簡易檢索 / 詳目顯示

研究生: 方惠寬
Fang, Hui-Kuan
論文名稱: 電離層與太空電漿實驗腔內之離子診測研究
Ion Measurements of Ionosphere Plasma in Space Plasma Operation Chamber
指導教授: 陳秋榮
Cheng, Chio-Zong
共同指導教授: 小山孝一郎
Oyama, Koh-ichiro
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 138
中文關鍵詞: 電離層阻滯電位分析儀蘭摩爾探針太空電漿實驗腔
外文關鍵詞: Ionosphere, Retarding Potential Analyzer, Langmuir Probe, Space Plasma Operation Chamber
相關次數: 點閱:147下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 安裝於衛星與探空火箭上之阻滯電位分析儀為全世界太空任務中,執行電離層離子現地量測的主要科學酬載,由於此儀器與蘭摩爾探針均屬於靜電場式粒子偵測器,因此,與蘭摩爾探針相同,儀器的電極污染為量測誤差的主要原因之一。電極上的污染層在儀器量測的過程中形成額外的電阻與電容,此電阻與電容會造成兩種效應:阻抗變化與電荷累積效應,這兩種效應會改變儀器之電壓—電流量測曲線並造成誤差。在蘭摩爾探針的量測上,我們可藉由改變電壓掃描頻率以降低阻抗變化效應,然而,由於儀器結構的緣故,阻滯電位分析儀電極污染造成的電荷累積效應遠大於阻抗變化效應,此電荷累積效應會直接造成量測離子流速與離子溫度的改變,當阻滯電位分析儀應用於探空火箭上時,由於火箭飛行速度較衛星低(約每秒1至2公里),且在火箭量測高度(100至300km)範圍內之離子溫度可低達200至300K,此時電極污染效應會對離子溫度與流速量測造成顯著的影響。在本篇論文中我以理論模擬與太空電漿實驗腔(SPOC)實驗的方式,討論阻滯電位分析儀的電極污染效應,並提出解決的方法與可應用於探空火箭之無電極污染阻滯電位分析儀系統。

    太空電漿實驗腔(SPOC)為一可模擬地球電離層環境之真空實驗腔,腔體長3公尺、直徑2公尺,腔體內安裝了兩組逆擴散式電漿源以產生電離層電漿,本篇論文將介紹SPOC的設計細節、功能與使用無電極污染阻滯電位分析儀及蘭摩爾探針量測的實驗結果,包含離子與電子之能量分佈函數與空間分佈。當背景中性氣體密度約為1012 cm-3時,SPOC可產生的電漿密度範圍為103 至106 cm-3,電子的能量分佈函數為馬克士威分佈,溫度為1000至3000K,SPOC產生離子的能量分佈函數,由溫度接近中性氣體溫度(室溫)的馬克士威函數與高能離子流組成。SPOC未來可廣泛應用於太空電漿實驗、衛星與火箭之科學酬載校正與飛行系統環境測試。

    In situ ion measurements in the ionosphere are mostly done with retarding potential analyzers (RPA) onboard satellites and sounding rockets. However, like most of the electrostatic analyzers such as Langmuir probes, the electrode contamination can be a serious problem for the RPA measurement. The contamination layer acts as extra capacitance and resistance and leads to distortion in the measured I-V curve, which leads to erroneous measurement results. There are two main effects of the contamination layer: one is the impedance effect and the other is the charge attachment and accumulation due to the capacitance of the contamination layer. The impedance effect can be reduced or eliminated by choosing the proper sweeping frequency. However, for RPA the charge accumulation effect becomes serious because the capacitance of the contamination layer is much larger than that of the Langmuir probe of similar dimension. This effect causes the measured ion drift velocity (ion temperature) to be higher (lower) than the actual values. The error caused by the RPA electrode contamination is expected to be significant for sounding rocket measurements with low rocket velocity (1~ 2 km/s) and low ion temperature of 200-300K in the height range of 100-300 km. In this thesis I discussed the effects associated with the RPA contaminated electrodes based on theoretical analysis and experiments performed in the space plasma operation chamber (SPOC). The development of a contamination-free RPA for sounding rocket missions is presented.

    SPOC is a research plasma device designed to produce plasmas similar to those in the ionosphere. It is a cylindrical chamber of 2 meters in diameter and 3 meters in length. The SPOC plasma is produced by two back-diffusion type plasma sources. In this thesis the SPOC machine details and its capabilities on plasma experiments and space environmental tests are described. The spatial and energy distributions of ions and electrons in SPOC measured by contamination-free RPA and Langmuir probe systems are presented. The plasma density in SPOC and be varied from 103 to 106 cm-3, and the neutral density is ~1012 cm-3. Electrons have Maxwellian distribution with temperature of 1000-3000K. The ion distribution has two components: one is a drift-Maxwellian component with temperature close to the neutral particle temperature (room temperature), and another is a small ion beam component. SPOC can be used for studying space plasma processes and for the calibration and test of satellite/rocket-borne instruments.

    摘要 I Abstract II 誌謝(Acknowledgement) IV 目錄 VI 表目錄 VII 圖目錄 VIII Chapter 1 Introduction 1 Chapter 2 Retarding Potential Analyzer Theory of Operation 11 2.1 Current-Voltage Characteristics of Langmuir Probe 12 2.2 Current-Voltage Characteristics of Retarding Potential Analyzer 22 2.3 Measurement of Energy Distribution Functions 28 2.4 Possible Sources of Measurement Error 33 Chapter 3 Electrode Contamination Effects 36 3.1 Microscopic View of Electrode Contamination 37 3.2 Macroscopic View of Electrode Contamination 43 3.3 Laboratory Experimental Setup and Results 59 3.4 Means to Remove Contaminants 73 3.5 Contamination-free RPA Design for Rocket Missions 75 Chapter 4 Plasma Properties in the Space Plasma Operation Chamber (SPOC) 83 4.1 SPOC Device 83 4.2 Back-diffusion Type Plasma Source 90 4.3 Plasma Productions and Confinement in SPOC 95 4.4 Ion Characteristics of Back-Diffusion Plasma Source 101 4.5 Potential Distribution and Electrons in SPOC 112 Chapter 5 Summary and Conclusion 123 References 126

    Abe, T., K. I. Oyama, H. Amemiya, S. Watanabe, T. Okuzawa, and K. Schlegel (1990), “Measurements of temperature and velocity distribution of thermal electrons by the Akebono (EXOS-D) satellite,” J. Geomag. Geoelectr. 42, No. 4, 537-554
    Abe, T., J. Kurihara, N. Iwagami, S. Nozawa, Y. Ogawa, R. Fujii, H. Hayakawa, and K.-I. Oyama (2006), “Dynamics and Energetics of the Lower Thermosphere in Aurora (DELTA)-Japanese sounding rocket campaign,” Earth Planets Space 58(9), 1165-1171
    Abe, T., and K. -I. Oyama (2013), “Langmuir probe,” An introduction to Space Instrumentation, edited by K. -I. Oyama and C. Z. Cheng (Terra, Pub. 2013), p. 63-75.
    Allen, J. E. (1992), “Probe theory-the orbital motion approach,” Physica Scripta, 45(5), 497
    Amatucci, W. E., P. W. Schuck, D. N. Walker, P. M. Kintner, S. Powell, B. Holback, and D. Leonhardt (2001), “Contamination-free sounding rocket Langmuir probe,” Review of Scientific Instruments, 72(4), 2052-2057
    Appleton, E. V., and M. A. F. Barnett (1925), “Local Reflection of Wireless Waves from the Upper Atmosphere,” Nature 115 (2888)
    Bankov, L., R. Heelis, M. Parrot, J.-J. Berthelier, P. Marinov, and A. Vassileva (2009), “WN4 effect on longitudinal distribution of different ion species in the topside ionosphere at low latitudes by means of DEMETER, DMSP-F13 and DMSP-F15 data,” Ann. Geophys., 27, 2893-2902
    Bauer, S. J., and A. F. Nagy (1975), “Ionospheric direct measurement techniques,” Proc. IEEE 63, 1
    Bibl, K. (1998), “Evolution of the ionosonde,” ANNALI DI GEOFISICA, Vol. 41, N. 5-6, 667-680
    Bilitza, D., D. Altadill, Y. Zhang, C. Mertens, V. Truhlik, P. Richards, L. A. McKinnell, and B. Reinisch (2014), “The International Reference Ionosphere 2012 - a model of international collaboration,” J. Space Weather Space Clim. 4, A07
    Binnig, G., C. F. Quate, and C. Gerber (1986) “Atomic force microscope,” Physical review letters, 56(9), 930
    Blanc, M., and A. Richmond (1980), “The ionospheric disturbance dynamo,” J. Geophys. Res., 85(A4), 1669-1686
    Boyd, R. L. F., and N. D. Twiddy (1958), “Electron energy distributions in plasmas. I”, Proc. R. Soc., A250, 53-69
    Brace, L. H., R. F. Theis, and A. Dalgarno (1973), “The cylindrical electrostatic probes for Atmosphere Explorer‐C,‐D, and‐E,” Radio Science 8, 341-348
    Breit, G., and M. A. Tuve (1926), “A Test of the Existence of the Conducting Layer,” Phys. Rev, vol. 28, p. 554
    Buchholtz, B. W. and P. J. Wilbur (1993), “An investigation of conducted and radiated emissions from a hollow-cathode plasma contactor - Annual Report, 1 Jan. 1992 - 1 Jan. 1993,” NASA CR-I91172
    Carruth, M. R. (1991), “Arcing Action Item Responses,” Minutes of the Space Station Electrical Grounding Tiger Team Mtg., Rocketdyne,Cleveland,OH,Sept.12-13
    Carruth, M. R., Jr., J. A. Vaughn, R. T. Bechtel, and P. A. Gray (1993), “Experimental Studies on Spacecraft Arcing,” Journal of Spacecraft and Rockets, vol. 30, no. 3, May-June, pp. 323-327
    Chao, C. K., and S.-Y. Su (1999), “On accuracy of RPA measurements of ion fluxes,” Adv. Space Res., 23, 8, 1537-1540
    Chao, C. K., and S.-Y. Su (2000), “Charged particle motion inside the retarding potential analyzer,” Phys. Plasmas, 7, 101
    Chao, C. K., S. Y. Su, and H. C. Yeh (2003), “Grid effects on the derived ion temperature and ram velocity from the simulated results of the retarding potential analyzer data,” Advances in Space Research, 32(11), 2361-2366
    Chao, C. K., Y. H. Chu, C. L. Su, and S. Minami (2012), “In-situ measurement of ionospheric E-region plasma irregularities over Taiwan,” Terrestrial, Atmospheric & Oceanic Sciences, 23(3)
    Chen, F. F. (1984), Introduction to Plasma Physics and Controlled Fusion, 2nd Ed., Plenum Press
    Chen, H. M. (2010), Langmuir Probe System for Sounding Rocket Experiment, M.S. thesis, Institute of Space, Astrophysical and Plasma Sciences (ISAPS), National Cheng Kung University
    Chen, P.-R. (1992), Two-day oscillation of the equatorial ionization anomaly, J. Geophys. Res., 97(A5), 6343-6357
    Chen, W. H. (2014), Measurement of Electron Distribution Function in Space Plasma Operation Chamber, M.S. thesis, Institute of Space, Astrophysical and Plasma Sciences (ISAPS), National Cheng Kung University
    Cheng, C. Z. F., Y. H. Kuo, R. A. Anthes, and L. Wu (2006), “Satellite constellation monitors global and space weather,” Eos, Transactions American Geophysical Union, 87(17), 166-166.
    Cooke, D. L., C. W. Turnbull, C. Roth, A. Morgan, and R. Redus (2003), “Ion drift-meter status and calibration,” First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies (pp. 212-219). Springer Berlin Heidelberg
    Cowley, B., and S. Dietrich (2009), “A Langmuir probe system incorporating the Boyd-Twiddy method for EEDF measurement applied to an inductively coupled plasma source”, Plasma Sources Sci. Technol. 18, 014010
    Donley, J. L. (1963), “Experimental evidence for a low ion-transition altitude in the upper nighttime ionosphere,” J. Geopys. Res., 68, 2058-2060
    Dryvesteyn, M. J. (1930), “Der Niedervolt Bogen”, Z. Physik, 64, 781-798
    Fang, H. K. (2011), Development of an Ion Energy Analyzer For Ionosphere Studies, M.S. thesis, Physics Department, National Cheng Kung University
    Fang, H. K., K. I. Oyama, and C. Z. Cheng (2014), “Electrode contamination effects of retarding potential analyzer,” Review of Scientific Instruments, 85(1), 015104.
    Fejer, B. G., and M. C. Kelley (1980), “Ionosphere irregularities,” Rev. Geophys. Space Phys., 18, 401-454
    Felder, M. C., B.L. Sater, P. E. Paulsen, D. Thompson, and R. Olsafsky (1993), “Results of Testing conducted in Tank 5 for Interactions Between Space Station Freedom and Plasma,” PIR#268, NASA LeRC, Jan. 22,1993.
    Ferguson, D.C. (1986), “The Voltage Threshold for Arcing for Solar Cells in LEO - Flight and Ground Test Results,” NASA TM-87259.
    Ferguson, D. C. (1996), “The role of space plasma simulation chambers in spacecraft design and testing,” Energy Conversion Engineering Conference, 1996, Proceedings of the 31st Intersociety (Vol. 4, pp. 2188-2192)
    Gauss, C. F. (1839), “Allgemeine Theorie des Erdmagnetismus,” Resultate aus den Beobachtungen des Magnetischen Vereins im Jahre 1838, 1-52
    Gekelman, W., H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs (1991), “Design, construction, and properties of the large plasma research device- The LAPD at UCLA,” Review of scientific instruments, 62(12), 2875-2883
    Gill, E., P. Sundaramoorthy, J. Bouwmeester, B. Zandbergen, and R. Reinhard (2013), “Formation flying within a constellation of nano-satellites: The QB50 mission,” Acta Astronautica, 82(1), 110-117
    Godyak, V. A., R. B. Piejak and B. M. Alexandrovich (1992), “Measurement of electron energy distribution in low-pressure RF discharges,” Plasma Sources Sci. Technol. 1, 36
    Goncharenko, L. P., A. J. Coster, J. L. Chau, and C. E. Valladares (2010), “Impact of sudden stratospheric warmings on equatorial ionization anomaly,” J. Geophys. Res., 115, A00G07
    Gordon, W. E. (1958), “Incoherent scattering of radio waves by free electrons with application to space exploration by radar,” Proc. TRE 46, 1824
    Grier, N.T. (1980), “Experimental Results on Plasma Interactions with Large Surfaces at High Voltages,” NASA TM- 81423.
    Hagen, J. B., and R. A. Behnke (1976), “Detection of the electron component of the spectrum in incoherent scatter of radio waves by the ionosphere,” J. Geophys. Res. 81, 3441
    Hanson, W. B., and D. D. Mckibbin (1961), “An ion-trap measurement of the ion concentration profile above the F2 peak,” J. Geopys. Res., 66, 1667-1671
    Hanson, W. B., S. Sanatani, D. Zuccaro, and T. W. Flowerday (1970), “Plasma measurements with the retarding potential analyzer on Ogo 6,” J. Geophys. Res., 75(28), 5483-5501
    Hanson, W. B., D. R. Zuccaro, C. R. Lippincott, and S. Sanatani (1973), “The retarding-potential analyzer on Atmosphere Explorer,” Radio Science, 8, 4, 333-339
    Hanson, W. B., W. R. Coley, and R. A. Heelis (1993), “A Comparison of in situ measurements of E and VxB from Dynamics Explorer 2,” J. Geophys. Res., 98, 21501-21516
    Hastings, D. E. (1995), “A review of plasma interactions with spacecraft in low Earth orbit,” Journal of Geophysical Research: Space Physics (1978-2012), 100(A8), 14457-14483.
    Heaviside, O. (1902), “Theory of Electric Telegraphy,” Encyclopedia Britannica, 10th Edition, Vol. 33, London, 215
    Heelis, R. A., W. B. Hanson, C. R. Lippincott, D. R. Zuccaro, L. H. Harmon, B. J. Holt, J. E. Doherty, and R. A. Power (1981), “The ion drift meter for Dynamics Explorer-B,” Space Science Instrumentation, 5, 511-521
    Heelis, R. A., and W. B. Hanson (1998), “Measurements of thermal ion drift velocity and temperature using planar sensors,” Measurement techniques in space plasmas: particles, 61-71
    Heidt, H., J. Puig-Suari, A. Moore, S. Nakasuka, and R. Twiggs, (2000), “CubeSat: A new generation of picosatellite for education and industry low-cost space experimentation,” 14th Annual AIAA/USU Conference on Small Satellites
    Hinteregger, H. E., K. R. Damon, and L. A. Hall (1959), “Analysis of photoelectrons from solar extreme ultraviolet,” J. Geophys. Res. 64, 961-969
    Holback, B., Å. Jacksén, L. Åhlén, S. -E. Jansson, A. I. Eriksson, J. -E. Wahlund, T. Carozzi, and J. Bergman (2001), “LINDA - the Astrid-2 Langmuir probe instrument,” Ann. Geophys. 19, 601-610
    Hsieh, T. Y. (2011), Development of Impedance Probe System for Electron Density Measurement in Ionosphere, M.S. thesis, Institute of Space, Astrophysical and Plasma Sciences (ISAPS), National Cheng Kung University
    Hsu, Y. W. (2014), Development of TeNeP Instrument for Nanosatellites, M.S. thesis, Institute of Space, Astrophysical and Plasma Sciences (ISAPS), National Cheng Kung University
    Huang, C. T. (2011), Development of Electron Temperature Probe, M.S. thesis, Institute of Space, Astrophysical and Plasma Sciences (ISAPS), National Cheng Kung University
    Hutchinson, I. H. (1987), Principles of Plasma Diagnostics, Cambridge University Press
    Inouye, G.T. (1977), “Spacecraft Charging Anomalies on the DSCS I, Launch 2 Satellites,” NASA TM X-73537, pp. 829-852.
    Itikawa, Y., m. Hayashi, A. Ichimura, K. Onda, K. Sakimoto, and K. Takayanagi (1986), “Cross Sections for Collisions of Electrons and Photons with Nitrogen Molecules,” J. Phys. Chem. Ref. Data, 15, 3
    Itikawa, Y. (2006), “Cross Sections for Electron Collisions with Nitrogen Molecules”, J. Phys. Chem. Ref. Data, 35, 1
    Itikawa, Y. (2009), “Cross Sections for Electron Collisions with Oxygen Molecules”, J. Phys. Chem. Ref. Data, 38, 1
    Jiang, G. S. (2014), Satellite Simulation Experiment for Electron Temperature and Density Probe (TeNeP), M.S. thesis, Institute of Space, Astrophysical and Plasma Sciences (ISAPS), National Cheng Kung University
    Kawai, Y., and H. Ikegami (1970), “Control of ion-energy distribution in a back-diffusion type plasma,” Physics Letters A, 32(5), 318-319
    Kelley, M. C. (2009), The Earth's Ionosphere: Plasma Physics & Electrodynamics, 2nd Ed. Academic Press
    Kennelly, A. E. (1902), “On the Elevation of the Electrically-Conducting Strata of the Earth's Atmosphere,” Electrical World and Engineer, Vol. 39, p. 473
    Klenzing, J. H., G. D. Earle, and R. A. Heelis (2008), “Errors in ram velocity and temperature measurements inferred from satellite-borne retarding potential analyzers”, Physics of Plasmas, 15, 062905
    Klenzing, J. H., G. D. Earle, R. A. Heelis, W. R. Coley (2009), “A statistical analysis of systematic errors in temperature and ram velocity estimates from satellite-borne retarding potential analyzers”, Physics of Plasmas, 16, 052901
    Knudsen, W. C. (1966), “Evaluation and demonstration of the use of retarding potential analyzers for measuring several ionospheric quantities,” J. Geophys. Res., 71, 19, 4669-4678
    Krehbiel, J. P., L. H. Brace, R. F. Theis, J. R. Cutler, W. H. Pinkus, and R. B. Kaplan (1980), “Pioneer Venus Orbiter Electron Temperature Probe,” IEEE Trans. Geosci. Remote Sens. GE-18, No. 1, 49-54
    Krehbiel, J. P., L. H. Brace, R. F. Theis, W. H. Pinkus, and R. B. Kaplan (1981), “The Dynamics Explorer Langmuir probe instrument,” Space Science Instrumentation 5, 493-502
    Langmuir, I., and H. Mott-Smith, Jr. (1924), “Studies of electric discharges in gas at low pressures,” Gen. Elec. Rev. 616, Sept
    Lebreton, J. -P., S. Stverak, P. Travnicek, M. Maksimovic, D. Klinge, S. Merikallio, D. Lagoutte, B. Poirier, P.-L. Blelly, Z. Kozacek, and M. