| 研究生: |
李賦美 Li, Fu-Mei |
|---|---|
| 論文名稱: |
高空大氣閃電影像儀定位精準度之分析 The Analysis of the Positioning Accuracy of ISUAL |
| 指導教授: |
陳炳志
Chen, Bing-Chih 楊毅 Yang, Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 35 |
| 中文關鍵詞: | 高空大氣閃電影像儀 、高空短暫發光現象 、紅色精靈 、淘氣精靈 |
| 外文關鍵詞: | Imager of Sprites and Upper Atmospheric Lightning (ISUAL), Transient Luminous Events (TLEs), Sprite, Elves |
| 相關次數: | 點閱:73 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高空短暫發光現象 (TLEs) 是發生於15到100公里高空的發光現象,為近數十年來新興的研究領域,而福爾摩沙衛星二號所搭載的高空大氣閃電影像儀 (ISUAL) 在2004至2016年任務期間,持續從太空中觀測TLEs並記錄了大量的科學資料,對此研究領域的進展有很大的幫助。然而ISUAL的觀測資料在像差修正與定位精準度檢驗上,尚未有進一步的分析。本研究將以ISUAL星場校正資料,擬合出ISUAL增強影像儀的像差修正多項式,並透過ISUAL TLEs事件與與全球閃電定位系統 (WWLLN) 閃電事件之匹配,嘗試對ISUAL定位精準度進行分析。
本研究中一共有668個淘氣精靈事件與WWLLN閃電事件成為匹配事件對,匹配事件對之間的距離平均值為60.0公里,標準差為62.5公里,距離在80公里以下者有78%,可將此分析結果作為ISUAL的事件定位精準度之參考。此外也針對279個未匹配到WWLLN閃電的淘氣精靈事件進行了討論,結果顯示淘氣精靈事件是否能與WWLLN閃電事件匹配,與其遠紫外光訊號強度及原生閃電種類關聯性不大,推測主要應是受限於WWLLN的閃電偵測率。
經過本研究的修正與分析,未來使用ISUAL所觀測的TLE事件進行科學研究時,像差問題可得到改善,並對ISUAL的定位精準度能有更好的掌握。
The Imager of Sprites and Upper Atmospheric Lightning (ISUAL) on the FORMOSAT-2 is the first scientific payload that can make a long-term global observation of the Transient Luminous Events (TLEs) from space, and have gotten a large amount of TLEs data in 2004-2016. However, the data of ISUAL had a problem with aberration, and the positioning accuracy of ISUAL was also unknown. In this study, the star calibration is used to get the correction polynomial function of aberration, and the positioning accuracy is also analyzed by matching ISUAL TLE events with WWLLN lightning events.
There are 668 elves events matched with the World Wide Lightning Location Network (WWLLN) lightning events in this study. The average distance between these matched events is 60.0 km, and the standard deviation is 62.5 km; 78% of the distances are less than 80 km. The result can be the reference values of the positioning accuracy of ISUAL. For the mismatched elves events, there is an additional discussion of the cause of mismatching. The result shows that the main reason for mismatching may not be associated with the intensity of the far-ultraviolet signal of elves or the type of elves; it is more likely to be related to the detection efficiency of WWLLN.
With the result of this work, the aberration problem of ISUAL can be improved, and the positioning accuracy can be understood furthermore as well.
Abarca, S. F., Corbosiero, K. L., & Galarneau, T. J. (2010). An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth. Journal of Geophysical Research: Atmospheres, 115, D18206. https://doi.org/10.1029/2009JD013411
Cummer, S. A., Jaugey, N., Li, J., Lyons, W. A., Nelson, T. E., & Gerken, E. A. (2006). Submillisecond imaging of sprite development and structure. Geophysical Research Letters, 33, L04104. https://doi.org/10.1029/2005GL024969
Dowden, R. L., Brundell, J. B., & Rodger, C. J. (2002). VLF lightning location by time of group arrival (TOGA) at multiple sites. Journal of Atmospheric and Solar‐Terrestrial Physics, 64(7), 817. https://doi.org/10.1016/S1364-6826(02)00085-8
Franz, R. C., Nemzek, R. J., & Winckler, J. R. (1990). Television image of a large upward electrical discharge above a thunderstorm system. Science, 249, 48. https://doi.org/10.1126/science.249.4964.48
Fukunishi, H., Takahashi, Y., Kubota, M., Sakanoi, K., Inan, U. S., & Lyons, W. A. (1996). Elves: Lightning-induced transient luminous events in the lower ionosphere. Geophysical Research Letters, 23, 2157. https://doi.org/10.1029/96GL01979
Inan, U. S., Bell, T. F., & Rodriguez, J. V. (1991). Heating and ionization of the lower ionosphere by lightning. Geophysical Research Letters, 18(4), 705. https://doi.org/10.1029/91GL00364
Israelevich, P. L., Yair, Y., Devir, A. D., Joseph, J. H., Levin, Z., Mayo, I., et al. (2004). Transient airglow enhancements observed from the space shuttle Columbia during the MEIDEX sprite campaign. Geophysical Research Letters, 31, L06124. https://doi.org/10.1029/2003GL019110
Krehbiel, P. R. (1986). The electrical structure of thunderstorms. In The Earth’s electrical environment (pp. 90). Washington, DC: National Academy Press.
Krehbiel, P. R., Riousset, J. A., Pasko, V. P., Thomas, R. J., Rison, W., Stanley, M. A., & Edens, H. E. (2008). Upward electrical discharges from thunderstorms. Nature Geoscience, 1(4), 233. https://doi.org/10.1038/ngeo162
Li, J., Cummer, S., Lu, G., & Zigoneanu, L. (2012). Charge moment change and lightning‐driven electric fields associated with negative sprites and halos. Journal of Geophysical Research: Space Physics, 117, A09310. https://doi.org/10.1029/2012JA017731
Lu, G., Cummer, S. A., Li, J., Zigoneanu, L., Lyons, W. A., Stanley, M. A., et al. (2013). Coordinated observations of sprites and in‐cloud lightning flash structure. Journal of Geophysical Research: Atmospheres, 118(12), 6607. https://doi.org/10.1002/jgrd.50459
Mackerras, D. (1985). Automatic short‐range measurement of the cloud flash to ground flash ratio in thunderstorms. Journal of Geophysical Research: Atmospheres, 90(D4), 6195. https://doi.org/10.1029/JD090iD04p06195.
Orville, R. E., Huffines, G. R., Burrows, W. R., Holle, R. L., & Cummins, K. L. (2002). The North American lightning detection network (NALDN)—First results: 1998–2000. Monthly Weather Review, 130(8), 2098. https://doi.org/10.1175/1520-0493(2002)130<2098:TNALDN>2.0.CO;2
Pasko, V. P., Inan, U. S., Bell, T. F., & Taranenko, Y. N. (1997). Sprites produced by quasi‐electrostatic heating and ionization in the lower ionosphere. Journal of Geophysical Research: Space Physics, 102(A3), 4529. https://doi.org/10.1029/96JA03528
Sentman, D. D., Wescott, E. M., Osborne, D. L., Hampton, D. L., & Heavner, M. J. (1995). Preliminary results from the Sprites94 aircraft campaign: 1. Red sprites. Geophysical Research Letters, 22(10), 1205. https://doi.org/10.1029/95GL00583
Su, H. T., Hsu, R. R., Chen, A. B., Wang, Y. C., Hsiao, W. S., Lai, W. C., et al. (2003). Gigantic jets between a thundercloud and the ionosphere. Nature, 423(6943), 974. https://doi.org/10.1038/nature01759
Su, H., Huang, T., Kuo, C., Chen, A. B., Hsu, R., Mende, S. B., et al. (2004). Global distribution of TLEs based on the preliminary ISUAL data. AGU 2004 Fall Meeting Abstracts, AE51A-03.
Wescott, E. M., Stenbaek‐Nielsen, H. C., Sentman, D. D., Heavner, M. J., Moudry, D. R., & Sabbas, F. S. (2001). Triangulation of sprites, associated halos and their possible relation to causative lightning and micrometeors. Journal of Geophysical Research: Space Physics, 106(A6), 10467. https://doi.org/10.1029/2000JA000182
吳彥蓉 (2016),氧原子為淘氣精靈、夜間D層電子濃度遽增及OH* Meinel波段大氣輝光發生高度之關鍵因素,國立成功大學物理研究所博士論文。
張淑鈞 (2015),與Elves關聯的光學與電波輻射及其應用,國立成功大學物理研究所博士論文。
許瑞榮 (2010),福衛二號高空大氣閃電影像儀科學團隊計畫2010年第二次成果報告,國家太空中心。
郭政靈 (2007),福衛二號科學酬載所觀測到的sprites以及elves的分析,國立成功大學物理研究所博士論文。
陳翰 (2018),高空大氣閃電影像儀觀測之不同極性紅色精靈特性分布研究,國立成功大學太空與電漿科學研究所碩士論文。
黃崧銘 (2013),各類高空短暫發光現象的超低頻與極低頻至甚低頻電波特性,國立成功大學物理研究所博士論文。
校內:立即公開