| 研究生: |
黃億翔 Huang, I-Hsiang |
|---|---|
| 論文名稱: |
描述prmt-7基因在細菌穿孔毒素誘導線蟲HLH-30入核時所扮演角色 The role of prmt-7 in the bacterial toxin-induced HLH-30 nuclear translocation in C. elegans |
| 指導教授: |
陳昌熙
Chen, Chang-Shi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 43 |
| 中文關鍵詞: | 膜穿孔蛋白毒素 、prmt-7 |
| 外文關鍵詞: | HLH-30, prmt-7, pore-forming toxin, autophagy |
| 相關次數: | 點閱:81 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
膜穿孔蛋白毒素(PFT)是常見細菌的細胞毒性蛋白,主要作用於破壞宿主的細胞膜而導致死亡。而為了抵禦膜穿孔毒素,細胞會活化下游信號(例如自噬作用)以調控宿主對於毒素的忍受度。因此,在先前實驗室的研究中,我們發現給予線蟲Cry5B膜穿孔毒素後,會造成腸道細胞的轉錄因子HLH-30從細胞質轉移至細胞核中,並啟動自噬作用來抵抗毒素所造成的傷害。HLH-30在哺乳類動中,同源基因為TFEB。在我們高通量基因靜默篩選的實驗中,發現在抑制掉第七型蛋白質精氨酸甲基轉移酶(prmt-7)後,會導致由Cry5B毒素所引起的HLH-30入核現象有所下降,並且也造成自噬作用中的生物標記LGG-1表現量也有所降低。而為了反覆證明prmt-7在調控HLH-30入核現象中扮演重要角色,我們通過將只在腸道表現的prmt-7質體回補到整個prmt-7功能喪失的線蟲體內,發現腸道細胞的HLH-30入核現象會有所恢復。另外,我們也將prmt-7酵素失活質體回補到整個prmt-7功能喪失的線蟲體內,也發現該株線蟲的HLH-30入核表現並沒有所改變,證明了prmt-7在調控HLH-30入核現象中有一定的作用。
為了證明prmt-7是在細胞質去進行HLH-30入核的調控。在Fluorescence recovery after photo-bleaching(FRAP)分析影像結果中,表明PRMT-7可能是在細胞質而不是在細胞核中去調控HLH-30入核現象。除此之外,當prmt-7突變株的xpo-1(編碼出核蛋白)和ima-2(編碼入核蛋白)被靜默時,HLH-30入核表現在xpo-1實驗組中有所增加,但HLH-30入核表現在ima-2組與對照組的相比中,並沒有很大差異性。這些結果再次證實線蟲受到膜穿孔毒素後,腸道細胞的PRMT-7可能在是細胞質中調節HLH-30,並促使其移動到細胞核中。另外,我們也證明了prmt-7參與了mTOR訊息傳遞路徑以調節HLH-30入核現象。接著,我們通過單一點突變方式將不同的HLH-30甲基化位點進行突變,並確定了HLH-30上第29、36和38位點上的精氨酸,可能是參與藉由膜穿孔毒素所誘發HLH-30入核表現的潛在甲基化位點。最後,我們還發現重組活化基因蛋白(Rag proteins)和mTOR調節相關蛋白(Raptor protein)可能會影響HLH-30入核現象。綜合以上的結論,我們的遺傳分析證明了第七型精氨酸甲基轉移酶(PRMT-7)是如何調控由膜穿孔毒素所誘導HLH-30入核現象的機制。
The pore-forming toxins (PFTs) are most common bacterial cytotoxic proteins causing damage to the plasma membrane of their host cells. Hosts activate downstream signal such as autophagy to protect from PFTs assaults. In our previous study, we discovered that the transcription factor HLH-30 is required for the activation of autophagy to defend Cry5B, a PFT produced by B. thuringiensis, in C. elegans. From our genetic suppression screening, we found that the prmt-7 (protein arginine methyltransferase 7) mutant worms suppressed HLH-30 nuclear localization (HLH-30 translocates from cytosol to nucleus) after Cry5B treatment. Moreover, we found that prmt-7 involved in the HLH-30-regulated autophagy activation and pore-repair in the PFT targeted cells. To reconfirm that prmt-7 plays an important role in regulating HLH-30 nuclear localization, we generated a prmt-7 rescued strain by injecting prmt-7 expressing plasmid to prmt-7 loss-of function mutants. We found that HLH-30 nuclear localization was restored to wild type. Moreover, we also generated a PRMT-7 enzyme inactivation mutant and found that the nuclear localization of HLH-30 in the mutant worm was decreased. Furthermore, our FRAP (Fluorescence recovery after photobleaching) assay results suggested that the function of PRMT-7 could be in the cytoplasm but not in the nucleus to regulate HLH-30 nuclear localization. Additionally, when prmt-7 mutants subjected to xpo-1 (encodes for the nuclear export protein) and ima-2 (encodes for the nuclear import protein) RNAi, HLH-30 nuclear localization was increased in xpo-1 RNAi group but showed no difference in ima-2 group compared to that of RNAi control group. These results reconfirmed that PRMT-7 might regulate HLH-30 in the cytoplasm to facilitate HLH-30 translocating into nucleus after Cry5B treatment. Besides, we demonstrated that prmt-7 participated in the mTOR signaling pathway and regulated mTOR-mediated HLH-30 nuclear localization. Moreover, we mutated several HLH-30 methylation sites via site-directed mutagenesis and identify the arginine 29, 36 and 38 of HLH-30, could be the potentially methylation sites of HLH-30 in regulating its nucleus translocation under Cry5B intoxication. Finally, we also found that Rags and DAF-15 might affect HLH-30 nuclear localization. In summary, our genetic analysis demonstrated the mechanism of how the arginine methyltransferase PRMT-7 can regulate PFT-induced HLH-30 nuclear localization.
