簡易檢索 / 詳目顯示

研究生: 吳孟璇
Wu, Meng-Hsuan
論文名稱: 高效真菌漆酶篩選、酵素動力學及蛋白結構之生化研究
High-throughput screening, kinetic analysis, structural study, and biochemical characterization of a high-efficiency fungal laccase, DLac
指導教授: 賀端華
Ho, Tuan-Hua David
黃浩仁
Huang, Hao-Jen
學位類別: 博士
Doctor
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 92
中文關鍵詞: 漆氧化酵素擴散限制型酵素基質結合部位有機溶劑耐受性
外文關鍵詞: laccase, diffusion-limited enzyme, substrate-binding loops, organic-solvent tolerance
相關次數: 點閱:166下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究自白色腐生真菌 Cerrena sp. RSD1 中分離出高活性漆氧化酵素 DLac。經酵素動力學分析結果判定 DLac 屬於擴散限制型酵素。高解析蛋白質晶體結構分析指出 DLac 整體結構與其他真菌漆氧化酵素的蛋白單體具高度同源性,唯獨 DLac 的基質結合部位具有特異性。經與不同真菌漆氧化酵素比對基質結合部位後,顯示 DLac 的基質結合環狀結構是由較小側鏈的胺基酸組成,此外,第 IV 號基質結合環狀區段的也相對較短。綜合上述兩點,DLac 於結構上具有較寬大的基質結合入口,有利於促進基質進入酵素基質結合腔室。有別於大多數高度醣基化的真菌漆氧化酵素,DLac 的醣基化程度較低,即便如此,DLac 仍具備高度保守的醣基化位點 N432;同時有一獨特的醣基化點位於 N468。結構分析指出,N-聚醣穩定底物結合環狀區段和蛋白質結構。生化實驗亦證實,胺基酸上第一個N-乙醯葡糖胺對此酵素催化效率至關重要。另,本研究亦研發出能增進5倍酵素活性產量的浸置培養條件,作為工業量產應用的基礎。此外,在酵素產業應用上,高機溶劑耐受性的漆氧化酵素已被公認為具備高商業價值的生物催化劑。但在高濃度有機溶劑當中,已知大多數漆氧化酵素蛋白結構會被破壞,進而失去酵素活性。本研究發現,事先混合有機溶劑與真菌漆氧化酵素進行前置培養,可有效提高1.5倍至4.0倍的酵素活性,而且此方法具備可逆性。我們測試的有機溶劑包含丙酮、甲醇、乙醇、二甲基亞碸和二甲基甲醯胺,對於本研究中四種不同真菌來源的漆氧化酵素皆有增強酵素活性的作用。本研究也選用酚類和非酚類基質進行實驗,證實此酵素活性的增強並非基質特異性造成的結果。雖然事先混合有機溶劑與漆氧化酵素後,會導致酵素對於高溫較為敏感,但在常溫25°C下則是更有利於長時間的儲存。觀察事先混合丙酮與漆氧化酵素DLac的蛋白質結構,也證實DLac的蛋白質結構在高濃度有機溶劑中保持完整性及穩定性。此外,事先混合有機溶劑與漆氧化酵素的做法,也提高了單位時間內每莫耳酵素所能催化的基質數,其中又以DLac的活性增強表現最好。我們的研究提供在高濃度有機溶劑中真菌漆氧化酵素應用的高度潛能,並延伸了生物修復、脫色以及有機合成中運用的機會。

    Fungal laccase is a blue, glycosylated four-copper oxidase that catalyzes the oxidation of phenolic units in lignin as well as a number of phenolic compounds and aromatic amines. A high-efficiency laccase, DLac, was secreted by an indigenous fungal strain Cerrena sp. RSD1 isolated from rice straw compost, it is identified using 18S rDNA and internal transcribed spacer sequencing analysis. A procedure of submerged culture using rice straw as a feedstock was carried out to produce DLac with high catalytic efficiency of 1.5×109 s-1 M-1 show the enzyme to be diffusion-limited. So far only a few study focus on structural properties of the diffusion-limited enzyme, it is important to investigate the crucial structural features that govern the enzyme kinetics. The crystal structure of DLac was determined at 1.38 Å resolution. DLac displays the typical fungal laccase architecture consisting of three domains, and each domain is folded into the greek key β-barrel topology. Four copper atoms were coordinated with His and Cys residues to create the catalytic site. The crystal structure was determined to atomic resolution and its overall structure was found to be closely homologous to the monomeric laccases. However, DLac displays some unique substrate-binding loops different from those in other laccases. The substrate-binding residues with small side-chains and the short substrate-binding loop IV widen the substrate-binding cavity and this may facilitate access by larger substrates. DLac is not as highly-glycosylated as other fungal laccases and contains one highly-conserved glycosylation site at N432 and another unique site at N468. The N-glycans stabilize the substrate-binding loops and the protein structure and the first N-acetylglucosamine is crucial for catalytic efficiency. A submerged culture method useful for industrial application allows a five-fold increase of protein yield to be achieved. Laccases that are tolerant to organic solvents are powerful bio-catalysts with broad applications in biotechnology, most frequently carried out at high concentration of solvent, during which process the proteins can be unfolded and enzyme activity can be lost. In this study it will be shown that pre-incubation of fungal laccases with organic solvents can result in an effective (and reversible) 1.5 to 4.0 fold enhancement of enzyme activity. Several organic solvents, including acetone, methanol, ethanol, DMSO, and DMF were effective in this specific enhancement in all the laccases studied. The enhancement was not substrate-specific and could be observed in both phenolic and non-phenolic substrates. Although laccase pre-incubated with organic solvents was sensitive to high temperature, it remained stable at 25°C, which was an advantage for long term storage. The 3-D structure of DLac, pre-incubated with acetone, was determined and it was confirmed that the protein structure remained intact and stable at high concentrations of organic solvent. Furthermore, the turnover rate of fungal laccases was improved by pre-incubation in an organic-solvent and DLac showed the highest enhancement among the fungal laccases examined. This investigation has shed light on improving fungal laccase usage under extreme conditions and has extended the opportunities for bioremediation, decolorization, and organic synthesis.

