| 研究生: |
鄭允銓 Cheng, Yun-Chuan |
|---|---|
| 論文名稱: |
甲烷催化部分氧化反應於瑞士捲反應器中之可用能與熵分析 Exergy and Entropy Analyses of Hydrogen Production from Catalytic Partial Oxidation of Methane in Swiss-roll Reactors |
| 指導教授: |
洪振益
Hung, Chen-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 產氫 、甲烷催化部分氧化 、蒸氣重組 、二氧化碳重組 、可用能 、熵分析 、瑞士捲反應器 |
| 外文關鍵詞: | Hydrogen production and generation, Catalytic partial oxidation of methane (CPOM), Steam reforming and CO2 reforming, Exergy, Entropy analysis, Swiss-roll reactor |
| 相關次數: | 點閱:109 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於近年來環保意識抬頭,為了降低溫室效應,各方學者積極發展潔淨的替代能源。在眾多選擇當中,氫氣擁有高能量密度,在使用上亦不會產生溫室氣體,是極具發展性的替代能源。本研究共分成兩個部分,第一部分是利用數值模擬探討在不同的氣時空速之下,瑞士捲反應器中之甲烷催化部分氧化反應的暫態過程與可用能回收率。其中以銠(Rh)觸媒進行催化,氧碳原子比設定為1.0。模擬結果顯示出當反應到達穩態時,擁有熱回收效應的的甲烷轉化率可超過80%,遠高於無熱回收的狀況。而且瑞士捲的可用能回收率在66%以上,由此可見瑞士捲之熱回收效能。
接著第二部分探討在不同的氣時空速與氧碳原子比下,瑞士捲反應器中的甲烷催化部分氧化反應之熵增。藉由熵分析,可以深入瞭解化學反應、熱傳和摩擦力這三種效應對熵增所造成的影響,以及熵增與產氫效率的關係。從結果可以發現化學反應為熵增的主要來源,相較之下摩擦力所造成的熵增是可忽略的。另外,所有效應的熵增量和氣時空速成正比,瑞士捲捲數的增加也會使熵增率提高,但是摩擦力在流道中造成的情況是例外的。在氧碳原子比為1.2時,單位甲烷之化學反應熵增率為最高。
Catalytic partial oxidation of methane (CPOM) is a promising method for hydrogen production with autothermal reaction. The present study will focus on two topics, with one on unsteady reaction characteristics, and the other on entropy generation of CPOM.
To figure out the unsteady reaction characteristics of CPOM in a Swiss-roll reactor along with heat recirculation, a numerical method is employed to simulate the transient reaction dynamics, with emphasis on energy recovery using exergy analysis. Three different gas hourly space velocities (GHSVs) of 5,000, 10,000 and 50,000 h-1 with the condition of atomic O/C ratio of 1 are considered. The predictions indicate that increasing GHSV substantially shortens the transient period of chemical reactions; however, it also reduces the methane conversion, as results of more reactants sent into the reactor and shorter residence time of the reactants in the catalyst bed. Within the investigated range of GHSV, the methane conversion with energy recovery at the steady state is larger than 80%, much higher than the reaction without heat recovery. The selectivities of H2 and CO in the product gas are always larger than 90%. The exergy recovery is in the range of 66-80%, implying that over two-third useful work contained in the product gas can be reused to preheat the reactants in the reactor, thereby enhancing the performance of CPOM.
By using the entropy analysis, the impact of chemical reactions, heat transfer and friction on entropy generation and the relation between entropy generation and hydrogen-producing efficiency have been investigated. Three important parameters of number of turns, GHSV and O/C ratio are in the ranges of 1-3, 10,000-50,000 h-1 and 0.8-1.4, respectively. The results show that the chemical reactions are the main sources of entropy generation, whereas the friction plays almost no part on entropy generation, compared to heat transfer and chemical reactions. The entropy generation rate is proportional to GHSV. It is larger when the number of turns is increased except the friction in channel. Furthermore, at O/C ratio=1.2, the maxima specific entropy generation rate from chemical reactions is exhibited.
1. Abbas, H.F., Wan Daud, W.M.A., “Hydrogen production by thermocatalytic decomposition of methane using a fixed bed activated carbon in a pilot scale unit: apparent kinetic, deactivation and diffusional limitation studies,” International Journal of Hydrogen Energy, Vol.35, pp.12268-12276, 2010.
