簡易檢索 / 詳目顯示

研究生: 林宜萱
Lin, Yi-Hsuan
論文名稱: 熱敏感型高分子包覆六硼化鑭之奈米複合粉體的製備
Preparation of thermosensitive polymer-coated LaB6 nanocomposite powders
指導教授: 陳東煌
Chen, Dong-Hwang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 97
中文關鍵詞: 六硼化鑭熱敏感型高分子複合微粒
外文關鍵詞: lanthanum hexaboride, thermosensitive polymers, composite microspheres
相關次數: 點閱:67下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係有關兼具近紅外光光熱治療與光驅動藥物釋放功能之六硼化鑭(LaB6)奈米粒子與熱敏感型高分子之複合微粒的製備。首先利用珠磨分散技術得到粒徑約80 nm之LaB6奈米粒子,並以溶膠凝膠法在其表面被覆二氧化矽奈米殼層(LaB6@SiO2)以提升其水中分散性。接著3-(三甲氧基甲硅烷基)丙基丙烯酸酯(MPS)修飾,使其表面具有C=C官能基,再以自由基共聚合法分別與氮-異丙基丙烯醯胺(NIPAAm)及丙烯醯胺(AAm)或羥甲基丙烯酰胺(NHMA)單體合成表面被覆具熱敏感型NIPAAm/AAm共聚物(LaB6@SiO2@P-A)及NIPAAm/NHMA共聚物(LaB6@SiO2@P-N)之複合微粒。雖然熱敏感型高分子的被覆會稍微降低LaB6奈米粒子的近紅外光吸收,但所得複合微粒仍具有良好的近紅外光光熱轉換特性。此外,AAm或NHMA的添加雖然有助於將熱敏感型共聚物在水中之低臨界溶液溫度(LCST) 提升至高於人體正常體溫(37C)數度C,但在磷酸緩衝鹽中,其LCST則會低於37C,且複合微粒在溫度超過40C以上會有明顯凝聚的現象,導致無法應用於藥物釋放。未來有待進一步發展LCST高於人體正常體溫數度C且適用於磷酸緩衝鹽的熱敏感型高分子,以改進複合微粒之性能。

    This thesis concerns the preparation of the composite microspheres composed of lanthanum hexaboride (LaB6) nanoparticles and thermosensitive polymers. They possessed the functions of near infrared (NIR) photothermal therapy and NIR-triggered drug release. At first, LaB6 nanoparticles with a mean diameter of 80 nm were obtained by a stirred bead milling process and then surface-coated by silica shells via a sol-gel route to improve the dispersion in aqueous solution. Next, their surface was modified with 3-(trimethoxysilyl)propyl methacrylate (MPS) to introduce the C=C groups and then further coated by the thermosensitive P(NIPAAm-co-AAm) and P(NIPAAm-co-NHMA) via the free radical co-polymerization of N-isopropylacrylamide (NIPAAm) and acrylamide (AAm) or N-(hydroxymethyl)acrylamide (NHMA) to yield the composite microspheres. Although the coating by the thermosensitive polymers lowered the NIR absorption of LaB6 nanoparticles slightly, the resulting composite microspheres still exhibited good NIR photothermal conversion property. In addition, the addition of AAm or NHMA could raise the lower critical solution temperatures (LCST) of thermosensitive copolymers in water to the temperatures which were several degrees centigrade higher than the normal human body temperature (37C). However, in phosphate buffer saline, their LCST values were lower than 37C and the aggregation of composite microspheres would occur significantly. This made them unsuitable for application in drug release. In the future, it was necessary to develop the thermosensitive polymer whose LCST was several degrees centigrade higher than the normal human body temperature and practicable in phosphate buffer saline in order to improve the performance of composite microspheres.