1. DuMont, A.L. and V.J. Torres, Cell targeting by the Staphylococcus aureus pore-forming toxins: it's not just about lipids. Trends in microbiology, 2014. 22(1): p. 21-27.
2. Gilbert, R.J., et al., Two structural transitions in membrane pore formation by pneumolysin, the pore-forming toxin of Streptococcus pneumoniae. Cell, 1999. 97(5): p. 647-655.
3. Dal Peraro, M. and F.G. Van Der Goot, Pore-forming toxins: ancient, but never really out of fashion. Nature reviews microbiology, 2016. 14(2): p. 77-92.
4. Los, F.C., et al., Role of pore-forming toxins in bacterial infectious diseases. Microbiology and Molecular Biology Reviews, 2013. 77(2): p. 173-207.
5. Li, X.-Q., et al., Expression of Cry5B protein from Bacillus thuringiensis in plant roots confers resistance to root-knot nematode. Biological Control, 2008. 47(1): p. 97-102.
6. Gonzalez, M., et al., Bacterial pore-forming toxins: the (w) hole story? Cellular and Molecular Life Sciences, 2008. 65(3): p. 493-507.
7. Bischof, L.J., D.L. Huffman, and R.V. Aroian, Assays for toxicity studies in C. elegans with Bt crystal proteins, in C. elegans. 2006, Springer. p. 139-154.
8. Bellier, A., et al., Hypoxia and the hypoxic response pathway protect against pore-forming toxins in C. elegans. PLoS Pathog, 2009. 5(12): p. e1000689.
9. Schulenburg, H., C. Léopold Kurz, and J.J. Ewbank, Evolution of the innate immune system: the worm perspective. Immunological reviews, 2004. 198(1): p. 36-58.
10. Deretic, V., Autophagy in infection. Current opinion in cell biology, 2010. 22(2): p. 252-262.
11. Deretic, V., T. Saitoh, and S. Akira, Autophagy in infection, inflammation and immunity. Nature Reviews Immunology, 2013. 13(10): p. 722-737.
12. Melendez, A. and B. Levine, Autophagy in C. elegans. WormBook: the online review of C. elegans biology, 2009: p. 1-26.
13. Napolitano, G. and A. Ballabio, TFEB at a glance. Journal of cell science, 2016. 129(13): p. 2475-2481.
14. Settembre, C., et al., TFEB links autophagy to lysosomal biogenesis. science, 2011. 332(6036): p. 1429-1433.
15. Sardiello, M., et al., A gene network regulating lysosomal biogenesis and function. Science, 2009. 325(5939): p. 473-477.
16. Settembre, C., et al., TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nature cell biology, 2013. 15(6): p. 647-658.
17. Mansueto, G., et al., Transcription factor EB controls metabolic flexibility during exercise. Cell metabolism, 2017. 25(1): p. 182-196.
18. Brady, O.A., J.A. Martina, and R. Puertollano, Emerging roles for TFEB in the immune response and inflammation. Autophagy, 2018. 14(2): p. 181-189.
19. Rehli, M., et al., Cloning and characterization of the murine genes for bHLH-ZIP transcription factors TFEC and TFEB reveal a common gene organization for all MiT subfamily members. Genomics, 1999. 56(1): p. 111-120.
20. Lapierre, L.R., et al., The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans. Nature communications, 2013. 4(1): p. 1-8.
