研究生: |
林宜萱 Lin, Yi-Hsuan |
---|---|
論文名稱: |
熱敏感型高分子包覆六硼化鑭之奈米複合粉體的製備 Preparation of thermosensitive polymer-coated LaB6 nanocomposite powders |
指導教授: |
陳東煌
Chen, Dong-Hwang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 97 |
中文關鍵詞: | 六硼化鑭 、熱敏感型高分子 、複合微粒 |
外文關鍵詞: | lanthanum hexaboride, thermosensitive polymers, composite microspheres |
相關次數: | 點閱:67 下載:11 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係有關兼具近紅外光光熱治療與光驅動藥物釋放功能之六硼化鑭(LaB6)奈米粒子與熱敏感型高分子之複合微粒的製備。首先利用珠磨分散技術得到粒徑約80 nm之LaB6奈米粒子,並以溶膠凝膠法在其表面被覆二氧化矽奈米殼層(LaB6@SiO2)以提升其水中分散性。接著3-(三甲氧基甲硅烷基)丙基丙烯酸酯(MPS)修飾,使其表面具有C=C官能基,再以自由基共聚合法分別與氮-異丙基丙烯醯胺(NIPAAm)及丙烯醯胺(AAm)或羥甲基丙烯酰胺(NHMA)單體合成表面被覆具熱敏感型NIPAAm/AAm共聚物(LaB6@SiO2@P-A)及NIPAAm/NHMA共聚物(LaB6@SiO2@P-N)之複合微粒。雖然熱敏感型高分子的被覆會稍微降低LaB6奈米粒子的近紅外光吸收,但所得複合微粒仍具有良好的近紅外光光熱轉換特性。此外,AAm或NHMA的添加雖然有助於將熱敏感型共聚物在水中之低臨界溶液溫度(LCST) 提升至高於人體正常體溫(37C)數度C,但在磷酸緩衝鹽中,其LCST則會低於37C,且複合微粒在溫度超過40C以上會有明顯凝聚的現象,導致無法應用於藥物釋放。未來有待進一步發展LCST高於人體正常體溫數度C且適用於磷酸緩衝鹽的熱敏感型高分子,以改進複合微粒之性能。
This thesis concerns the preparation of the composite microspheres composed of lanthanum hexaboride (LaB6) nanoparticles and thermosensitive polymers. They possessed the functions of near infrared (NIR) photothermal therapy and NIR-triggered drug release. At first, LaB6 nanoparticles with a mean diameter of 80 nm were obtained by a stirred bead milling process and then surface-coated by silica shells via a sol-gel route to improve the dispersion in aqueous solution. Next, their surface was modified with 3-(trimethoxysilyl)propyl methacrylate (MPS) to introduce the C=C groups and then further coated by the thermosensitive P(NIPAAm-co-AAm) and P(NIPAAm-co-NHMA) via the free radical co-polymerization of N-isopropylacrylamide (NIPAAm) and acrylamide (AAm) or N-(hydroxymethyl)acrylamide (NHMA) to yield the composite microspheres. Although the coating by the thermosensitive polymers lowered the NIR absorption of LaB6 nanoparticles slightly, the resulting composite microspheres still exhibited good NIR photothermal conversion property. In addition, the addition of AAm or NHMA could raise the lower critical solution temperatures (LCST) of thermosensitive copolymers in water to the temperatures which were several degrees centigrade higher than the normal human body temperature (37C). However, in phosphate buffer saline, their LCST values were lower than 37C and the aggregation of composite microspheres would occur significantly. This made them unsuitable for application in drug release. In the future, it was necessary to develop the thermosensitive polymer whose LCST was several degrees centigrade higher than the normal human body temperature and practicable in phosphate buffer saline in order to improve the performance of composite microspheres.
參考文獻
1.Website:http://elearning.stut.edu.tw/m_facture/nanotech/web/ch7.htm.
2.丁志明、方冠榮、陳東煌、吳季珍、周維揚、胡裕民、翁鴻山、傅昭銘、馮榮豐、黃榮俊、黃耀輝、張鼎張、劉全璞、蔡振章、蕭璦莉、謝達斌, 奈米科技-基礎、應用與實作, 高立, 2005.
3.林芳新、董瑞安, 奈米核殼複合粒子的製備及生醫應用, 科儀新知, 28, 7. (2006)
4.張立德、牟季美, 奈米材料和奈米結構, 科学, 2001.
5.陳東煌, 複合奈米粒子的製備與應用, 化工技術, 11, 180-193. (2002)
6.H.E. Gallagher, Poisoning of LaB6 Cathodes, J. Appl. Phys, 40, 44-51. (1969)
7.J.V. Garcia, J. Yang, D. Shen, C. Yao, X. Li, R. Wang, G.D. Stucky, D. Zhao, P.C. Ford, F. Zhang, NIR-triggered release of caged nitric oxide using upconverting nanostructured materials, Small, 8, 3800-3805. (2012)
8.X.Q. Zhao, T.X. Wang, W. Liu, C.D. Wang, D. Wang, T. Shang, L.H. Shen, L. Ren, Multifunctional Au@IPN-pNIPAAm nanogels for cancer cell imaging and combined chemo-photothermal treatment, J. Mater. Chem., 21, 7240-7247. (2011)
9.Y.T. Lim, M.Y. Cho, B.S. Choi, Y.W. Noh, B.H. Chung, Diagnosis and therapy of macrophage cells using dextran-coated near-infrared responsive hollow-type gold nanoparticles, Nanotechnology, 19, 375105. (2008)
10.Z. Jiang, B. Dong, B. Chen, J. Wang, L. Xu, S. Zhang, H. Song, Multifunctional Au@mSiO2/rhodamine B isothiocyanate nanocomposites: cell imaging, photocontrolled drug release, and photothermal therapy for cancer cells, Small, 9, 604-612. (2013)
11.A.J. Nathanael, J.H. Lee, D. Mangalaraj, S.I. Hong, Y.H. Rhee, Multifunctional properties of hydroxyapatite/titania bio-nano-composites: bioactivity and antimicrobial studies, Powder Technol., 228, 410-415. (2012)
12.N. Meir, I.J. Plante, K. Flomin, E. Chockler, B. Moshofsky, M. Diab, M. Volokh, T. Mokari, Studying the chemical, optical and catalytic properties of noble metal (Pt, Pd, Ag, Au)-Cu2O core-shell nanostructures grown via a general approach, J. Mater. Chem. A, 1, 1763-1769. (2013)
13.M. Zhu, C. Wang, D. Meng, G. Diao, In situ synthesis of silver nanostructures on magnetic Fe3O4@C core-shell nanocomposites and their application in catalytic reduction reactions, J. Mater. Chem. , 1, 2118-2125. (2013)
14.張萬忠、陳建國、王洪水、喬學亮, 奈米材料表面修飾與應用, 化工進展, 23, 1067-1071. (2004)
15.C.F. Dai, C.J. Weng, C.M. Chien, Y.L. Chen, S.Y. Yang, J.M. Yeh, Using silane coupling agents to prepare raspberry-shaped polyaniline hollow microspheres with tunable nanoshell thickness, J. Colloid Interface Sci. , 394, 36-43. (2013)
16.Q. Xiao, Q. Yao, J. Zhuang, G. Liu, Y. Zhong, W. Zhu, A localized crystallization to hierarchical ZSM-5 microspheres aided by silane coupling agent, J. Colloid Interface Sci., 394, 604-610. (2013)
17.Y. Nakamura, Y. Nishida, T. Fukuda, S. Fujii, M. Sasaki, Mechanical properties of silane-treated silica particle-filled polyisoprene composites: Influence of the alkoxy group mixing ratio in silane coupling agent containing mercapto group, J. Appl. Polym. Sci., 128, 2548-2555. (2013)
18.Y. Zhang, G. Ji, Z. Gong, D.Q. Wei, New coupling mechanism of the silane coupling agents in the TATB-based PBX, Mol. Simul., 39, 423-427. (2013)
19. W.H. Chiang, V.T. Ho, W.C. Huang, Y.F. Huang, C.S. Chern, H.C. Chiu, Dual stimuli-responsive polymeric hollow nanogels designed as carriers for intracellular triggered drug release, Langmuir, 28, 15056-15064. (2012)
20.L. Li, C. Liu, L. Zhang, T. Wang, H. Yu, C. Wang, Z. Su, Multifunctional magnetic-fluorescent eccentric-(concentric-Fe3O4@SiO2)@polyacrylic acid core-shell nanocomposites for cell imaging and pH-responsive drug delivery, Nanoscale, 5, 2249-2253. (2013)
21.H. Tang, S. Shen, J. Guo, B. Chang, X. Jiang, W. Yang, Gold nanorods@mSiO2 with a smart polymer shell responsive to heat/near-infrared light for chemo-photothermal therapy, J. Mater. Chem. , 22, 16095-16103. (2012)
22.A.A.P. MansurI, O.L. NascimentoII, W.L. VasconcelosI, H.S. MansurI, Chemical functionalization of ceramic tile surfaces by silane coupling agents: polymer modified mortar adhesion mechanism implication, Mater. Res. , 11, 293-302. (2008)
23.蘇品書, 超微粒子材料技術, 復漢, 1989.
24.莊萬發, 超微粒子理論應用, 復漢, 1995.
25.史宗淮, 微粉製程技術簡介, 42, 22-32. (1995)
26.林景仁,賴宏仁, 奈米材料技術與發展趨勢, 工業材料, 1999.
27.馬遠榮, 奈米科技, 商周 2002.
28.L. Xiao, Y. Su, X. Zhou, H. Chen, J. Tan, T. Hu, J. Yan, P. Peng, Origins of high visible light transparency and solar heat-shielding performance in LaB6, Appl. Phys. Lett., 101, 41913. (2012)
29.Website :http://baike.baidu.com/view/1598757.htm.
30.M. Trenary, Surface science studies of metal hexaborides, Sci.Technol. Adv. Mater., 13, 23001. (2012)
31.J.M. Lafferty, Boride cathodes, J. Appl. Phys, 22, 299-309. (1951)
32.A.N.B. H. Ahmed, Lanthanum hexaboride electron emitter, J. Appl. Phys., 43, 2185-2192. (1972)
33.C.H. Wen, T.M. Wu, W.C.J. Wei, Oxidation kinetics of LaB6 in oxygen rich conditions, J. Eur. Ceram. Soc. , 24, 3235-3243. (2004)
34.J. Lee, J. Yang, H. Ko, S. Oh, J. Kang, J. Son, K. Lee, S.W. Lee, H.G. Yoon, J.S. Suh, Y.M. Huh, S. Haam, Multifunctional magnetic gold nanocomposites: human epithelial cancer detection via magnetic resonance imaging and localized synchronous therapy, Adv. Funct. Mater., 18, 258-264. (2008)
35.B.H. Lai, D.H. Chen, Vancomycin-modified LaB6@SiO2/Fe3O4 composite nanoparticles for near-infrared photothermal ablation of bacteria, Acta Biomater., 9, 7573-7579. (2013)
36.B.H. Lai, D.H. Chen, LaB6 nanoparticles with carbon-doped silica coating for fluorescence imaging and near-IR photothermal therapy of cancer cells, Acta Biomater., 9, 7556-7563. (2013)
37.H.A. Abd El-Rehim, E.S.A. Hegazy, A.A. Hamed, A.E. Swilem, Controlling the size and swellability of stimuli-responsive polyvinylpyrrolidone-poly(acrylic acid) nanogels synthesized by gamma radiation-induced template polymerization, Eur. Polym. J., 49, 601-612. (2013)
38.X. Ying, L. Qi, X. Li, W. Zhang, G. Cheng, Stimuli-responsive recognition of BSA-imprinted poly vinyl acetate grafted calcium alginate core-shell hydrogel microspheres, J. Appl. Polym. Sci., 127, 3898-3909. (2013)
39.M. Bikram, A.M. Gobin, R.E. Whitmire, J.L. West, Temperature-sensitive hydrogels with SiO2-Au nanoshells for controlled drug delivery, J. Controlled Release, 123, 219-227. (2007)
40.J.Y. Fang, J.P. Chen, Y.L. Leu, J.W. Hu, Temperature-sensitive hydrogels composed of chitosan and hyaluronic acid as injectable carriers for drug delivery, Eur. J. Pharm. Biopharm., 68, 626-636. (2008)
41.X.M. Zhang, Y. Li, Z.B. Hu, C.L. Littler, Bending of N-isopropylacrylamide gel under the influence of infrared light, J. Chem. Phys., 102, 551-555. (1995)
42.A. Garcia, M. Marquez, T. Cai, R. Rosario, Z. Hu, D. Gust, M. Hayes, S.A. Vail, C.-D. Park, Photo-, thermally, and pH-responsive microgels, Langmuir, 23, 224-229. (2007)
43.T. Tatsuma, K. Takada, T. Miyazaki, UV-light-induced swelling and visible-light-induced shrinking of a TiO2-containing redox gel, Adv. Mater., 19, 1249-1251. (2007)
44.N. Zalachas, S. Cai, Z. Suo, Y. Lapusta, Crease in a ring of a pH-sensitive hydrogel swelling under constraint, Int J. Solids Struct., 50, 920-927. (2013)
45.B. Chang, X. Sha, J. Guo, Y. Jiao, C. Wang, W. Yang, Thermo and pH dual responsive, polymer shell coated, magnetic mesoporous silica nanoparticles for controlled drug release, J. Mater. Chem., 21, 9239-9247. (2011)
46.G. Albin, Horbett, T. A.,Ratner, B. D., Glucose sensitive membranes for controlled delivery of insulin: Insulin transport studies, J. Controlled Release, 2, 153-164. (1985)
47.S. Sato, S.Y. Jeong, J.C. McRea, S.W. Kim, Glucose stimulated insulin delivery systems, Pure Appl. Chem., 56, 1323-1328. (1984)
48.蘇嘉弘, 溫度感應性共聚微乳膠與磁性材料結合應用於熱治療與藥物釋放系統之研究, 國立台灣大學高分子科學與工程學研究所碩士論文, 2007.
49.X. Tai, J.H. Ma, Z. Du, W. Wang, J. Wu, A simple method for synthesis of thermal responsive silica nanoparticle/PNIPAAm hybrids, Powder Technol., 233, 47-51. (2013)
50.T.Y. K.S., Y.T., M.A., Thermo-responsive release from interpenetrating porous silica-poly(N-isopropylacrylamide) hybrid gels, J. Controlled Release, 75, 183-189. (2001)
51.S.S. Li. Guiying, Gu. Lei, So. Ma, Self-assembly of thermo- and pH-responsive poly(acrylic acid)-b-poly(N-isopropylacrylamide) micelles for drug delivery, J. Polym. Sci., 46, 5028-5035. (2008)
52.C. Liu, J. Guo, W. Yang, J. Hu, C. Wang, S. Fu, Magnetic mesoporous silica microspheres with thermo-sensitive polymer shell for controlled drug release, J. Mater. Chem., 19, 4764-4770. (2009)
53.P.M. Y. Dai, Z. Cheng, X. Kang, X. Zhang, Z. Hou, C. Li, Up-Conversion Cell Imaging and pH-Induced Thermally Controlled Drug Release from NaYF4 Yb3+ Er3+@Hydrogel Core–Shell Hybrid Microspheres, ACS Nano, 6, 3327-3338. (2012)
54.P.C. Thomas, B.H. Cipriano, S.R. Raghavan, Nanoparticle-crosslinked hydrogels as a class of efficient materials for separation and ion exchange, Soft Matter, 7, 8192-8197. (2011)
55.H. Tokuyama, J. Hisaeda, S. Nii, S. Sakohara, Removal of heavy metal ions and humic acid from aqueous solutions by co-adsorption onto thermosensitive polymers, Sep. Purif. Technol., 71, 83-88. (2010)
56.T. Nonaka, A. Yasunaga, T. Ogata, S. Kurihara, Formation of thermosensitive copolymer beads having phosphinic acid groups and adsorption ability for metal ions, J. Appl. Polym. Sci., 99, 449-460. (2006)
57.M. Liu, H. Liu, L. Bai, Y. Liu, J. Cheng, G. Yang, Temperature swing adsorption of melamine on thermosensitive poly(N-isopropylacrylamide) cryogels, J. Mater. Sci., 46, 4820-4825. (2011)
58.C.H. Chiua, C.J. Huangc, Y.H. Wang, Characterization and synthesis of GSCS nanoparticles by sol–gel method with controlling of adding water amount, J. Electrochem. Soc., 155, 183-189. (2008)
59.Website:http://en.wikipedia.org/wiki/Acrylamide.
60.Website:http://www.chemicalbook.com/ProductMSDSDetailCB3182194_EN.htm.
61.C.J. Chen, D.H. Chen, Preparation of LaB6 nanoparticles as a novel and effective near-infrared photothermal conversion material, Chem. Eng. J., 180, 337-342. (2012)
62.賴柏宏, 六硼化鑭複合奈米粒子的製備及其在生醫上的應用, 國立成功大學化學工程學系碩士論文, 2009.
63.陳仁英, 超微細研磨技術在奈米科技上之應用, 工業材料雜誌, 185, 171-182. (2002)
64.徐敬添、張義和、簡維宜、蔡書雅, 奈米微分散技術與材料應用, 奈米技術期刊,140, 140-148. (2001)
65.陳成家, 淺談濕式奈米級研磨/分散技術, 工業材料雜誌, 237, 83-90. (2006)
66.高濂、孫靜、劉陽橋, 奈米粉體的分散及表面改性, 化學工業, 2003.
67.M. Inkyo, Y. Tokunaga, T. Tahara, T. Iwaki, F. Iskandar, J. Christopher, J. Hogan, O. Kikuo, Beads mill-Assisted synthesis of poly methyl methacrylate (PMMA)-TiO2 nanoparticle composites, Ind. Eng. Chem, 47, 2597-2604. (2008)
68.Website:http://uniqchem.com/?page_id=971&lang=zh-hans.
69.蔡宏欣, 有機高分子包覆無機二氧化矽奈米/次微米級複合乳膠顆粒的製備, 國立台灣大學材料科學與工程學研究所碩士論文, 2002.
70.Y. Qi, S. Liang, J. Zhao, W. Yang, Hydrophobation and self-assembly of core-shell Au@SiO2 nanoparticles, Colloids Surf. A, 302, 383-387. (2007)
71.Z. Chu, C. Yin, S. Zhang, G. Lin, Q. Li, Surface plasmon enhanced drug efficacy using core-shell Au@SiO2 nanoparticle carrier, Nanoscale, 5, 3406-3411. (2013)
72.Website:http://zh.wikipedia.org/wiki/%E4%BA%8C%E6%B0%A7%E5%8C%96%E7%A1%85.
73.Y. Li, L. Yang, Y. Zhao, B. Li, L. Sun, H. Luo, Preparation of AgBr@SiO2 core@shell hybrid nanoparticles and their bactericidal activity, Mater. Sci. Eng., 33, 1808-1812. (2013)
74.J. Zhang, S. Zhai, S. Li, Z. Xiao, Y. Song, Q. An, G. Tian, Pb(II) removal of Fe3O4@SiO2-NH2 core-shell nanomaterials prepared via a controllable sol-gel process, Chem. Eng. J., 215, 461-471. (2013)
75.黃政育, 以乳化聚合技術製備聚甲基丙烯酸甲酯/蒙脫土奈米複合材料與其性質研究, 中原大學化學研究所碩士學位論文, 2003.
76.J. Ugelstad, F.K. Hansen, Kinetics and mechanism of emulsion polymerization, Rubber Chem. Technol., 49, 536-609. (1976)
77.W.J. Priest, Partice growth in the aqueous polymerization of vinyl acetate, J. Phys. Chem., 56, 1077-1082. (1952)
78.呂鴻基, 甲基丙烯酸甲酯與丙烯酸丁酯的迷你乳化共聚合反應, 國立台灣大學材料科學與工程學研究所碩士論文, 2007.
79.吳冠宏, 具有殼-核型態之N-異丙基丙烯醯胺之吸濕材的製備及性質研究, 中原大學化學工程學系碩士學位論文, (2006).
80.W.D. Harkins, A general theory of the mechanism of emulsion polymerization, J. Am. Chem. Soc., 69, 1428-1444. (1947)
81.W.V. Smith, R.H. Ewart, Kinetics of emulsion polymerization, J. Chem. Phys., 16, 592-599. (1948)
82.R.M. Fitch, The homogeneous nucleation of polymer colloids, Br. Polyme. J., 5, 476-483. (1973)
83.G. Lichti, H. Donald, The mechanisms of latex particle formation and growth in the emulsion polymerization of styrene using the surfactant sodium dodecyl sulfate, J. Polym. Sci. Polym. Chem. Ed., 21, 269-291. (1983)
84.J. Ugelstad, S. Lange, Emulsion polymerization of styrene with sodium hexadecyl sulphate/hexadecanol mixtures as emulsifiers. Initiation in monomer droplets, Macromol. Chem. Phys., 175, 507-521. (1974)
85.J. Zhang, Y. Liang, N. Li, X. Li, R. Hu, J. Xing, L. Deng, F. Hu, A. Dong, Thermosensitive hydrogel based on poly(ether-ester anhydride) nanoparticle as drug delivery system: Preparation, characterization and biocompatibility, Colloids Surf. B, 96, 56-61. (2012)
86.趙桂貞、段紀東, 藥物控制釋放的研究進展, 化學週報, 69 (2006) 1-5.
87.R.H. Pelton, P. Chibante, Preparation of aqueous latices with N-isopropylacrylamide, Colloids Surf. A, 20, 247-256. (1986)