    總目錄 中文摘要 I. 英文摘要 III 致謝 IV 總目錄 V 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 奈米材料與奈米技術 1 1.1.1 簡介 1 1.1.2 核殼型奈米複合粒子 2 1.1.3 奈米材料表面修飾 3 1.1.4 奈米材應用 5 1.2 六硼化鑭 6 1.2.1 六硼化鑭之晶體結構 6 1.2.2 六硼化鑭之性質與應用 8 1.3 環境熱敏感型高分子 10 1.3.1 簡介 10 1.3.2 熱敏感型高分子應用 12 1.3.3 聚氮-異丙基丙烯醯胺(PNIPAAm) 15 1.3.4 丙烯醯胺(AAm)和羥甲基丙烯酰胺(NHMA) 16 1.4 研究動機 17 第二章 基礎理論 19 2.1 奈米研磨分散技術 19 2.1.1 奈米研磨分散簡介 19 2.1.2 濕式研磨技術 20 2.1.3 研磨介質 22 2.1.4 分散技術 24 2.2二氧化矽合成和表面改質 27 2.2.1 二氧化矽的基本性質 27 2.2.2溶膠-凝膠法合成二氧化矽及表面改質 29 2.3 乳化聚合 32 2.4藥物控制釋放技術 35 第三章 實驗方法 37 3.1實驗藥品 37 3.2實驗儀器 39 3.3實驗流程 40 3.4製備方法 41 3.4.1六硼化鑭奈米粒子之製備 41 3.4.2 六硼化鑭被覆二氧化矽奈米粒子之製備 42 3.4.3 六硼化鑭被覆高分子複合微粒製備 43 3.5性質分析 47 第四章 結果與討論 51 4.1六硼化鑭被覆二氧化矽之材料特性分析 51 4.1.1粒子型態與粒徑大小 51 4.1.2 晶相結構 54 4.1.3 鍵結型態 55 4.1.4 界面電位與等電點 57 4.1.5光學及光熱轉換性質分析 59 4.2 六硼化鑭高分子微粒結構與性質分析 61 4.2.1 粒子型態與粒徑大小 61 4.2.2晶相結構 65 4.2.3鍵結型態分析 68 4.2.4熱重分析與界面電位 73 4.2.5 光學性質分析 76 4.2.6 LCST分析 78 4.3藥物釋放控制 83 4.3.1亞甲基藍檢量線之建立 83 4.3.2 藥物包覆釋放測試 83 第五章 結論 86 參考文獻 87 自述 97 表目錄 表1.1 矽烷偶聯劑 4 表1.2 奈米材料的應用範圍 5 表1.3 三價金屬六硼化物材料之熱激發性質 9 表1.4 六硼化鑭之基本性質 9 表2.1 不同濕式研磨分散設備之比較 21 表2.2 常見陶瓷材料性質表 23 表2.3 分散體系依其分散相粒子大小之分類 25 表3.1六硼化鑭奈米粒子製備研磨條件 41 表4.1 六硼化鑭奈米粒子被覆二氧化矽前後和表面被覆P(NIPAAm-co-AAm) 高分子之FT-IR光譜圖中特性峰所代表之官能基 71 表4.2 六硼化鑭奈米粒子被覆二氧化矽前後和表面被覆P(NIPAAm-co-NHMA) 高分子之FT-IR光譜圖中特性峰所代表之官能基 72 圖目錄 圖1.1 LaB6晶體結構 7 圖1.2 負-熱敏感型高分子膨潤收縮示意圖 11 圖1.3 熱敏感型與pH敏感型高分子共聚之藥物釋放示意圖 13 圖1.4 上轉換材料複合微粒之藥物釋放示意圖 13 圖1.5 吸附金屬離子示意圖 14 圖1.6 氮-異丙基丙烯醯胺分子式 15 圖1.7 (a) 丙烯醯胺與 (b) 羥甲基丙烯酰胺之分子式 16 圖2.1 研磨室內研磨介質間相對運動方式示意圖 21 圖2.2 膠體穩定作用機制示意圖(a)靜電穩定作用;(b)空間位阻穩定作用;(c)靜電/空間位阻穩定作用 26 圖2.3 二氧化矽結構示意圖 28 圖2.4 pH值對二氧化矽粒子表面電位影響示意圖 28 圖2.5 3-(trimethoxysilyl)propyl methacrylate之結構式 31 圖3.1 