21. Jelinic, P., J.-C. Stehle, and P. Shaw, The testis-specific factor CTCFL cooperates with the protein methyltransferase PRMT7 in H19 imprinting control region methylation. PLoS Biol, 2006. 4(11): p. e355.
22. Yu, M.C., The role of protein arginine methylation in mRNP dynamics. Molecular biology international, 2011. 2011.
23. Kernohan, K., et al., Loss of the arginine methyltranserase PRMT7 causes syndromic intellectual disability with microcephaly and brachydactyly. Clinical Genetics, 2017. 91(5): p. 708-716.
24. Baldwin, R.M., et al., Protein arginine methyltransferase 7 promotes breast cancer cell invasion through the induction of MMP9 expression. Oncotarget, 2015. 6(5): p. 3013.
25. Martina, J.A., et al., MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy, 2012. 8(6): p. 903-914.
26. Martina, J.A. and R. Puertollano, Rag GTPases mediate amino acid–dependent recruitment of TFEB and MITF to lysosomes. Journal of Cell Biology, 2013. 200(4): p. 475-491.
27. Kamath, R.S., et al., Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature, 2003. 421(6920): p. 231-237.
28. Klionsky, D.J., et al., Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2016. 12(1): p. 1-222.
29. Cappello, M., et al., A purified Bacillus thuringiensis crystal protein with therapeutic activity against the hookworm parasite Ancylostoma ceylanicum. Proceedings of the National Academy of Sciences, 2006. 103(41): p. 15154-15159.
30. Chen, H.-D., et al., HLH-30/TFEB-mediated autophagy functions in a cell-autonomous manner for epithelium intrinsic cellular defense against bacterial pore-forming toxin in C. elegans. Autophagy, 2017. 13(2): p. 371-385.
31. Feng, Y., A. Hadjikyriacou, and S.G. Clarke, Substrate specificity of human protein arginine methyltransferase 7 (PRMT7) the importance of acidic residues in the double E loop. Journal of Biological Chemistry, 2014. 289(47): p. 32604-32616.
32. Los, F.C., et al., RAB-5-and RAB-11-dependent vesicle-trafficking pathways are required for plasma membrane repair after attack by bacterial pore-forming toxin. Cell host & microbe, 2011. 9(2): p. 147-157.
33. Bedford, M.T. and S.G. Clarke, Protein arginine methylation in mammals: who, what, and why. Molecular cell, 2009. 33(1): p. 1-13.
34. Napolitano, G., et al., mTOR-dependent phosphorylation controls TFEB nuclear export. Nature communications, 2018. 9(1): p. 1-10.
35. Silvestrini, M.J., et al., Nuclear export inhibition enhances HLH-30/TFEB activity, autophagy, and lifespan. Cell reports, 2018. 23(7): p. 1915-1921.
36. Lorén, N., et al., Fluorescence recovery after photobleaching in material and life sciences: putting theory into practice. Quarterly reviews of biophysics, 2015. 48(3): p. 323-387.
37. Vega-Rubin-de-Celis, S., et al., Multistep regulation of TFEB by MTORC1. Autophagy, 2017. 13(3): p. 464-472.
38. Medina, D.L., et al., Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nature cell biology, 2015. 17(3): p. 288-299.
39. Shen, E.C., et al., Arginine methylation facilitates the nuclear export of hnRNP proteins. Genes & development, 1998. 12(5): p. 679-691.
40. McBride, A.E., et al., Protein arginine methylation in Candida albicans: role in nuclear transport. Eukaryotic cell, 2007. 6(7): p. 1119-1129.
41. Kloft, N., et al., Pro-autophagic signal induction by bacterial pore-forming toxins. Medical microbiology and immunology, 2010. 199(4): p. 299-309.
42. Gutierrez, M.G., et al., Protective role of autophagy against Vibrio cholerae cytolysin, a pore-forming toxin from V. cholerae. Proceedings of the National Academy of Sciences, 2007. 104(6): p. 1829-1834.
43. Roczniak-Ferguson, A., et al., The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Science signaling, 2012. 5(228): p. ra42-ra42.
44. 陳緯學. 分析模穿孔毒素誘發線蟲轉錄因子HLH-30之轉譯後修飾作用.(碩士), 國立成功大學(2015)
45. 林依穎. 探討prmt-7 基因在膜穿孔毒素誘發線蟲HLH-30入核及活化自噬 作用時所扮演的角色. (碩士), 國立成功大學(2017)
46. 楊又頲. prmt-7在線蟲HLH-30調節細胞防禦機制抵禦膜穿孔毒素所扮演的角色. (碩士),國立成功大學(2018)
校內:2025-07-09公開