    目錄 GENERAL INTRODUCTION 1 REFERENCES 7 PUBLISHED PAPER 1 14 ABSTRACT 14 INTRODUCTION 15 RESULT AND DISCUSSION 17 MATERIALS AND METHODS 24 REFERENCES 45 PUBLISHED PAPER 2 51 ABSTRACT 51 INTRODUCTION 52 RESULT 54 DISCUSSION 59 MATERIALS AND METHODS 62 REFERENCES 82 FUTURE PERSPECTIVES 87 REFERENCES 91 表目錄 PUBLISHED PAPER 1 Table 1. Comparison of kinetic parameters of fungal laccases 28 Table 2. Data collection and refinement statistics 29 Table 3. Primers used for DLac cloning 30 PUBLISHED PAPER 2 Table 1. Data collection and refinement statistics 65 Table 2. Kinetic analysis of fungal laccases 66 Table 3. List of accession numbers for fungal laccases 67 圖目錄 PUBLISHED PAPER 1 Figure 1. Screening of fungi from rice straw compost and optimization of the culture conditions for enzyme production 31 Figure 2. Phylogenetic analysis based on 18S rDNA sequence and ITS sequence alignment. 32 Figure 3. Enzyme purity verified by SDS-PAGE. 33 Figure 4. Gene map of DLac 34 Figure 5. Optimal pH, optimal temperature, and thermostability of DLac 35 Figure 6. Crystal structure of DLac 37 Figure 7. Phylogenetic sequence analysis and structure alignment of laccases 39 Figure 8. Structure-based sequence alignment of SBLs in laccases from basidiomycetes 40 Figure 9. The glycosylation structure and the effect of deglycosylation on DLac 42 Figure 10. Kinetic studies of DLac after treatment with Endo H and PNGase F 44 PUBLISHED PAPER 2 Figure 1. Organic solvents affect DLac activity and stability 69 Figure 2. Organic-solvent enhancement is immediate and reversible 70 Figure 3. Pre-incubation has advantages on enhancing DLac activity in the presence of the corresponding organic solvent 71 Figure 4. Thermostability and 3-D structure of acetone-pre-incubated DLac 72 Figure 5. HT voltage was used to evaluate the reliability of Far-UV CD spectra in 0, 10, 33 and 50% acetone 73 Figure 6. Distribution of four laccases in this study among fungal laccases from NCBI Protein Database 74 Figure 7. Enzyme purity verified by SDS-PAGE 75 Figure 8. All laccases used in this study were stable at a high protein concentration 76 Figure 9. Organic-solvent enhancement of enzyme activity of general fungal laccases 77 Figure 10. Actual activities of fungal laccases in the organic-solvent pre-incubation experiments 78 Figure 11. The enhancement effect of organic-solvent pre-incubation on enzyme activity observed by using phenolic substrates 79 Figure 12. Actual activities of fungal laccases in organic solvent by using phenolic substrates 80 Figure 13. Acetone pre-incubation improve turnover rate and catalytic efficiency 81

    GENERAL INTRODUCTION'S REFERENCES
    1. Shekher R, Sehgal S, Kamthania M & Kumar A (2011) Laccase: microbial sources, production, purification, and potential biotechnological applications. Enzyme Res 217861, doi: 10.4061/2011/217861
    2. Pollegioni L, Tonin F & Rosini E (2015) Lignin-degrading enzymes. FEBS J 282, 1190-1213.
    3. Abyanova AR, Chulkin AM, Vavilova EA, Fedorova TV, Loginov DS, Koroleva OV & Benevolenskiĭ SV (2010) A heterologous production of the Trametes hirsuta laccase in the fungus Penicillium canescens. Appl Biochem Microbiol 46, 313-317.
    4. Yoshida H (1883) Chemistry of Lacquer part 1. J Chem Soc 43, 472-486.
    5. Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140, 19–26.
    6. Wan YY, Du YM, Yang FX, Xu Y, Chen RZ & Kennedy JF (2006) Int J Biol Macromol 38, 232–240.
    7. Mayer AM & Staples RC (2002) Laccase: new functions for an old enzyme. Phytochem 60, 551–565.
    8. Nitta K, Kataoka K, Sakurai T & Inorg J (2002) Primary structure of a Japanese lacquer tree laccase as a prototype enzyme of multicopper oxidases. Biochem 91, 125–131.
    9. Baldrian P (2006) Fungal laccases: occurrence and properties. FEMS Microbiol Rev 30, 215–242.
    10. Sharma R, Goel R & Capalash N (2007) Bacterial laccases. World J Microbiol Biotechnol 23, 823–832.
    11. Enguita JF, Martins OL, Henriques OA & Carrondo AM (2003) Crystal structure of a bacterial endospore coat component. J Biol Chem 278, 19416–19425.
    12. Enguita FJ, Martins LO, Henriques AO & Carrondo MA (2003) Crystal structure of a bacterial endospore coat component a laccase with enhanced thermostability properties. J Biol Chem 278, 19416-19425.
    13. Hattori M, Konishi H, Tamura Y, Konno K & Sogawa K (2005) Laccase-type phenoloxidase in salivary glands and watery saliva of the green rice leafhopper, Nephotettix cincticeps. J Insect Physiol 51, 1359-1365.
    14. Hoopes JT & Dean JF (2004) Ferroxidase activity in a laccase-like multicopper oxidase from Liriodendron tulipifera. Plant Physiol Biochem 42, 27-33.
    15. Sitarz AK, Mikkelsen JD & Meyer AS (2016) Structure, functionality and tuning up of laccases for lignocellulose and other industrial applications. Crit Rev Biotechnol 36, 70-86.
    16. Tadesse MA, D'Annibale A, Galli C, Gentili P & Sergi F (2008) An assessment of the relative contributions of redox and steric issues to laccase specificity towards putative substrates. Org Biomol Chem 6, 868-878.
    17. Gianfreda L, Xu F, and Bollag JM (1999) Laccases: a useful group of oxidoreductive enzymes. Bioremediat J 3, 1–25.
    18. Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24, 219-226.
    19. Potthast A, Rosenau T, Chen CL & Gratzl JS (1995) Selective enzymatic oxidation of aromatic methyl groups to aldehydes. J Org Chem 60, 4320-4321.
    20. Yaqoob H, Kamran M & Ali S (2015) Innovative roles of laccase mediator system in nano biotechnology, bio bleaching and bioremediation. Int J Pharm Biol Sci 23, 22-34.
    21. Sivan A (2011) New perspectives in plastic biodegradation. Curr Opin Biotechnol 22, 422-426.
    22. Yang J, Li W, Ng TB, Deng X, Lin J & Ye X (2017) Laccases: production, expression regulation, and applications in pharmaceutical biodegradation. Front Microbiol 8, doi: 10.3389/fmicb.2017.00832
    23. Jurado M, Prieto A, Martínez-Alcalá Á, Martínez ÁT & Martínez MJ (2009) Laccase detoxification of steam-exploded wheat straw for second generation bioethanol. Bioresour Technol 100, 6378-6384.
    24. Bajpai P, Anand A & Bajpai PK (2006) Bleaching with lignin-oxidizing enzymes. Biotechnol. Annu Rev 12, 349-378.
    25. Bibi I, Bhatti HN & Asgher M (2011) Comparative study of natural and synthetic phenolic compounds as efficient laccase mediators for the transformation of cationic dye. Biochem Eng J 56, 225-231.