2. Aljundi, I.H., “Energy and exergy analysis of a steam power plant in Jordan,” Applied Thermal Engineering, Vol.29, pp.324-328, 2009.
3. ANSYS FLUENT v12 User Guide.
4. Bejan, A., Advanced Engineering Thermodynamics, Wiley, 2006.
5. Bidi, M., Nobari, M.R.H., Avval, M.S., “A numerical evaluation of combustion in porous media by EGM (entropy generation minimization),” Energy, Vol.35, pp.3483-3500, 2010.
6. Boyano, A., Blanco-Marigorta, A.M., Morosuk, T., Tsatsaronis, G., “Exergonevironmental analysis of a steam methane reforming process for hydrogen production,” Energy, Vol.36, pp.2202-2214, 2011.
7. Briones, A.M., Mukhopadhyay, A., Aggarwal, D.K., “Analysis of entropy generation in hydrogen-enriched methane-air propagating triple flames,” International Journal of Hydrogen Energy, Vol.34, pp.1074-1083, 2009.
8. Budziannowski, W.M., Miller, R., “Auto-thermal combustion of lean gaseous fuels utilizing a recuperative annular double-layer catalytic converter,” The Canadian Journal of Chemical Engineering, Vol.86, pp.778-790, 2008.
9. Cengel, Y.A, Boles, M.A., Thermodynamics: An Engineering Approach, McGraw-Hill, 2005.
10. Chen, S., “Analysis of entropy generation in counter-flow premixed hydrogen-air combustion,” International Journal of Hydrogen Energy, Vol.35, pp.1401-1411, 2010.
11. Chen, W.H., Cheng T.C., Hung, C.I., “Modeling and simulation of microwave double absorption on methanol steam reforming for hydrogen production,” International Journal of Hydrogen Energy, Vol.36, pp.333-344, 2011.
12. Chen, W.H., Chiu, T.W., Hung, C.I., Lin, M.R., “ Hysteresis and reaction characterization of methane catalytic partial oxidation on rhodium catalyst,” Journal of Power Sources, Vol.194, pp.467-477, 2009.
13. Chen, W.H., Chiu, T.W., Hung, C.I., “Hysteresis loops of methane catalytic partial oxidation for hydrogen production under the effects of varied Reynolds number and Damkőhler number,” Internation Journal of Hydrogen Energy, Vol.35, pp.6291-6302, 2010.
14. Chen, W.H., Chiu, T.W., Hung, C.I., “Enhancement effect of heat recovery on hydrogen production from catalytic partial oxidation of methane,” International Journal of Hydrogen Energy, Vol.35, pp.7427-7440, 2010.
15. Chen, W.H., Chiu, T.W., Hung, C.I., “Hydrogen production from methane under the interaction of catalytic partial oxidation, water gas shift reaction and heat recovery,” International Journal of Hydrogen Energy, Vol.35, pp.12808-12820, 2010.
16. Chen, W.H., Syu, Y.J., “Hydrogen production from water gas shift reaction in a high gravity (Higee) environment using a rotating packed bed,” International Journal of Hydrogen Energy, Vol.35, pp.10179-10189, 2010.
17. Chen, W.H., Cheng, Y.C., Hung, C.I., “Transient reaction and exergy analysis of catalytic partial oxidation of methane in a Swiss-roll reactor for hydrogen production,” International Journal of Hydrogen Energy, Vol.37, 99.6608-6619, 2012.
18. Claridge, J.B., Green, M.L.H., Tsang, S.C., York, A.P.E., Ashcroft, A.T., Battle, P.D., “A study of carbon deposition on catalysts during the partial oxidation of methane to synthesis gas,” Catalysis Letters, Vol.22, pp.299-305, 1993.
19. Corbo, P., Migliardini, F., “Hydrogen production by catalytic partial oxidation of methane and propane on Ni and Pt catalysts,” International Journal of Hydrogen Energy, Vol.32, pp.55-66, 2007.
20. Dincer, I., Rosen, M., “Exergy as a driverfor achieving sustainability,” International Journal of Green Energy, Vol.1, pp.1-19, 2004.
21. Erek, A., Dincer, I., “An approach to entropy analysis of a latent heat storage module,” International Journal of Thermal Sciences, Vol. 47, pp.1077-1085, 2008.
22. Eriksson, S., Schneider, A., Mantzaras, J., Wolf, M., Järås, S., “Experimental and numerical investigation of supported rhodium catalysts for partial oxidation of methane in exhaust gas diluted reaction mixtures,” Chemical Engineering Science, Vol.62, pp.3991-4011, 2007.
