簡易檢索 / 詳目顯示

研究生: 楊凱翔
Yang, Kai-Shiang
論文名稱: 連續式雷射拋光技術運用於SKD61工具鋼表面粗糙度改善、材料改質層微結構分析及磨潤性能之研究
Surface Roughness Improvement by Using CW-Style Laser Polishing Techniques and the Microstructural and Tribological Studies of the Worked Zone of the SKD61 Tool Steel
指導教授: 林仁輝
Lin, Jen-Fin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 138
中文關鍵詞: 雷射拋光SKD61表面粗糙度空間傅立葉材料承壓比熱影響區
外文關鍵詞: laser polishing, SKD61, surface roughness, bearing ratio
相關次數: 點閱:131下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文之研究以連續式雷射拋光技術運用於SKD61工具鋼表面粗糙度改善。
    本研究將討論影響雷射拋光實驗之相關參數(離焦量、雷射能量、掃描速度及雷射間距)對SKD61試件拋光後表面粗糙度之影響。以田口實驗方法、全因子方法及一次一因子法等方法,找出最佳之實驗參數組合。此外,藉由空間傅立葉分析及材料承壓比分析進一步分析拋光後表面形貌。
    由於本研究使用之SKD61工具鋼主要用於製作模具,材料的改質會影響材料之特性,因此利用奈米壓痕機、往復式磨耗試驗機比較拋光前後材料特性之改變。為了解材料微結構組織改變,以X光繞射儀、背向散射電子繞射儀判別拋光前後晶相之變化。
    根據拋光實驗之結果,試件表面粗糙度可由0.297μm降至0.132μm,改善幅度達56%;施予適當的雷射能量及掃描速度,可有效降低原材的振幅。拋光後之金屬分為三個區域,熔融區(Melt zone)、熱影響區(Heat affected zone)及基底材料(Base material)。熔融區及熱影響區皆會隨著雷射能量密度之增加而增加。拋光後之材料表面硬度及楊氏模數會有些微的下降。雷射能量的增加會造成磨耗率增加,但拋光後的表面磨耗率皆較拋光後之磨耗率下降。
    兩道次雷射拋光並無法有效降低表面粗糙度,但可以提升表面平坦度。兩道次雷射拋光會造成楊氏模數下降,但對材料表面沒有明顯的改變。

    In the present study, the surface polishing of SKD61 tool steel specimens was carried out on a fiber laser system, The laser operating conditions for all specimens were designed in three stages to define the workable realm of energy density step by step and minimize the mean areal surface roughness (Sa) as small as possible. The experiments of three stages includes Taghchi method, all factors experiments and one factor at a time method. And four adjusted parameters of laser polishing are the focal offset, laser power, scanning velocity and hatch distance. By measuring the surface roughness, the spatial Fourier analysis and material bearing ratio, the optimization of process parameters of large area polishing can be found. And the microstructure of the worked zone also be study realize the influence of laser polishing.

    目錄 摘要 I Extended Abstract III 致謝 VI 目錄 VIII 圖目錄 XIII 表目錄 XVIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 1-3 文獻回顧 2 1-4 研究架構 6 第二章 理論分析 7 2-1 雷射理論 7 2-1-1 雷射產生機制 7 2-1-2 光纖雷射 9 2-1-3 雷射輸出模式 10 2-1-4 雷射與材料間的交互作用 11 2-1-5 雷射拋光機制 12 2-1-6 雷射加工參數 13 2-2 表面分析之理論 14 2-2-1 表面組織之定義 14 2-2-2 表面粗糙度及其量測 15 2-2-3 材料承壓比分析 17 2-2-4 空間傅立葉分析 18 2-3 材料微結構組織分析之理論 19 2-3-1 奈米壓痕試驗理論 19 2-3-2 磨耗理論 22 2-3-3 金屬熱處理 23 2-4 田口實驗設計法 25 2-4-1 田口方法簡介 25 2-4-2 品質 25 2-4-3 穩健參數設計法(Robust Parameter Design) 26 2-4-4 品質損失函數(Quality Loss Function) 27 2-4-4-1望目特性 27 2-4-4-2望小特性 28 2-4-4-3望大特性 28 2-4-4-4不對稱望目特性 28 2-4-5 直交表 28 2-4-6 信號雜訊比(Signal Noise ratio) 29 2-4-6-1望目特性第一型SN比 30 2-4-6-2望目特性第二型SN比 30 2-4-6-3望目特性第三型SN比 31 2-4-6-4望小特性的SN比 31 2-4-6-5望大特性的SN比 31 2-4-7 因子貢獻度 32 第三章 實驗規劃 41 3-1 實驗方法 41 3-2 試件選擇及製備 42 3-3 實驗設備與流程 42 3-3-1 雷射拋光實驗 43 3-3-1-1摻鐿光纖雷射(Ytterbium-Doped Fiber Laser) 43 3-3-1-2拋光流程 44 3-3-2 表面粗糙度量測 44 3-3-2-1三維表面形貌量測儀 44 3-3-2-2量測流程 44 3-3-3 硬度及楊氏模數量測 45 3-3-3-1奈米壓痕試驗機(Nano Indenter) 45 3-3-3-2奈米壓痕試驗機操作流程 46 3-3-4 顯微組織觀察與分析 47 3-3-4-1金相試片製備 47 3-3-4-2 X光繞射儀分析(XRD) 49 3-3-4-3掃描式電子顯微鏡(SEM) 49 3-3-4-4背向散射電子繞射分析 (EBSD) 50 3-4 磨耗試驗 51 3-4-1 磨耗試驗機 51 3-4-2 磨擦係數與體積磨耗率 51 第四章 結果與討論 66 4-1 雷射拋光實驗 66 4-1-1 第一階段-田口實驗設計 66 4-1-1-1 S/N比 67 4-1-1-2因子的效應 67 4-1-2 第二階段-全因子實驗 67 4-1-3 第三階段-一次一因子法 68 4-1-4 雷射光斑計算 68 4-2 表面結果之分析 69 4-2-1 表面粗糙度量測結果之分析 69 4-2-2 空間傅立葉分析 70 4-2-3 材料承壓比分析 71 4-3 微結構分析 72 4-3-1 金相組織觀察 72 4-3-1-1 XRD繞射分析 73 4-3-1-2背向散射電子繞射分析 (EBSD) 74 4-3-2 硬度與楊氏模數分析 74 4-3-3 磨耗性質分析 75 4-4 兩道次拋光實驗 76 4-4-1 表面粗糙度結果分析 77 4-4-2 空間傅立葉分析 77 4-4-3 材料承壓比分析 77 4-4-4 硬度及楊氏模數分析 78 4-5 不同原始表面之拋光比較 78 第五章 結論與未來展望 130 5-1 結論 130 5-2 未來展望 132 參考文獻 133

    1. Hupert, M. L., Guy, W. J., Llopis, S. D., Shadpour, H., Rani, S., Nikitopoulos, D. E., & Soper, S. A.,“Evaluation of micromilled metal mold masters for the replication of microchip electrophoresis devices,” Microfluidics and Nanofluidics 3.1,pp. 1-11, 2007.

    2. Supriadi, S., Baek, E. R., Choi, C. J., & Lee, B. T., “Binder system for STS 316 nanopowder feedstocks in micro-metal injection molding”, Journal of Materials Processing Technology187, pp. 270-273, 2007.

    3. Gietzelt, T., Jacobi, O., Piotter, V., Ruprecht, R., & Hausselt, J., “Development of a Micro Annular Gear Pump by Micro Powder Injection Molding, ”Journal of Materials Science 39, pp.2113-2119,2004.

    4. Tay, B. Y., Liu, L., Loh, N. H., Tor, S. B., Murakoshi, Y., “Surface roughness of microstructured component fabricated by μMIM,” Materials Science and Engineering: A,396.1, pp.311-319, 2005.

    5. Liu, L., Loh, N. H., Tay, B. Y., Tor, S. B., Murakoshi, Y., & Maeda, R., “Effects of thermal debinding on surface roughness in micro powder injection molding,” Materials Letters 61.3,pp. 809-812, 2007

    6. Bol’shepaev, O. Y., & Katomin, N. N., “Laser polishing of glass articles, ”Glass and ceramics 54.5-6, pp.141-142, 1997.

    7. Richmann, A., Willenborg, E., & Wissenbach, K., “Laser polishing of fused silica,” In: Optical Fabrication and Testing. Optical Society of America, p. OTuC2, 2010.

    8. Udrea, M., Orun, H., & Alacakir, A.,“ Laser polishing of optical fiber end surface, ” Optical Engineering 40.9, pp.2026-2030, 2001.

    9. Shao, T. M., Hua, M., Tam, H. Y., & Cheung, E. H., “ An approach to modelling of laser polishing of metals. ”Surface and Coatings Technology 197.1,pp.77-84, 2005.

    10. Pimenov, S. M., Kononenko, V. V., Ralchenko, V. G., Konov, V. I., Gloor, S., Lüthy, W. & Khomich, A. V., “Laser polishing of diamond plates, ” Applied Physics A, 69.1,pp. 1-88, 1999.

    11. Erdemir, A. M. G. R. A., Halter, M., Fenske, G. R., Krauss, A., Gruen, D. M., Pimenov, S. M., & Konov, V. I.,“Durability and tribological performance of smooth diamond films produced by Ar-C 60 microwave plasmas and by laser polishing,” Surface and Coatings Technology 94,pp.537-542, 1997.

    12. Shafeev, G. A., Pimenov, S. M., & Loubnin, E. N. “Laser-assisted selective metallisation of diamonds by electroless Ni and Cu plating,” Applied surface science 86.1, pp.392-397, 1995.

    13. Hogmark, S. P. A. P., Hollman, P., Alahelisten, A., & Hedenqvist, P. , “Direct current bias applied to hot flame diamond deposition produces smooth low friction coatings, ” Wear 200.1,pp. 225-232, 1996.

    14. Willenborg, E. “Laserpolieren von werkzeugstählen,” PhD Thesis. Dissertation RWTH Aachen University, Shaker, Aachen, 2005.

    15. Ostholt, R., Willenborg, E., & Wissenbach, K, “Laser polishing of freeform surfaces,” In: Proceedings of the 5th Int. WLT-Conference on Lasers in Manufacturing, pp. 397-402,2009.

    16. Hua, M., Shao, T. M., & Tam, H. Y., “Surface modification of DF-2 tool steel under the scan of a YAG laser in continuously moving mode, ” Journal of Materials Processing Technology209.10,
    pp. 4689-4697, 2009.

    17. Ramos-Grez, J. A., & Bourell, D. L., “Reducing surface roughness of metallic freeform-fabricated parts using non-tactile finishing methods,”International Journal of Materials and Product Technology 21.4, pp. 297-316, 2004.

    18. Lamikiz, A., Sánchez, J. A., López de Lacalle, L. N., Del Pozo, D., & Etayo, J. M., “Surface roughness improvement using laser-polishing techniques. ” In: Materials Science Forum, pp. 217-222, 2006.

    19. Lamikiz, A., Sanchez, J. A., de Lacalle, L. L., & Arana, J. L., “Laser polishing of parts built up by selective laser sintering, ” International Journal of Machine Tools and Manufacture, Vol. 47, pp. 2040-2050, 2007.

    20. Wang, H. Y., Bourell, D. L., & Beaman Jr, J. J., “Laser polishing of silica slotted rods.” Materials Science and Technology 19.3, pp. 382-387, 2003.

    21. Perry, T. L., Werschmoeller, D., Li, X., Pfefferkorn, F. E., & Duffie, N. A., “The effect of laser pulse duration and feed rate on pulsed laser polishing of microfabricated nickel samples, ” Journal of Manufacturing Science and Engineering 131.3, pp. 031002, 2009.

    22. Nüsser, C., Wehrmann, I., & Willenborg, E., “Influence of intensity distribution and pulse duration on laser micro polishing,” Physics Procedia 12, pp.462-471, 2011.

    23. Hua, M., Shao, T., Hong, Y. T., & Man, E. C. H., “Influence of pulse duration on the surface morphology of ASSAB DF-2 (AISI-01) cold work steel treated by YAG laser, ” Surface and Coatings Technology 185.2, pp.127-136, 2004.

    24. Vadali, M., Ma, C., Duffie, N. A., Li, X., & Pfefferkorn, F. E., “Effects of Pulse Duration on Laser Micro Polishing,” Journal of Micro and Nano-Manufacturing 1.1, pp.011006, 2013.

    25. Pfefferkorn, F. E., Duffie, N. A., Li, X., Vadali, M., & Ma, C., “Improving surface finish in pulsed laser micro polishing using thermocapillary flow,” CIRP Annals-Manufacturing Technology 62.1,pp. 203-206, 2013.

    26. Chow, M., Bordatchev, E. V., & Knopf, G. K., “Impact of initial surface parameters on the final quality of laser micro-polished surfaces,” In: SPIE MOEMS-MEMS. International Society for Optics and Photonics, pp. 824809-824809-10, 2012.

    27. Hafiz, A. M. K., Bordatchev, E. V., & Tutunea-Fatan, R. O., “Influence of overlap between the laser beam tracks on surface quality in laser polishing of AISI H13 tool steel,” Journal of Manufacturing Processes 14.4,pp. 25-434, 2012.

    28. Perry, T. L., Werschmoeller, D., Li, X., Pfefferkorn, F. E., & Duffie, N. A., “Pulsed laser polishing of micro-milled Ti6Al4V samples,” Journal of Manufacturing Processes 11.2, pp. 74-81, 2009.

    29. Guo, W., Hua, M., Tse, P. W. T., & Mok, A. C. K., “Process parameters selection for laser polishing DF2 (AISI O1) by Nd: YAG pulsed laser using orthogonal design,” The International Journal of Advanced Manufacturing Technology 59.9-12, pp.1009-1023, 2012.

    30. Bustillo, A., Ukar, E., Rodriguez, J. J., & Lamikiz, A., “Modelling of process parameters in laser polishing of steel components using ensembles of regression trees,” International Journal of Computer Integrated Manufacturing 24.8, pp. 735-747, 2011.

    31. Nüsser, C., Sändker, H., & Willenborg, E., “Pulsed laser micro polishing of metals using dual-beam technology,” Physics Procedia 41, pp. 346-355, 2013.

    32. Poprawe, R., & Schulz, W., “Development and application of new high-power laser beam sources,” Riken Review, pp.3-10, 2003.

    33. Pendleton, W. E., “Scanning tunneling microscopy of nickel surface features before and after rapid melting by excimer laser,” AMP Journal of Technology 3.4, pp.75-84, 1993.

    34. Tuckerman, D. B., & Weisberg, A. H., “Planarization of gold and aluminum thin films using a pulsed laser,” Electron Device Letters, IEEE 7.1, pp.1-4, 1986.
    35. Marella, P. F., Tuckerman, D. B., & Pease, R. F., “Modeling of laser planarization of thin metal films,” Applied Physics Letters 54.12, pp. 1109-1111, 1989.

    36. Vadali, M., Ma, C., Duffie, N. A., Li, X., & Pfefferkorn, F. E., “Pulsed laser micro polishing: Surface prediction model,” Journal of Manufacturing Processes 14.3, pp.307-315, 2012.

    37. Beiser, A., & Mark, E. C. D., “Concepts of Modern physics,” Tata McGraw-Hill Education, 2003.

    38. 翁俊仁,"高功率光纖雷射介紹”,儀科中心簡訊,pp. 10-11,2007.
    39. 張國順,現代雷射製造技術, 新文京開發, 2008.

    40. Ramos, J. A., Murphy, J., Wood, K., Bourell, D. L., & Beaman, J. J., “Surface roughness enhancement of indirect-SLS metal parts by laser surface polishing,” In: Proceedings of the 12th Solid Freeform Fabrication Symposium, pp. 28-38, 2001.

    41. 陳亮嘉,表面粗度量測與技術, 2012

    42. ISO 13565-2:1997 Geometrical Product Specification (GPS) – Surface texture: profile method; surfaces having stratified functional properties – Part 2: Height characterization using the linear material ratio curve

    43. Oliver, W. C., & Pharr, G. M., “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” Journal of Materials Research 19.01, pp.3-20, 2004.

    44. 黃得晉、洪炎星,金屬二次加工技術roadmap-鑄造、熱處理,2005.

    45. 李輝煌,田口方法品質設計的原理與實務,2008
    46. Enrico Ciulli, Giovanni Pugliese, Analysis of surface roughness and models of mechanical contacts,2004

    47. Borghi, R., and M. Santarsiero. “M2 factor of Bessel Gauss beams,” Optics Letters 22.5, pp. 262-264, 1997.

    48. Bandres, M. A., & Gutiérrez-Vega, J. “Ince gaussian beams,” Optics Letters 29.2, pp.144-146 , 2004.

    下載圖示 校內:2020-07-29公開
    校外:2020-07-29公開
    QR CODE