    26. Daâssi D, Rodríguez-Couto S, Nasri M & Mechichi T (2014) Biodegradation of textile dyes by immobilized laccase from Coriolopsis gallica into Ca-alginate beads. Int Biodeterior Biodegradation 90, 71-78.
    27. Ganachaud C, Garfagnoli V, Tron T & Iacazio G (2008) Trimerisation of indole through laccase catalysis. Tetrahedron Lett 49, 2476-2478.
    28. Mogharabi M & Faramarzi MA(2014) Laccase and Laccase-Mediated Systems in the Synthesis of Organic Compounds. Adv Synth Catal 356, 897-927.
    29. Jia H, Zhong C, Huang F, Wang C, Jia L, Zhou H & Wei P (2013) The preparation and characterization of a laccase nanogel and its application in naphthoquinone synthesis. Chempluschem 78, 451-458.
    30. Wu F, Su L, Yu P & Mao L (2017) Role of organic solvents in immobilizing fungus laccase on single-walled carbon nanotubes for improved current response in direct bioelectrocatalysis. J Am Chem Soc 139, 1565-1574.
    31. Potthast A, Rosenau T, Chen CL & Gratzl JS (1995) Selective enzymatic oxidation of aromatic methyl-groups to aldehydes. J Org Chem 60, 4320-4321.
    32. Mikolasch A, Hessel S, Salazar MG, Neumann H, Manda K, Gōrdes D, Schmidt E, Thurow K, Hammer E, Lindequist U, Beller M & Schauer F (2008) Synthesis of new N-analogous corollosporine derivatives with antibacterial activity by laccase-catalyzed amination. Chem Pharm Bull (Tokyo) 56, 781-786.
    33. Wellington KW & Kolesnikova N (2012) A laccase-catalysed one-pot synthesis of aminonaphthoquinones and their anticancer activity. Bioorg Med Chem 20, 4472-4481.
    34. Hahn V, Mikolasch A, Manda K, Gördes D, Thurow K & Schauer F (2009) Laccase-catalyzed carbon-nitrogen bond formation: coupling and derivatization of unprotected L-phenylalanine with different para-hydroquinones. Amino Acids 37, 315-321.
    35. Klibanov AM, Tu TM & Scott KP (1983) Peroxidase-catalyzed removal of phenols from coal-conversion waste waters. Science 221, 259-261.
    36. Villaseñor F, Loera O, Campero A & Viniegra-González G (2004) Oxidation of dibenzothiophene by laccase or hydrogen peroxide and deep desulfurization of diesel fuel by the later. Fuel Process Technol 86, 49-59.
    37. Rodakiewicz-Nowak J & Jarosz-Wilkolazka A (2007) Catalytic activity of Cerrena unicolor laccase in aqueous solutions of water-miscible organic solvents - experimental and numerical description. J Mol Catal B Enzym 44, 53-59.
    38. Zakzeski J, Jongerius AL, Bruijnincx PC & Weckhuysen BM (2012) Catalytic lignin valorization process for the production of aromatic chemicals and hydrogen. ChemSusChem 5, 1602-1609.
    39. Fiţigău IF, Peter F & Boeriu CG (2013) Oxidative polymerization of lignins by laccase in water-acetone mixture. Acta Biochim. Pol. 60, 817-822.
    40. Aktaş N & Tanyolaç A (2003) Reaction conditions for laccase catalyzed polymerization of catechol. Bioresour Technol 87, 209-214.
    41. Tavares APM, Rodriguez O & Macedo EA (2008) Ionic liquids as alternative co-solvents for laccase: study of enzyme activity and stability. Biotechnol Bioeng 101, 201-207.
    42. Cheng K, Sorek H, Zimmermann H, Wemmer DE & Pauly M (2013) Solution-state 2D NMR spectroscopy of plant cell walls enabled by a dimethylsulfoxide-d6/1-ethyl-3-methylimidazolium acetate solvent. Anal Chem 85, 3213-3221.
    43. Tominaga J, Michizoe J, Kamiya N, Ichinose H, Maruyama T & Goto M (2004) Factors affecting the oxidative activity of laccase towards biphenyl derivatives in homogeneous aqueous-organic systems. J Biosci Bioeng 98, 14-19.
    44. Tonin F, Melis R, Cordes A, Sanchez-Amat A, Pollegioni L & Rosini E (2016) Comparison of different microbial laccases as tools for industrial uses. N Biotechnol 33, 387-398.
    45. Sardessai Y & Bhosle S (2002) Tolerance of bacteria to organic solvents. Res Microbiol 153, 263-268.
    46. Brink LES, Tramper J, Luyben KChAM & Van't Riet K (1988) Biocatalysis in organic media. Enzyme Microb Technol 10, 736-743.
    47. Singh G, Bhalla A, Kaur P, Capalash N & Sharma P (2011) Laccase from prokaryotes: a new source for an old enzyme. Rev Environ Sci Biotechnol 10, 309-326.
    48. Huang WT, Tai R, Hseu RS & Huang CT (2011) Overexpression and characterization of a thermostable, pH-stable and organic solvent-tolerant Ganoderma fornicatum laccase in Pichia pastoris. Process Biochem 46, 1469-1474.
    49. Michels PC, Dordick JS & Clark DS (1997) Dipole formation and solvent electrostriction in subtilisin catalysis. J Am Chem Soc 119, 9331-9335.
    50. Serdakowski AL & Dordick JS (2008) Enzyme activation for organic solvents made easy. Trends Biotechnol 26, 48-54.
    51. Milstein O, Hüttermann A, Majcherczyk A, Schulze K, Fründ R & Lüdemann HD (1993) Transformation of lignin-related compounds with laccase in organic solvents. J Biotechnol 30, 37-48.
    52. Rodakiewicz-Nowak J, Kasture SM, Dudek B & Haber J (2000) Effect of various water-miscible solvents on enzymatic activity of fungal laccases. J Mol Catal B Enzym 11, 1-11.
    53. Luterek J, Gianfreda L, Wojtaś-Wasilewska M, Cho NS, Rogalski J, Jaszek M, Malarczyk E, Staszczak M, Fink-Boots M & Leonowicz A (1998) Activity of free and immobilized extracellular Cerrena unicolor laccase in water miscible organic solvents. Holzforschung 52, 589-595 (1998).
    54. Zumárraga M, Bulter T, Shleev S, Polaina J, Martínez-Arias A, Plou FJ, Ballesteros A & Alcalde M (2007) In vitro evolution of a fungal laccase in high concentrations of organic cosolvents. Chem Biol 14, 1052-1064.
    55. Stepankova V, Bidmanova S, Koudelakova T, Prokop Z, Chaloupkova R & Damborsky J (2013) Strategies for stabilization of enzymes in organic solvents. ACS Catal 3, 2823-2836.