23. Hickman, D.A., Schmidt, L.D., “Production of syngas by direct catalytic oxidation of methane,” Science, New Series, Vol.259, pp.343-346, 1993.
24. Horn, R., Williams, K.A., Degenstein, N.J., Bitsch-Larsen, A., Dalle Noare, D., Tupy, S.A., Schmidt, L.D., “Methane catalytic partial oxidation on autothermal Rh and Pt foam catalystsL Oxidation and reforming zones, transport effects, and approach to thermodynamic equilibrium,” Journal of Catalysis, Vol.249, pp.380-393, 2007.
25. Incropera, F.P., Dewitt, D.P., Bergman, T.L., Lavine, A.S., Fundamentals of Heat and Mass Transfer, Wiley, 2007.
26. Janna, W.S., Engineering heat transfer, CRC Press, Boca Raton, 2009.
27. Jongmook, L., Jay, G., Raymond, V., “A study of the effects of air preheat on the structure of methane/air counterflow diffusion flames,” Combustion and Flames, Vol.121, pp.262-274, 2000.
28. Karakaya, M., Avcı, A.K., Aksoylu, A.E., Onsan, Z.I., “Steady-state and dynamic modeling of indirect partial oxidation of methane in a wall-coated microchannel,” Catalysis Today, Vol.139, pp.312-321, 2009.
29. Kazim, A., “Exergy analysis of a PEM fuel cell at variable operating conditions,” Energy Conversion Management, Vol.45, pp.1949-1961, 2004.
30. Kim, N.I., Kato, S., Kataoka, T., Yokomori, T., Maruyama, S., Fujimori, T., Maruta, K., “Flame stabilization and emission of small Swiss-roll combustors as heaters,” Combustion and Flame, Vol.2005, pp.229-240, 2005.
31. Koh, A.C.W., Chen, L., Leong, W.K., Johnson, B.F.G, Khimyak, T., Lin, J, “Hydrogen or synthesis gas production via the partial oxidation of methane over supported nickel-cobalt catalysts,” International of Hydrogen Energy, Vol.32, pp.725-730, 2007.
32. Lanza, R., Jaras, S.G., Canu, P., “Partial oxidation of methane over supported ruthenium catalysts,” Applied Catalysis A: General, Vol.325, pp.57-67, 2007.
33. Li, X., Faghri, A., “Local entropy generation analysis on passive high-concentration DMFCs with different cell structures,” Energy, Vol.36, pp.403-414, 2011.
34. Liu, Y.Y., Most, J.M., Bauer, P., Claverie, A., “Reaction zone characterization of counter-flow diffusion flame with diluted and preheated reactants,” International Journal of Minerals, Metallurgy and Materials, Vol.16, pp.278-284, 2009.
35. Lloyd, S.A., Weinberg, F.J., “A burner for mixtures of very low heat content,” Nature, Vol.251, pp.47-49, 1974.
36. Lloyd, S.A., Weinberg, F.J., “Limits to energy release and utilization from chemical fuels,” Nature, Vol.257, pp.367-370, 1975.
37. McGuire, N.E., Sullivan, N.P., Deutschmann, O., Zhu, H., Kee, R.J., “Dry reforming of methane in a stagnation-flow reactor using Rh supported on strontium-substituted hexaaluminate,” Applied Catalysis A: General, Vol.394, pp.257-265, 2011.
38. Morosuk, T., Tsatsaronis, G., “A new approach to the exergy analysis of absorption refrigeration machines,” Energy, Vol.33, pp.890-907, 2008.
39. Natarajan, J., Kochar, Y., Lieuwen, T., Seitzman, J., “Pressure and preheat dependence of laminar flame speeds of H2/CO/CO2/O2/He mixtures,” Preceedings of the Combustion Institute, Vol.32, pp.1261-1268, 2009.
40. Naterer, G.F., Camberos, J.A., Entropy-Based Design and Analysis of Fluids Engineering Systems, CRC Press, 2008.
41. Nellis, G., Klein, S., Heat transfer, Cambridge University Press, New York, 2009.
42. Nishida, K., Takagi, T., Kinoshita, S., “Analysis of entropy generation and exergy loss during combustion,” Proceedings of the Combustion Institute, Vol.29, pp.869-874, 2002.
43. Nogare, D.D., Salemi, S., Biasi, P., Canu, P., “Taking advantage of hysteresis in methane partial oxidation over Pt on honeycomb monolith,” Chemical Engineering Science, Vol.66, pp.6341-6349, 2011.
44. Orhan, M.F., Dincer, I., Rosen, M.A., “An exergy-cost-energy-mass analysis of a hybrid copper-chlorine thermochemical cycle for hydrogen production,” International Journal of Hydrogen Energy, Vol.35, pp.4831-4838, 2010.
45. Pope, D.N., Raghavan, V., Gogos, G., “Gas-phase entropy generation during transient methanol droplet combustion,” International Journal of Thermal Sciences, Vol.49, pp.1288-1302, 2010.
46. Prek, M., Butala, V., “Principles of exergy analysis of human heat and mass exchange with the environment,” International Journal of Heat and Mass Transfer, Vol.53, pp.5806-5814, 2010.
47. Rakopoulos, C.D., Kyritsis, D.C., “Hydrogen enrichment effects on the second law analysis of natural and landfill gas combustion in engine cylinders,” International Journal of Hydrogen Energy, Vol.31, pp.1384-1393, 2006.
48. Rakopoulos, C.D., Michos, C.N., Giakoumis, E.G., “Availability analysis of a syngas fueled spark ignition engine using a multi-zone combustion model,” Energy, Vol.33, pp.1378-1398, 2008.
49. Reddy, B.V., Ramkiran, G., Kumar, K.A., Nag, P.K., “Second law analysis of a waste heat recovery steam generator,” International Journal of Heat and Mass Transfer, Vol. 45, pp. 1807-1814, 2002.
50. Salazar-Villalpando, M.D., Berry, D.A., Gardner, T.H., “Partial oxidation of methane over Rh/supported-ceria catalysts: Effect of catalyst reducibility and redox cycles,” International Journal of Hydrogen Energy, Vol.33, pp.2695-2703, 2008.
51. Salhi, N., Boulahouache, A., Petit, C., Kiennemann, A., Rabia, C., “Steam reforming of methane to syngas over NiAl2O4 spinel catalysts,” International Journal of Hydrogen Energy, Vol.36, pp.11433-11439, 2011.
52. Sciacovelli, A., Verda, V., “Entropy generation analysis in a monolithic-type solid oxide fuel cell,” Energy, Vol.34, pp.850-865, 2009.
53. Shih, H.Y., Huang, Y.C., “Thermal design and model analysis of the Swiss-roll recuperator for an innovative micro gas turbine,” Applied Thermal Engineering, Vol.29, pp.1493-1499, 2009.
54. Shirsat, V., Gupta, A.K., “A review of progress in heat recirculating meso-scale combustors,” Applied Energy, Vol.88, pp.4294-4309, 2011.
55. Sitzki, L., Borer, K., Schuster, E., Ronney, P.D., “Combustion in microscale heat-recirculating burners,” The Third Asia-Pacific Conference on Combustion, 2001.
56. Sorin, M., Lambert, J., Paris, J., “Exergy flows analysis in chemical reactors,” Institution of Chemical Engineers, Vol.76, pp.389-395, 1998.
57. Specchia, S., Vella, L.D., Rogatis, L.D., Montini, T., Specchia, V., Fornasiero, P., “Rh-based catalysts for syngas production via SCT-CPO reactors,” Catalysis Today, Vol.155, pp.101-107, 2010.
58. Stephen, R.T., An Introduction to Combustion, McGraw-Hill, 2000.
59. Yapıcı, H., Kayatas, N., Albayrak, B., Basturk, G., “Numerical study on local entropy generation I na burner fueled with various fuels,” Heat and Mass Transfer, Vol.41, pp.519-534, 2005.
60. Zhong, B.J., Wang, J.H., “Experimental study on premixed CH4/air mixture combustion in micro Swiss-roll combustors,” Combustion and Flame, Vol.157, pp.2222-2229, 2010.
61. 毛宗強,“氫能-21世紀的綠色能源,”新文京開發出版股份有限公司,2008年3月。
62. 曲新生, 陳發林 “氫能技術,” 五南圖書公司,2006年4月。
63. 陳維新, “生質物與生質能,” 高立圖書有限公司,2010年7月。
64. 陳維新, “能源概論,” 高立圖書有限公司,2011年1月。
65. 陳維新, “空氣污染與控制,” 高立圖書有限公司,2012年2月。