製備六硼化鑭表面被覆溫感型高分子流程圖 40 圖3.2 製備六硼化鑭被覆二氧化矽奈米粒子之流程圖 42 圖3.3 六硼化鑭被覆高分子複合微粒合成示意圖 44 圖3.4 乳化聚合裝置圖 44 圖3.5 動態光散射儀原理 47 圖4.1 (a)(b)研磨前六硼化鑭粒子、(c)(d)六硼化鑭奈米粒子及(e)(f)六硼化鑭被覆二氧化矽奈米粒子 52 圖4.2六硼化鑭奈米粒子之DLS粒徑分佈圖 53 圖4.3 六硼化鑭被覆二氧化矽奈米粒子之DLS粒徑分佈圖 53 圖4.4 六硼化鑭奈米粒子被覆二氧化矽前後之XRD圖譜 54 圖4.5 六硼化鑭奈米粒子被覆二氧化矽前後之FT-IR穿透光譜圖 56 圖4.6 六硼化鑭奈米粒子被覆二氧化矽前後和表面改質之zeta potential 分析結果 58 圖4.7 六硼化鑭奈米粒子被覆二氧化矽前後之吸收光譜 60 圖4.8 六硼化鑭奈米粒子被覆二氧化矽前後之溫度變化圖 60 圖4.9 (a) P(NIPAAM-co-AAm)及(b)LaB6@SiO2@P-A之TEM圖 62 圖4.10 (a) P(NIPAAm-co-NHMA)及(b)LaB6@SiO2@P-N之TEM圖 63 圖4.11 未改質之LaB6@SiO2與P-N單體合成之微粒 64 圖4.12 LaB6@SiO2@P-A及 P(NIPAAm-co-AAm)之XRD圖譜 66 圖4.13 LaB6@SiO2@P-N及P(NIPAAm-co-NHMA)之XRD圖譜 67 圖4.14 六硼化鑭奈米粒子被覆二氧化矽前後和表面被覆P(NIPAAm-co-AAm) 高分子之FT-IR光譜圖 69 圖4.15 六硼化鑭奈米粒子被覆二氧化矽前後和表面被覆P(NIPAAm-co-NHMA) 高分子之FT-IR光譜圖 70 圖4.16 LaB6@SiO2@P-A之TGA圖 74 圖4.17 LaB6@SiO2@P-N之TGA圖 74 圖4.18 六硼化鑭奈米粒子被覆二氧化矽前後和表面被覆P(NIPAAm-co-NHMA) 高分子之zeta potential分析結果 75 圖4.19 LaB6@SiO2表面被覆P(NIPAAm-co-NHMA)前後與P(NIPAAm-co-NHMA)之吸收光譜 77 圖4.20 LaB6@SiO2表面被覆P(NIPAAm-co-NHMA)前後之溫度變化圖 77 圖4.21 P(NIPAAm-co-AAm)和LaB6@SiO2@P-A微粒在水相之溫度與粒徑圖 80 圖4.22 P(NIPAAm-co-AAm)和LaB6@SiO2@P-A微粒在水相之dR/dT與溫度關係圖 80 圖4.23 P(NIPAAm-co-NHMA)和LaB6@SiO2@P-N微粒在水相之溫度與粒徑圖 81 圖4.24 P(NIPAAm-co-NHMA)和LaB6@SiO2@P-N微粒在水相之dR/dT與溫度關係圖 81 圖4.25 LaB6@SiO2@P-A微粒在磷酸鹽緩衝溶液之溫度與粒徑圖 82 圖4.26 LaB6@SiO2@P-N微粒在磷酸鹽緩衝溶液之溫度與粒徑圖 82 圖4.27 亞甲基藍之波長663.5 nm處之濃度校正曲線 84 圖4.28 溫度對LaB6@SiO2@P-N微粒藥物釋放的結果。插圖為兩小時內的藥物釋放結果 85

    參考文獻
    1.Website:http://elearning.stut.edu.tw/m_facture/nanotech/web/ch7.htm.
    2.丁志明、方冠榮、陳東煌、吳季珍、周維揚、胡裕民、翁鴻山、傅昭銘、馮榮豐、黃榮俊、黃耀輝、張鼎張、劉全璞、蔡振章、蕭璦莉、謝達斌, 奈米科技-基礎、應用與實作, 高立, 2005.
    3.林芳新、董瑞安, 奈米核殼複合粒子的製備及生醫應用, 科儀新知, 28, 7. (2006)
    4.張立德、牟季美, 奈米材料和奈米結構, 科学, 2001.
    5.陳東煌, 複合奈米粒子的製備與應用, 化工技術, 11, 180-193. (2002)
    6.H.E. Gallagher, Poisoning of LaB6 Cathodes, J. Appl. Phys, 40, 44-51. (1969)
    7.J.V. Garcia, J. Yang, D. Shen, C. Yao, X. Li, R. Wang, G.D. Stucky, D. Zhao, P.C. Ford, F. Zhang, NIR-triggered release of caged nitric oxide using upconverting nanostructured materials, Small, 8, 3800-3805. (2012)
    8.X.Q. Zhao, T.X. Wang, W. Liu, C.D. Wang, D. Wang, T. Shang, L.H. Shen, L. Ren, Multifunctional Au@IPN-pNIPAAm nanogels for cancer cell imaging and combined chemo-photothermal treatment, J. Mater. Chem., 21, 7240-7247. (2011)
    9.Y.T. Lim, M.Y. Cho, B.S. Choi, Y.W. Noh, B.H. Chung, Diagnosis and therapy of macrophage cells using dextran-coated near-infrared responsive hollow-type gold nanoparticles, Nanotechnology, 19, 375105. (2008)
    10.Z. Jiang, B. Dong, B. Chen, J. Wang, L. Xu, S. Zhang, H. Song, Multifunctional Au@mSiO2/rhodamine B isothiocyanate nanocomposites: cell imaging, photocontrolled drug release, and photothermal therapy for cancer cells, Small, 9, 604-612. (2013)
    11.A.J. Nathanael, J.H. Lee, D. Mangalaraj, S.I. Hong, Y.H. Rhee, Multifunctional properties of hydroxyapatite/titania bio-nano-composites: bioactivity and antimicrobial studies, Powder Technol., 228, 410-415. (2012)
    12.N. Meir, I.J. Plante, K. Flomin, E. Chockler, B. Moshofsky, M. Diab, M. Volokh, T. Mokari, Studying the chemical, optical and catalytic properties of noble metal (Pt, Pd, Ag, Au)-Cu2O core-shell nanostructures grown via a general approach, J. Mater. Chem. A, 1, 1763-1769. (2013)
    13.M. Zhu, C. Wang, D. Meng, G. Diao, In situ synthesis of silver nanostructures on magnetic Fe3O4@C core-shell nanocomposites and their application in catalytic reduction reactions, J. Mater. Chem. , 1, 2118-2125. (2013)
    14.張萬忠、陳建國、王洪水、喬學亮, 奈米材料表面修飾與應用, 化工進展, 23, 1067-1071. (2004)
    15.C.F. Dai, C.J. Weng, C.M. Chien, Y.L. Chen, S.Y. Yang, J.M. Yeh, Using silane coupling agents to prepare raspberry-shaped polyaniline hollow microspheres with tunable nanoshell thickness, J. Colloid Interface Sci. , 394, 36-43. (2013)
    16.Q. Xiao, Q. Yao, J. Zhuang, G. Liu, Y. Zhong, W. Zhu, A localized crystallization to hierarchical ZSM-5 microspheres aided by silane coupling agent, J. Colloid Interface Sci., 394, 604-610. (2013)
    17.Y. Nakamura, Y. Nishida, T. Fukuda, S. Fujii, M. Sasaki, Mechanical properties of silane-treated silica particle-filled polyisoprene composites: Influence of the alkoxy group mixing ratio in silane coupling agent containing mercapto group, J. Appl. Polym. Sci., 128, 2548-2555. (2013)
    18.Y. Zhang, G. Ji, Z. Gong, D.Q. Wei, New coupling mechanism of the silane coupling agents in the TATB-based PBX, Mol. Simul., 39, 423-427. (2013)
    19. W.H. Chiang, V.T. Ho, W.C. Huang, Y.F. Huang, C.S. Chern, H.C. Chiu, Dual stimuli-responsive polymeric hollow nanogels designed as carriers for intracellular triggered drug release, Langmuir, 28, 15056-15064. (2012)
    20.L. Li, C. Liu, L. Zhang, T. Wang, H. Yu, C. Wang, Z. Su, Multifunctional magnetic-fluorescent eccentric-(concentric-Fe3O4@SiO2)@polyacrylic acid core-shell nanocomposites for cell imaging and pH-responsive drug delivery, Nanoscale, 5, 2249-2253. (2013)
    21.H. Tang, S. Shen, J. Guo, B. Chang, X. Jiang, W. Yang, Gold nanorods@mSiO2 with a smart polymer shell responsive to heat/near-infrared light for chemo-photothermal therapy, J. Mater. Chem. , 22, 16095-16103. (2012)
    22.A.A.P. MansurI, O.L. NascimentoII, W.L. VasconcelosI, H.S. MansurI, Chemical functionalization of ceramic tile surfaces by silane coupling agents: polymer modified mortar adhesion mechanism implication, Mater. Res. , 11, 293-302. (2008)
    23.蘇品書, 超微粒子材料技術, 復漢, 1989.
    24.莊萬發, 超微粒子理論應用, 復漢, 1995.
    25.史宗淮, 微粉製程技術簡介, 42, 22-32. (1995)
    26.林景仁,賴宏仁, 奈米材料技術與發展趨勢, 工業材料, 1999.
    27.馬遠榮, 奈米科技, 商周 2002.
    28.L. Xiao, Y. Su, X. Zhou, H. Chen, J. Tan, T. Hu, J. Yan, P. Peng, Origins of high visible light transparency and solar heat-shielding performance in LaB6, Appl. Phys. Lett., 101, 41913. (2012)
    29.Website :http://baike.baidu.com/view/1598757.htm.
    30.M. Trenary, Surface science studies of metal hexaborides, Sci.Technol. Adv. Mater., 13, 23001. (2012)
    31.J.M. Lafferty, Boride cathodes, J. Appl. Phys, 22, 299-309. (1951)
    32.A.N.B. H. Ahmed, Lanthanum hexaboride electron emitter, J. Appl. Phys., 43, 2185-2192. (1972)
    33.C.H. Wen, T.M. Wu, W.C.J. Wei, Oxidation kinetics of LaB6 in oxygen rich conditions, J. Eur. Ceram. Soc. , 24, 3235-3243. (2004)
    34.J. Lee, J. Yang, H. Ko, S. Oh, J. Kang, J. Son, K. Lee, S.W. Lee, H.G. Yoon, J.S. Suh, Y.M. Huh, S. Haam, Multifunctional magnetic gold nanocomposites: human epithelial cancer detection via magnetic resonance imaging and localized synchronous therapy, Adv. Funct. Mater., 18, 258-264. (2008)
    35.B.H. Lai, D.H. Chen, Vancomycin-modified LaB6@SiO2/Fe3O4 composite nanoparticles for near-infrared photothermal ablation of bacteria, Acta Biomater., 9, 7573-7579. (2013)
    36.B.H. Lai, D.H. Chen, LaB6 nanoparticles with carbon-doped silica coating for fluorescence imaging and near-IR photothermal therapy of cancer cells, Acta Biomater., 9, 7556-7563. (2013)
    37.H.A. Abd El-Rehim, E.S.A. Hegazy, A.A. Hamed, A.E. Swilem, Controlling the size and swellability of stimuli-responsive polyvinylpyrrolidone-poly(acrylic acid) nanogels synthesized by gamma radiation-induced template polymerization, Eur. Polym. J., 49, 601-612. (2013)
    38.X. Ying, L. Qi, X. Li, W. Zhang, G. Cheng, Stimuli-responsive recognition of BSA-imprinted poly vinyl acetate grafted calcium alginate core-shell hydrogel microspheres, J. Appl. Polym. Sci., 127, 3898-3909. (2013)
    39.M. Bikram, A.M. Gobin, R.E. Whitmire, J.L. West, Temperature-sensitive hydrogels with SiO2-Au nanoshells for controlled drug delivery, J. Controlled Release, 123, 219-227. (2007)
    40.J.Y. Fang, J.P. Chen, Y.L. Leu, J.W. Hu, Temperature-sensitive hydrogels composed of chitosan and hyaluronic acid as injectable carriers for drug delivery, Eur. J. Pharm. Biopharm., 68, 626-636. (2008)
    41.X.M. Zhang, Y. Li, Z.B. Hu, C.L. Littler, Bending of N-isopropylacrylamide gel under the influence of infrared light, J. Chem. Phys., 102, 551-555. (1995)
    42.A. Garcia, M. Marquez, T. Cai, R. Rosario, Z. Hu, D. Gust, M. Hayes, S.A. Vail, C.-D. Park, Photo-, thermally, and pH-responsive microgels, Langmuir, 23, 224-229. (2007)
    43.T. Tatsuma, K. Takada, T. Miyazaki, UV-light-induced swelling and visible-light-induced shrinking of a TiO2-containing redox gel, Adv. Mater., 19, 1249-1251. (2007)
    44.N. Zalachas, S. Cai, Z. Suo, Y. Lapusta, Crease in a ring of a pH-sensitive hydrogel swelling under constraint, Int J. Solids Struct., 50, 920-927. (2013)
    45.B. Chang, X. Sha, J. Guo, Y. Jiao, C. Wang, W. Yang, Thermo and pH dual responsive, polymer shell coated, magnetic mesoporous silica nanoparticles for controlled drug release, J. Mater. Chem., 21, 9239-9247. (2011)
    46.G. Albin, Horbett, T. A.,Ratner, B. D., Glucose sensitive membranes for controlled delivery of insulin: Insulin transport studies, J. Controlled Release, 2, 153-164. (1985)
    47.S. Sato, S.Y. Jeong, J.C. McRea, S.W. Kim, Glucose stimulated insulin delivery systems, Pure Appl. Chem., 56, 1323-1328. (1984)
    48.蘇嘉弘, 溫度感應性共聚微乳膠與磁性材料結合應用於熱治療與藥物釋放系統之研究, 國立台灣大學高分子科學與工程學研究所碩士論文, 2007.
    49.X. Tai, J.H. Ma, Z. Du, W. Wang, J. Wu, A simple method for synthesis of thermal responsive silica nanoparticle/PNIPAAm hybrids, Powder Technol., 233, 47-51. (2013)
    50.T.Y. K.S., Y.T., M.A., Thermo-responsive release from interpenetrating porous silica-poly(N-isopropylacrylamide) hybrid gels, J. Controlled Release, 75, 183-189. (2001)
    51.S.S. Li. Guiying, Gu. Lei, So. Ma, Self-assembly of thermo- and pH-responsive poly(acrylic acid)-b-poly(N-isopropylacrylamide) micelles for drug delivery, J. Polym. Sci., 46, 5028-5035. (2008)
    52.C. Liu, J. Guo, W. Yang, J. Hu, C. Wang, S. Fu, Magnetic mesoporous silica microspheres with thermo-sensitive polymer shell for controlled drug release, J. Mater. Chem., 19, 4764-4770. (2009)
    53.P.M. Y. Dai, Z. Cheng, X. Kang, X. Zhang, Z. Hou, C. Li, Up-Conversion Cell Imaging and pH-Induced Thermally Controlled Drug Release from NaYF4 Yb3+ Er3+@Hydrogel Core–Shell Hybrid Microspheres, ACS Nano, 6, 3327-3338. (2012)
    54.P.C. Thomas, B.H. Cipriano, S.R. Raghavan, Nanoparticle-crosslinked hydrogels as a class of efficient materials for separation and ion exchange, Soft Matter, 7, 8192-8197. (2011)
    55.H. Tokuyama, J. Hisaeda, S. Nii, S. Sakohara, Removal of heavy metal ions and humic acid from aqueous solutions by co-adsorption onto thermosensitive polymers, Sep. Purif. Technol., 71, 83-88. (2010)
    56.T. Nonaka, A. Yasunaga, T. Ogata, S. Kurihara, Formation of thermosensitive copolymer beads having phosphinic acid groups and adsorption ability for metal ions, J. Appl. Polym. Sci., 99, 449-460. (2006)
    57.M. Liu, H. Liu, L. Bai, Y. Liu, J. Cheng, G. Yang, Temperature swing adsorption of melamine on thermosensitive poly(N-isopropylacrylamide) cryogels, J. Mater. Sci., 46, 4820-4825. (2011)
    58.C.H. Chiua, C.J. Huangc, Y.H. Wang, Characterization and synthesis of GSCS nanoparticles by sol–gel method with controlling of adding water amount, J. Electrochem. Soc., 155, 183-189. (2008)
    59.Website:http://en.wikipedia.org/wiki/Acrylamide.
    60.Website:http://www.chemicalbook.com/ProductMSDSDetailCB3182194_EN.htm.
    61.C.J. Chen, D.H. Chen, Preparation of LaB6 nanoparticles as a novel and effective near-infrared photothermal conversion material, Chem. Eng. J., 180, 337-342. (2012)
    62.賴柏宏, 六硼化鑭複合奈米粒子的製備及其在生醫上的應用, 國立成功大學化學工程學系碩士論文, 2009.
    63.陳仁英, 超微細研磨技術在奈米科技上之應用, 工業材料雜誌, 185, 171-182. (2002)
    64.徐敬添、張義和、簡維宜、蔡書雅, 奈米微分散技術與材料應用, 奈米技術期刊,140, 140-148. (2001)
    65.陳成家, 淺談濕式奈米級研磨/分散技術, 工業材料雜誌, 237, 83-90. (2006)
    66.高濂、孫靜、劉陽橋, 奈米粉體的分散及表面改性, 化學工業, 2003.
    67.M. Inkyo, Y. Tokunaga, T. Tahara, T. Iwaki, F. Iskandar, J. Christopher, J. Hogan, O. Kikuo, Beads mill-Assisted synthesis of poly methyl methacrylate (PMMA)-TiO2 nanoparticle composites, Ind. Eng. Chem, 47, 2597-2604. (2008)
    68.Website:http://uniqchem.com/?page_id=971&lang=zh-hans.
    69.蔡宏欣, 有機高分子包覆無機二氧化矽奈米/次微米級複合乳膠顆粒的製備, 國立台灣大學材料科學與工程學研究所碩士論文, 2002.
    70.Y. Qi, S. Liang, J. Zhao, W. Yang, Hydrophobation and self-assembly of core-shell Au@SiO2 nanoparticles, Colloids Surf. A, 302, 383-387. (2007)
    71.Z. Chu, C. Yin, S. Zhang, G. Lin, Q. Li, Surface plasmon enhanced drug efficacy using core-shell Au@SiO2 nanoparticle carrier, Nanoscale, 5, 3406-3411. (2013)
    72.Website:http://zh.wikipedia.org/wiki/%E4%BA%8C%E6%B0%A7%E5%8C%96%E7%A1%85.
    73.Y. Li, L. Yang, Y. Zhao, B. Li, L. Sun, H. Luo, Preparation of AgBr@SiO2 core@shell hybrid nanoparticles and their bactericidal activity, Mater. Sci. Eng., 33, 1808-1812. (2013)
    74.J. Zhang, S. Zhai, S. Li, Z. Xiao, Y. Song, Q. An, G. Tian, Pb(II) removal of Fe3O4@SiO2-NH2 core-shell nanomaterials prepared via a controllable sol-gel process, Chem. Eng. J., 215, 461-471. (2013)
    75.黃政育, 以乳化聚合技術製備聚甲基丙烯酸甲酯/蒙脫土奈米複合材料與其性質研究, 中原大學化學研究所碩士學位論文, 2003.
    76.J. Ugelstad, F.K. Hansen, Kinetics and mechanism of emulsion polymerization, Rubber Chem. Technol., 49, 536-609. (1976)
    77.W.J. Priest, Partice growth in the aqueous polymerization of vinyl acetate, J. Phys. Chem., 56, 1077-1082. (1952)
    78.呂鴻基, 甲基丙烯酸甲酯與丙烯酸丁酯的迷你乳化共聚合反應, 國立台灣大學材料科學與工程學研究所碩士論文, 2007.
    79.吳冠宏, 具有殼-核型態之N-異丙基丙烯醯胺之吸濕材的製備及性質研究, 中原大學化學工程學系碩士學位論文, (2006).
    80.W.D. Harkins, A general theory of the mechanism of emulsion polymerization, J. Am. Chem. Soc., 69, 1428-1444. (1947)
    81.W.V. Smith, R.H. Ewart, Kinetics of emulsion polymerization, J. Chem. Phys., 16, 592-599. (1948)
    82.R.M. Fitch, The homogeneous nucleation of polymer colloids, Br. Polyme. J., 5, 476-483. (1973)
    83.G. Lichti, H. Donald, The mechanisms of latex particle formation and growth in the emulsion polymerization of styrene using the surfactant sodium dodecyl sulfate, J. Polym. Sci. Polym. Chem. Ed., 21, 269-291. (1983)
    84.J. Ugelstad, S. Lange, Emulsion polymerization of styrene with sodium hexadecyl sulphate/hexadecanol mixtures as emulsifiers. Initiation in monomer droplets, Macromol. Chem. Phys., 175, 507-521. (1974)
    85.J. Zhang, Y. Liang, N. Li, X. Li, R. Hu, J. Xing, L. Deng, F. Hu, A. Dong, Thermosensitive hydrogel based on poly(ether-ester anhydride) nanoparticle as drug delivery system: Preparation, characterization and biocompatibility, Colloids Surf. B, 96, 56-61. (2012)
    86.趙桂貞、段紀東, 藥物控制釋放的研究進展, 化學週報, 69 (2006) 1-5.
    87.R.H. Pelton, P. Chibante, Preparation of aqueous latices with N-isopropylacrylamide, Colloids Surf. A, 20, 247-256. (1986)

    下載圖示 校內:2016-07-24公開
    校外:2018-07-24公開
    QR CODE