    56. López-Cruz JI, Viniegra-González G & Hernández-Arana A (2006) Thermostability of native and pegylated Myceliophthora thermophila laccase in aqueous and mixed solvents. Bioconjug Chem 17, 1093-1098.
    57. Rogalski J, Dawidowicz A, Jóźwik E & Leonowicz A (1999) Immobilization of laccase from Cerrena unicolor on controlled porosity glass. J Mol Catal B Enzym 6, 29-39.
    58. Wan YY, Lu R, Xiao L, Du YM, Miyakoshi T, Chen CL, Knill CJ & Kennedy JF (2010) Effects of organic solvents on the activity of free and immobilised laccase from Rhus vernicifera. Int J Biol Macromol 47, 488-495.
    59. Alcalde M, Bulter T, Zumárraga M, García-Arellano H, Mencía M, Plou FJ & Ballesteros A (2005) Screening mutant libraries of fungal laccases in the presence of organic solvents. J Biomol Screen 10, 624-631.
    60. Guan ZB, Song CM, Zhang N, Zhou W, Xu CW, Zhou LX, Zhao H, Cai YJ & Liao XR (2014) Overexpression, characterization, and dye-decolorizing ability of a thermostable, pH-stable, and organic solvent-tolerant laccase from Bacillus pumilus W3. J Mol Catal B Enzym. 101, 1-6.
    61. Uthandi S, Saad B, Humbard MA & Maupin-Furlow JA (2010) LccA, an archaeal laccase secreted as a highly stable glycoprotein into the extracellular medium by Haloferax volcanii. Appl Environ Microbiol 76, 733-743.
    62. Kunamneni A, Plou FJ, Ballesteros A & Alcalde M (2008) Laccases and their applications: a patent review. Recent Pat Biotechnol 2, 10-24.
    63. Maestre-Reyna M, Liu WC, Jeng WY, Lee CC, Hsu CA, Wen TN, Wang AH & Shyur LF (2015) Structural and functional roles of glycosylation in fungal laccase from Lentinus sp.. PLoS One 10, e0120601.
    64. Garg N, Bieler N, Kenzom T, Chhabra M, Ansorge-Schumacher M & Mishra S (2012) Cloning, sequence analysis, expression of Cyathus bulleri laccase in Pichia pastoris and characterization of recombinant laccase. BMC Biotechnol 12, 75.
    65. Madhavi V & Lele S (2009) Laccase: properties and applications. Bioresources 4, 1694-1717.
    66. Morozova OV, Shumakovich GP, Gorbacheva MA, Shleev SV & Yaropolov AI (2007) "Blue" laccases. Biochemistry (Mosc) 72, 1136-1150.
    67. Rodgers CJ, Blanford CF, Giddens SR, Skamnioti P, Armstrong FA & Gurr SJ (2010) Designer laccases: a vogue for high-potential fungal enzymes? Trends Biotechnol 28, 63-72.
    68. Vite-Vallejo O, Palomares LA, Dantán-González E, Ayala-Castro HG, Martínez-Anaya C, Valderrama B & Folch-Mallol J (2009) The role of N-glycosylation on the enzymatic activity of a Pycnoporus sanguineus laccase. Enzyme Microb Technol 45, 233-239.
    69. Ducros V, Brzozowski AM, Wilson KS, Brown SH, Ostergaard P, Schneider P, Yaver DS, Pedersen AH and Davies GJ (1998) Crystal structure of the type 2 Cu depleted laccase from Coprinus cinereus at 2.2 Å resolution. Nat Struct Biol 5, 310–316.
    70. Piontek K, Antorini M and Choinowski T (2002) Crytal structure of a laccase from the fungus Trametes versicolor at 1.90 Å resolution containing a full complement of coppers. J Biol Chem 277, 37663–37669.
    71. Melo EP, Fernandez AT, Durão P and Martins LO (2007) Insight into stability of CotA laccase from the spore coat of Bacillus subtilis. Biochem Soc Trans 35, 1579–1582.
    72. Bonomo RP, Cennamo G, Purrello R, Santoro AM & Zappalà R (2001) Comparison of three fungal laccases from Rigidoporus lignosus and Pleurotus ostreatus: correlation between conformation changes and catalytic activity. J Inorg Biochem 83, 67-75.
    73. Ragusa S, Cambria MT, Pierfederici F, Scirè A, Bertoli E, Tanfani F & Cambria A (2002) Structure-activity relationship on fungal laccase from Rigidoporus lignosus: a Fourier-transform infrared spectroscopic study. Biochim Biophys Acta 1601, 155-162.
    74. Koschorreck K, Schmid RD & Urlacher VB (2009) Improving the functional expression of a Bacillus licheniformis laccase by random and site-directed mutagenesis. BMC Biotechnol 9, 12.
    75. Xu F, Berka RM, Wahleithner JA, Nelson BA, Shuster JR, Brown SH, Palmer A.E & Solomon EI (1998) Site-directed mutations in fungal laccase: effect on redox potential, activity and pH profile. Biochem J 334, 63-70.
    76. Bulter T, Alcalde M, Sieber V, Meinhold P, Schlachtbauer C & Arnold FH (2003) Functional expression of a fungal laccase in Saccharomyces cerevisiae by directed evolution. Appl Environ Microbiol 69, 987-995.
    77. Festa G, Autore F, Fraternali F, Giardina P & Sannia G (2008) Development of new laccases by directed evolution: Functional and computational analyses. Proteins 72, 25-34.
    78. Wu MH, Lee CC, Hsiao AS, Yu SM, Wang AH & Ho TD (2018) Kinetic analysis and structural studies of a high-efficiency laccase from Cerrena sp. RSD1. FEBS Open Bio 8, 1230-1246.
    79. Serdakowski AL & Dordick JS (2008) Enzyme activation for organic solvents made easy. Trends Biotechnol 26, 48-54.
    80. Herskovits TT, Gadegbeku B & Jaillet H (1970) On the structural stability and solvent denaturation of proteins. I. Denaturation by the alcohols and glycols. J Biol Chem 245, 2588-2598.
    81. Sinha R & Khare SK (2014) Effect of organic solvents on the structure and activity of moderately halophilic Bacillus sp. EMB9 protease. Extremophiles 18, 1057-1066.
    82. Kamal MZ, Yedavalli P, Deshmukh MV & Rao NM (2013) Lipase in aqueous-polar organic solvents: activity, structure, and stability. Protein Sci. 22, 904-915.
    83. Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409, 241-246.
    84. Zaks A & Klibanov AM (1988) The Effect of water on enzyme action in organic media. J Biol Chem 263, 8017-8021.
    85. Xu ZF et al. (1994) Transition state stabilization of subtilisins in organic media. Biotechnol Bioeng 43, 515-520.
    86. R Batra & MN Gupta (1994) Enhancement of enzyme activity in aqueous-organic solvent mixtures. Biotechnol Lett 16, 1059–1064
    87. Faller L & Sturtevant JM (1966) The kinetics of the alpha-chymotrypsin-catalyzed hydrolysis of p-nitrophenyl acetate in organic solvent-water mixtures. J Biol Chem 241, 4825-4834.
    88. Wu MH, Lin MC, Lee CC, Yu SM, Wang AH & Ho TD (2019) Enhancement of laccase activity by pre-incubation with organic solvents. Sci Rep 9, 9754.

    PUBLISHED PAPER 1'S REFERENCES
    1. Madhavi V & Lele S (2009) Laccase: properties and applications. Bioresources 4, 1694-1717.
    2. Pollegioni L, Tonin F & Rosini E (2015) Lignin-degrading enzymes. FEBS J 282, 1190-1213.
    3. Abyanova AR, Chulkin AM, Vavilova EA, Fedorova TV, Loginov DS, Koroleva OV & Benevolenskiĭ SV (2010) A heterologous production of the Trametes hirsuta laccase in the fungus Penicillium canescens. Appl Biochem Microbiol 46, 313-317.
    4. Enguita FJ, Martins LO, Henriques AO & Carrondo MA (2003) Crystal structure of a bacterial endospore coat component a laccase with enhanced thermostability properties. J Biol Chem 278, 19416-19425.
    5. Hattori M, Konishi H, Tamura Y, Konno K & Sogawa K (2005) Laccase-type phenoloxidase in salivary glands and watery saliva of the green rice leafhopper, Nephotettix cincticeps. J Insect Physiol 51, 1359-1365.
    6. Hoopes JT & Dean JF (2004) Ferroxidase activity in a laccase-like multicopper oxidase from Liriodendron tulipifera. Plant Physiol Biochem 42, 27-33.
    7. Sitarz AK, Mikkelsen JD & Meyer AS (2016) Structure, functionality and tuning up of laccases for lignocellulose and other industrial applications. Crit Rev Biotechnol 36, 70-86.
    8. Bollag JM & Leonowicz A (1984) Comparative studies of extracellular fungal laccases. Appl Environ Microbiol 48, 849-854.
    9. Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24, 219-226.
    10. Potthast A, Rosenau T, Chen CL & Gratzl JS (1995) Selective enzymatic oxidation of aromatic methyl groups to aldehydes. J Org Chem 60, 4320-4321.
    11. Kunamneni A, Plou FJ, Ballesteros A & Alcalde M (2008) Laccases and their applications: a patent review. Recent Pat Biotechnol 2, 10-24.
    12. Maestre-Reyna M, Liu WC, Jeng WY, Lee CC, Hsu CA, Wen TN, Wang AH & Shyur LF (2015) Structural and functional roles of glycosylation in fungal laccase from Lentinus sp.. PLoS One 10, e0120601.
    13. Garg N, Bieler N, Kenzom T, Chhabra M, Ansorge-Schumacher M & Mishra S (2012) Cloning, sequence analysis, expression of Cyathus bulleri laccase in Pichia pastoris and characterization of recombinant laccase. BMC Biotechnol 12, 75.
    14. Morozova OV, Shumakovich GP, Gorbacheva MA, Shleev SV & Yaropolov AI (2007) "Blue" laccases. Biochemistry (Mosc) 72, 1136-1150.
    15. Rodgers CJ, Blanford CF, Giddens SR, Skamnioti P, Armstrong FA & Gurr SJ (2010) Designer laccases: a vogue for high-potential fungal enzymes? Trends Biotechnol 28, 63-72.
    16. Vite-Vallejo O, Palomares LA, Dantán-González E, Ayala-Castro HG, Martínez-Anaya C, Valderrama B & Folch-Mallol J (2009) The role of N-glycosylation on the enzymatic activity of a Pycnoporus sanguineus laccase. Enzyme Microb Technol 45, 233-239.
    17. Bonomo RP, Cennamo G, Purrello R, Santoro AM & Zappalà R (2001) Comparison of three fungal laccases from Rigidoporus lignosus and Pleurotus ostreatus: correlation between conformation changes and catalytic activity. J Inorg Biochem 83, 67-75.
    18. Ragusa S, Cambria MT, Pierfederici F, Scirè A, Bertoli E, Tanfani F & Cambria A (2002) Structure-activity relationship on fungal laccase from Rigidoporus lignosus: a Fourier-transform infrared spectroscopic study. Biochim Biophys Acta 1601, 155-162.
    19. Koschorreck K, Schmid RD & Urlacher V B (2009) Improving the functional expression of a Bacillus licheniformis laccase by random and site-directed mutagenesis. BMC Biotechnol 9, 12.
    20. Xu F, Berka RM, Wahleithner JA, Nelson BA, Shuster JR, Brown SH, Palmer A.E & Solomon EI (1998) Site-directed mutations in fungal laccase: effect on redox potential, activity and pH profile. Biochem J 334, 63-70.
    21. Bulter T, Alcalde M, Sieber V, Meinhold P, Schlachtbauer C & Arnold FH (2003) Functional expression of a fungal laccase in Saccharomyces cerevisiae by directed evolution. Appl Environ Microbiol 69, 987-995.
    22. Festa G, Autore F, Fraternali F, Giardina P & Sannia G (2008) Development of new laccases by directed evolution: Functional and computational analyses. Proteins 72, 25-34.
    23. Coll PM, Fernández-Abalos JM, Villanueva JR, Santamaria R & Pérez P (1993) Purification and characterization of a phenoloxidase (laccase) from the lignin-degrading basidiomycete PM1 (CECT 2971). Appl Environ Microbiol 59, 2607-2613.
    24. Murugesan K, Nam IH, Kim YM & Chang YS (2007) Decolorization of reactive dyes by a thermostable laccase produced by Ganoderma lucidum in solid state culture. Enzyme Microb Technol 40, 1662-1672.
    25. Yang J, Lin Q, Ng TB, Ye X & Lin J (2014) Purification and characterization of a novel laccase from Cerrena sp. HYB07 with dye decolorizing ability. PLoS ONE 9, e110834.
    26. Quaratino D, Federici F, Petruccioli M, Fenice M & D'Annibale A (2007) Production, purification and partial characterisation of a novel laccase from the white-rot fungus Panus tigrinus CBS 577.79. Antonie Van Leeuwenhoek 91, 57-69.
    27. Yaver DS, Xu F, Golightly EJ, Brown KM, Brown SH, Rey MW, Schneider P, Halkier T, Mondorf K & Dalboge H (1996) Purification, characterization, molecular cloning, and expression of two laccase genes from the white rot basidiomycete Trametes villosa. Appl Environ Microbiol 62, 834-841.
    28. Bar-Even A, Noor E, Savir Y, Liebermeister W, Davidi D, Tawfik DS & Milo R (2011) The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50, 4402-4410.
    29. Diamantidis G, Effosse A, Potier P & Bally R (2000) Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum. Soil Biol Biochem 32, 919-927.
    30. Coll PM, Pérez P, Villar E & Shnyrov VL (1994) Domain structure of laccase I from the lignin-degrading basidiomycete PM1 revealed by differential scanning calorimetry. Biochem Mol Biol Int 34, 1091-1098.
    31. Hildén K, Hakala TK, Maijala P, Lundell TK & Hatakka A (2007) Novel thermotolerant laccases produced by the white-rot fungus Physisporinus rivulosus. Appl Microbiol Biotechnol 77, 301-309.
    32. Ahmad S, Kamal MZ, Sankaranarayanan R & Rao NM (2008) Thermostable Bacillus subtilis lipases: in vitro evolution and structural insight. J Mol Biol 381, 324-340.
    33. Giver L, Gershenson A, Freskgard PO & Arnold FH (1998) Directed evolution of a thermostable esterase. Proc Nati Acad Sci U S A 95, 12809-12813.
    34. D'Amico S, Marx JC, Gerday C & Feller G (2003) Activity-stability relationships in extremophilic enzymes. J Biol Chem 278, 7891-7896.
    35. Frasconi M, Favero G, Boer H, Koivula A & Mazzei F (2010) Kinetic and biochemical properties of high and low redox potential laccases from fungal and plant origin. Biochim Biophys Acta 1804, 899-908.
    36. Palmieri G, Cennamo G, Faraco V, Amoresano A, Sannia G & Giardina P (2003) Atypical laccase isoenzymes from copper supplemented Pleurotus ostreatus cultures. Enzyme Microb Technol 33, 220-230.
    37. Matera I, Gullotto A, Tilli S, Ferraroni M, Scozzafava A & Briganti F (2008) Crystal structure of the blue multicopper oxidase from the white-rot fungus Trametes trogii complexed with p-toluate. Inorganica Chim Acta 361, 4129-4137.
    38. De la Mora E, Lovett JE, Blanford CF, Garman EF, Valderrama B & Rudino-Pinera E (2012) Structural changes caused by radiation-induced reduction and radiolysis: the effect of X-ray absorbed dose in a fungal multicopper oxidase. Acta Crystallogr D Biol Crystallogr 68, 564-577.
    39. Lyashenko AV, Zhukhlistova NE, Gabdoulkhakov AG, Zhukova YN, Voelter W, Zaitsev VN, Bento I, Stepanova EV, Kachalova GS, Koroleva OV et al. (2006) Purification, crystallization and preliminary X-ray study of the fungal laccase from Cerrena maxima. Acta Crystallogr Sect F Struct Biol Cryst Commun 62, 954-957.
    40. Giardina P, Autore F, Faraco V, Festa G, Palmieri G, Piscitelli A & Sannia G (2007) Structural characterization of heterodimeric laccases from Pleurotus ostreatus. Appl Microbiol Biotechnol 75, 1293-1300.
    41. Greenwald J, Le V, Butler SL, Bushman FD & Choe S (1999) The mobility of an HIV-1 integrase active site loop is correlated with catalytic activity. Biochemistry 38, 8892-8898.
    42. Mohamad SB, Ong AL & Ripen AM (2008) Evolutionary trace analysis at the ligand binding site of laccase. Bioinformation 2, 369-372.
    43. Galli C, Gentili P, Jolivalt C, Madzak C & Vadalà R (2011) How is the reactivity of laccase affected by single-point mutations? Engineering laccase for improved activity towards sterically demanding substrates. Appl Microbiol Biotechnol 91, 123-131.
    44. Soden DM, O'Callaghan J & Dobson AD (2002) Molecular cloning of a laccase isozyme gene from Pleurotus sajor-caju and expression in the heterologous Pichia pastoris host. Microbiology. 148, 4003-4014.
    45. Kumar SV, Phale PS, Durani S & Wangikar PP (2003) Combined sequence and structure analysis of the fungal laccase family. Biotechnol Bioeng 83, 386-394.
    46. Otwinowski Z & Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276, 307-326.
    47. Bailey S (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50, 760-763.
    48. Piontek K, Antorini M & Choinowski T (2002) Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-Å resolution containing a full complement of coppers. J Biol Chem 277, 37663-37669.
    49. Emsley P & Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126-2132.
    50. Murshudov GN, Vagin AA & Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53, 240-255.
    51. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC & Ferrin TE (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25, 1605-1612.
    52. Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS & Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66, 12-21.
    53. Li MA, Zhang GQ, Wang HX & Ng T (2010) Purification and characterization of a laccase from the edible wild mushroom Tricholoma mongolicum. J Microbiol Biotechnol 20, 1069-1076.
    54. Marques De Souza CG & Peralta RM (2003) Purification and characterization of the main laccase produced by the white-rot fungus Pleurotus pulmonarius on wheat bran solid state medium. J Basic Microbiol 43, 278-286.
    55. Cambria M, Cambria A, Ragusa S & Rizzarelli E (2000) Production, purification, and properties of an extracellular laccase from Rigidoporus lignosus. Protein Expr Purif 18, 141-147.
    56. Galhaup C, Goller S, Peterbauer CK, Strauss J & Haltrich D (2002) Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions. Microbiology 148, 2159-2169.
    57. Schmidt G, Krings U, Nimtz M & Berger RG (2012) A surfactant tolerant laccase of Meripilus giganteus. World J Microbiol Biotechnol 28, 1623-1632.

    PUBLISHED PAPER 2'S REFERENCES
    1. Shekher R, Sehgal S, Kamthania M & Kumar A (2011) Laccase: microbial sources, production, purification, and potential biotechnological applications. Enzyme Res. 2011, 217861; 10.4061/2011/217861.
    2. Yaqoob H, Kamran M & Ali S (2015) Innovative roles of laccase mediator system in nano biotechnology, bio bleaching and bioremediation. Int. J. Pharm. Biol. Sci. 23, 22-34.
    3. Potthast A, Rosenau T, Chen CL & Gratzl JS (1995) Selective enzymatic oxidation of aromatic methyl-groups to aldehydes. J. Org. Chem. 60, 4320-4321.
    4. Sitarz AK, Mikkelsen JD & Meyer A S (2016) Structure, functionality and tuning up of laccases for lignocellulose and other industrial applications. Crit. Rev. Biotechnol. 36, 70-86.
    5. Tadesse MA, D'Annibale A, Galli C, Gentili P & Sergi F (2008) An assessment of the relative contributions of redox and steric issues to laccase specificity towards putative substrates. Org. Biomol. Chem. 6, 868-878.
