . . . . .20 6.1 Top-Down ADB Insertion and Delay Value Assignments . .21 6.2 Bottom-Up ADB Elimination and Delay Value Extensions .22 6.3 ADB Insertion with Delay Value Assignments in Multiple Power Modes . . . . . . . . . . . . . . . . . . .24 6.4 ADB Delay Value Reduction in Multiple Power Modes . . 26 6.5 Time Complexity of The Algorithm . . . . . . . . . . .27 Chapter 7. Experimental Results . . . . . . . . . . . . . 30 Chapter 8. Conclusion . . . . . . . . . . . . . . . . . . 35 Bibliography . . . . . . . . . . . . . . . . . . . . . . .36

    [1] T. H. Chao, Y. C. Hsu, J. M. Ho, K. D. Boese, and A. B. Kahng, "Zero
    skew clock routing with minimum wirelength," IEEE Trans. on Circuits
    and Systems, vol. 39, no. 11, pp. 799-814, 1992.
    [2] Y. P. Chen and D. F. Wong, "An algorithm for zero-skew clock tree
    routing with buffer insertion," Proc. European Design and Test Conf.,
    pp. 230-236, 1996.
    [3] M. Edahiro, "A clustering-based optimization algorithm in zero-skew
    routings," Proc. ACM/IEEE Design Automation Conf., pp. 612-616,
    1993.
    [4] M. Edahiro, "An efficient zero-skew routing algorithm," Proc.
    ACM/IEEE Design Automation Conf., pp. 375-380, 1994.
    [5] S. Hu and J. Hu, "Unified adaptivity optimization of clock and logic
    signals," Proc. Intl. Conf. on Computer Aided Design, pp. 125-130, 2007.
    [6] A. K. Jain, M. N. Murty, and P. J. Flynn, "Data clustering: a review,"
    ACM Computing Surveys, vol. 31, no. 3, pp. 264-323, 1999.
    [7] T. K. Johnston, "Clock tree adjustable buffer," U. S. Patent, no.
    7571406B2, 2009.
    [8] V. Khandelwal and A. Srivastava, "Variability-driven formulation for
    simultaneous gate sizing and post-silicon tunability allocation, " Proc.
    Intl. Symposium on Physical Design, pp. 11-18, 2007.
    [9] N. A. Kurd, J. S. Barkarullah, R. O. Dizon, T. D. Fletcher, and P. D.
    Madland, "A multigigahertz clocking scheme for the Pentium 4 Micro-
    processor," IEEE J. Solid-State Circuits, vol. 36, no. 11, pp. 1647-1653,
    2001.
    [10] I. M. Liu, T. L. Chou, A. Aziz, and D. F. Wong, "Zero-skew clock tree
    construction by simultaneous routing, wire sizing and buffer insertion,"
    Proc. Intl. Symposium on Physical Design, pp. 33-38, 2000.
    [11] C. L. Lung, Z. Y. Zeng, C. H. Chou, and S. C. Chang, "Clock skew
    optimization considering complicated power modes," Proc. Design Au-
    tomation and Test in Europe, pp. 1474-1480, 2010.
    [12] A. D. Mehta, Y. P. Chen, N. Menezes, D. F. Wong, and L. T. Pileggi,
    "Clustering and load balancing for buffered clock tree synthesis," Proc.
    IEEE Intl. Conf. on Computer Design, pp. 217-223, 1997.
    [13] G. N. Roberts, "Adjustable buffer driver," U. S. Patent, no. 5361003,
    1994.
    [14] R. S. Shelar, "An efficient clustering algorithm for low power clock tree
    synthesis," Proc. Intl. Symposium on Physical Design, pp. 181-188, 2007.
    [15] Y. S. Su, W. K. Hon, C. C. Yang, S. C. Chang, and Y. J. Chang, "Value
    assignment of adjustable delay buffers for clock skew minimization in
    multi-voltage mode designs," Proc. Intl. Conf. on Computer Aided De-
    sign, pp. 535-538, 2009.
    [16] E. Takahashi, Y. Kasai, M. Murakawa, and T. Higuchi, "A post-silicon
    clock timing adjustment using genetic algorithms," Digest of Technical
    Papers of the Symp. on VLSI Circuits, pp. 13-16, 2003.
    [17] S. Tam, S. Rusu, U. N. Desai, R. Kim, J. Zhang, and I. Young, "Clock
    generation and distribution for the first IA-64 microprocessor," IEEE J.
    Solid-State Circuits, vol. 35, no. 11, pp. 1545-1552 , 2000.
    [18] S. Tam, R. D. Limaye, and U. N. Desai, "Clock generation and distribu-
    tion for the 130-nm ItaniumR 2 processor with 6-MB on-die L3 cache,"
    IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 636-642, 2003.
    [19] R. S. Tsay, "An exact zero-skew clock routing algorithm," IEEE Trans.
    on Computer-Aided Design of Integrated Circuits and Systems, vol. 12,
    no. 2, pp. 242-249, 1993.
    [20] J. L. Tsai, T. H. Chen, and C. C. P. Chen, "Zero skew clock-tree opti-
    mization with buffer insertion/sizing and wire sizing," IEEE Trans. on
    Computer-Aided Design of Integrated Circuits and Systems, vol. 23, no.
    4, pp. 565-572, 2004.
    [21] J. L. Tsai, L. Zhang, and C. C. P. Chen, "Statistical timing analysis
    driven post-silicon-tunable clock-tree synthesis," Proc. Intl. Conf. on
    Computer Aided Design, pp. 575-581, 2005.

    下載圖示 校內:2013-08-31公開
    校外:2013-08-31公開
    QR CODE