    6. Sivan A (2011) New perspectives in plastic biodegradation. Curr. Opin. Biotechnol. 22, 422-426.
    7. Yang J et al. (2017) Laccases: production, expression regulation, and applications in pharmaceutical biodegradation. Front. Microbiol. 8, 832; 10.3389/fmicb.2017.00832.
    8. Jurado M, Prieto A, Martínez-Alcalá Á, Martínez ÁT & Martínez MJ (2009) Laccase detoxification of steam-exploded wheat straw for second generation bioethanol. Bioresour. Technol. 100, 6378-6384.
    9. Bajpai P, Anand A & Bajpai PK (2006) Bleaching with lignin-oxidizing enzymes. Biotechnol. Annu. Rev. 12, 349-378.
    10. Bibi I, Bhatti HN & Asgher M (2011) Comparative study of natural and synthetic phenolic compounds as efficient laccase mediators for the transformation of cationic dye. Biochem. Eng. J. 56, 225-231.
    11. Daâssi D, Rodríguez-Couto S, Nasri M & Mechichi T (2014) Biodegradation of textile dyes by immobilized laccase from Coriolopsis gallica into Ca-alginate beads. Int. Biodeterior. Biodegradation 90, 71-78.
    12. Ganachaud C, Garfagnoli V, Tron T & Iacazio G (2008) Trimerisation of indole through laccase catalysis. Tetrahedron Lett. 49, 2476-2478.
    13. Mogharabi M & Faramarzi MA (2014) Laccase and Laccase-Mediated Systems in the Synthesis of Organic Compounds. Adv. Synth. Catal. 356, 897-927.
    14. Jia H et al. (2013) The preparation and characterization of a laccase nanogel and its application in naphthoquinone synthesis. Chempluschem 78, 451-458.
    15. Wu F, Su L, Yu P & Mao L (2017) Role of organic solvents in immobilizing fungus laccase on single-walled carbon nanotubes for improved current response in direct bioelectrocatalysis. J. Am. Chem. Soc. 139, 1565-1574.
    16. Villaseñor F, Loera O, Campero A & Viniegra-González G (2004) Oxidation of dibenzothiophene by laccase or hydrogen peroxide and deep desulfurization of diesel fuel by the later. Fuel Process. Technol. 86, 49-59.
    17. Rodakiewicz-Nowak J & Jarosz-Wilkolazka A (2007) Catalytic activity of Cerrena unicolor laccase in aqueous solutions of water-miscible organic solvents - experimental and numerical description. J. Mol. Catal. B Enzym. 44, 53-59.
    18. Zakzeski J, Jongerius AL, Bruijnincx PC & Weckhuysen BM (2012) Catalytic lignin valorization process for the production of aromatic chemicals and hydrogen. ChemSusChem 5, 1602-1609.
    19. Fiţigău IF, Peter F & Boeriu CG (2013) Oxidative polymerization of lignins by laccase in water-acetone mixture. Acta Biochim. Pol. 60, 817-822.
    20. Aktaş N & Tanyolaç A (2003) Reaction conditions for laccase catalyzed polymerization of catechol. Bioresour. Technol. 87, 209-214.
    21. Tavares APM, Rodriguez O & Macedo EA (2008) Ionic liquids as alternative co-solvents for laccase: study of enzyme activity and stability. Biotechnol. Bioeng. 101, 201-207.
    22. Cheng K, Sorek H, Zimmermann H, Wemmer DE & Pauly M (2013) Solution-state 2D NMR spectroscopy of plant cell walls enabled by a dimethylsulfoxide-d6/1-ethyl-3-methylimidazolium acetate solvent. Anal. Chem. 85, 3213-3221.
    23. Tominaga J et al. (2004) Factors affecting the oxidative activity of laccase towards biphenyl derivatives in homogeneous aqueous-organic systems. J. Biosci. Bioeng. 98, 14-19.
    24. Tonin F et al. (2016) Comparison of different microbial laccases as tools for industrial uses. N. Biotechnol. 33, 387-398.
    25. Sardessai Y & Bhosle S (2002) Tolerance of bacteria to organic solvents. Res. Microbiol. 153, 263-268.
    26. Brink LES, Tramper J, Luyben KChAM & Van't Riet K (1988) Biocatalysis in organic media. Enzyme Microb. Technol. 10, 736-743.
    27. Singh G, Bhalla A, Kaur P, Capalash N & Sharma P (2011) Laccase from prokaryotes: a new source for an old enzyme. Rev. Environ. Sci. Biotechnol. 10, 309-326.
    28. Huang WT, Tai R, Hseu RS & Huang CT (2011) Overexpression and characterization of a thermostable, pH-stable and organic solvent-tolerant Ganoderma fornicatum laccase in Pichia pastoris. Process Biochem. 46, 1469-1474.
    29. Michels PC, Dordick JS & Clark DS (1997) Dipole formation and solvent electrostriction in subtilisin catalysis. J. Am. Chem. Soc. 119, 9331-9335.
    30. Serdakowski AL & Dordick JS (2008) Enzyme activation for organic solvents made easy. Trends Biotechnol. 26, 48-54.
    31. Milstein O et al. (1993) Transformation of lignin-related compounds with laccase in organic solvents. J. Biotechnol. 30, 37-48.
    32. Rodakiewicz-Nowak J, Kasture SM, Dudek B & Haber J (2000) Effect of various water-miscible solvents on enzymatic activity of fungal laccases. J. Mol. Catal. B Enzym. 11, 1-11.
    33. Luterek J et al. (1998) Activity of free and immobilized extracellular Cerrena unicolor laccase in water miscible organic solvents. Holzforschung 52, 589-595.
    34. Zumárraga M et al. (2007) In vitro evolution of a fungal laccase in high concentrations of organic cosolvents. Chem. Biol. 14, 1052-1064.
    35. Stepankova V et al. (2013) Strategies for stabilization of enzymes in organic solvents. ACS Catal. 3, 2823-2836.
    36. López-Cruz JI, Viniegra-González G & Hernández-Arana A (2006) Thermostability of native and pegylated Myceliophthora thermophila laccase in aqueous and mixed solvents. Bioconjug. Chem. 17, 1093-1098.
    37. Rogalski J, Dawidowicz A, Jóźwik E & Leonowicz A (1999) Immobilization of laccase from Cerrena unicolor on controlled porosity glass. J. Mol. Catal. B Enzym. 6, 29-39.
    38. Wan YY et al. (2010) Effects of organic solvents on the activity of free and immobilised laccase from Rhus vernicifera. Int. J. Biol. Macromol. 47, 488-495
    39. Alcalde M et al. (2005) Screening mutant libraries of fungal laccases in the presence of organic solvents. J. Biomol. Screen. 10, 624-631.
    40. Guan ZB et al. (2014) Overexpression, characterization, and dye-decolorizing ability of a thermostable, pH-stable, and organic solvent-tolerant laccase from Bacillus pumilus W3. J. Mol. Catal. B Enzym. 101, 1-6.
    41. Uthandi S, Saad B, Humbard MA & Maupin-Furlow JA (2010) LccA, an archaeal laccase secreted as a highly stable glycoprotein into the extracellular medium by Haloferax volcanii. Appl. Environ. Microbiol. 76, 733-743.
    42. Wu MH et al. (2018) Kinetic analysis and structural studies of a high‐efficiency laccase from Cerrena sp. RSD 1. FEBS Open Bio. 8, 1230-1246.
    43. Stepankova V, Damborsky J, Chaloupkova R (2013) Organic co-solvents affect activity, stability and enantioselectivity of haloalkane dehalogenases. Biotechnol. J. 8, 719-729.
    44. Li CH et al. (2011) Applications of circular dichroism for structural analysis of proteins: qualification of near- and far-UV CD for protein higher order structural analysis. J. Pharm. Sci. 100, 4642-4654.
    45. Kelly SM, Jess TJ & Price NC (2005) How to study proteins by circular dichroism. Biochim. Biophys. Acta 1751, 119-139.
    46. Ogino H et al. (1999) Purification and characterization of organic solvent-stable protease from organic solvent-tolerant Pseudomonas aeruginosa PST-01. J. Biosci. Bioeng. 87, 61-68.
    47. Rodakiewicz-Nowak J & Jarosz-Wilkołazka A (2007) Catalytic activity of Cerrena unicolor laccase in aqueous solutions of water-miscible organic solvents—experimental and numerical description. J. Mol. Catal. B Enzym. 44, 53-59.
    48. Rahman RNZRA, Salleh AB, Basri M & Wong CF (2011) Role of α-helical structure in organic solvent-activated homodimer of elastase strain K. Int. J. Mol. Sci. 12, 5797-5814.
    49. Sinha R & Khare SK (2014) Effect of organic solvents on the structure and activity of moderately halophilic Bacillus sp. EMB9 protease. Extremophiles 18, 1057-1066.
    50. Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409, 241-246.
    51. Rasekh B et al. (2014) Protein engineering of laccase to enhance its activity and stability in the presence of organic solvents. Eng. Life Sci. 14, 442-448.
    52. Herskovits TT, Gadegbeku B & Jaillet H (1970) On the structural stability and solvent denaturation of proteins. I. Denaturation by the alcohols and glycols. J. Biol. Chem. 245, 2588-2598.
    53. Kamal MZ, Yedavalli P, Deshmukh MV & Rao NM (2013) Lipase in aqueous-polar organic solvents: activity, structure, and stability. Protein Sci. 22, 904-915.
    54. Gu Z et al. (2019) Theoretical and experimental studies on the conformational changes of organic solvent-stable protease from Bacillus sphaericus DS11 in methanol/water mixtures. Int. J. Biol. Macromol. 128, 603-609.
    55. Zaks A & Klibanov AM (1988) The Effect of water on enzyme action in organic media. J. Biol. Chem. 263, 8017-8021.
    56. Xu ZF et al. (1994) Transition state stabilization of subtilisins in organic media. Biotechnol. Bioeng. 43, 515-520.
    57. Loo J A, Loo RR, Udseth HR, Edmonds CG & Smith RD (1991) Solvent-induced conformational changes of polypeptides probed by electrospray-ionization mass spectrometry. Rapid Commun. Mass Spectrom. 5, 101-105.
    58. Bar-Even A et al. (2011) The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50, 4402-4410.
    59. Soden DM, O'Callaghan J & Dobson ADW (2002) Molecular cloning of a laccase isozyme gene from Pleurotus sajor-caju and expression in the heterologous Pichia pastoris host. Microbiology 148, 4003-4014.
    60. Otwinowski Z & Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326.
    61. Bailey S (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760-763.
    62. Emsley P & Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126-2132.
    63. Murshudov, GN, Vagin, AA & Dodson, EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240-255.
    64. Chen VB et al. (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12-21.

    FUTURE PERSPECTIVE'S REFERENCES
    1. Bar-Even A, Noor E, Savir Y, Liebermeister W, Davidi D, Tawfik DS & Milo R (2011) The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50, 4402-4410.
    2. Gu Z et al. (2019) Theoretical and experimental studies on the conformational changes of organic solvent-stable protease from Bacillus sphaericus DS11 in methanol/water mixtures. Int. J. Biol. Macromol. 128, 603-609.
    3. Kamal MZ, Yedavalli P, Deshmukh MV & Rao NM (2013) Lipase in aqueous-polar organic solvents: activity, structure, and stability. Protein Sci. 22, 904-915.
    4. Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409, 241-246.
    5. Rodriguez-Couto S (2012) Laccases for denim bleaching: an eco-friendly alternative. Open Text J 5, 1-7.
    6. Iracheta-Cárdenas MM, Rocha-Peña MA, Galán-Wong LJ, Arévalo-Niño K & Tovar-Herrera OE (2016) A Pycnoporus sanguineus laccase for denim bleaching and its comparison with an enzymatic commercial formulation. J Environ Manage 177, 93-100.
    7. Zhu Y et al. (2018) Encapsulation of laccase within zwitterionic poly-carboxybetaine hydrogels for improved activity and stability. Catal Sci Technol 20, 5217-5224.
    8. Jia H et al. (2013) The preparation and characterization of a laccase nanogel and its application in naphthoquinone synthesis. Chempluschem 78, 451-458.
    9. Ashe B et al. (2016) Impacts of redox-mediator type on trace organic contaminants degradation by laccase: Degradation efficiency, laccase stability and eBuent toxicity. Int Biodeterior Biodegradation 113, 169-176.
    10. Aktaş N & Tanyolaç A (2003) Reaction conditions for laccase catalyzed polymerization of catechol. Bioresour Technol 87, 209-214.
    11. Mikolasch A, Niedermeyer TH, Lalk M, Witt S, Seefeldt S, Hammer E, Schauer F, Gesell M, Hessel S, Jülich WD & Lindequist U (2006) Novel penicillins synthesized by biotransformation using laccase from Trametes spec. Chem Pharm Bull (Tokyo) 54, 632-638.
    12. Mikolasch A, Niedermeyer TH, Lalk M, Witt S, Seefeldt S, Hammer E, Schauer F, Gesell Salazar M, Hessel S, Jülich WD & Lindequist U (2007) Novel cephalosporins synthesized by amination of 2,5-dihydroxybenzoic acid derivatives using fungal laccases II. Chem Pharm Bull (Tokyo) 55, 412-416.
    13. Wellington KW & Kolesnikova NI (2012) A laccase-catalysed one-pot synthesis of aminonaphthoquinones and their anticancer activity. Bioorg Med Chem 20, 4472-4481.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE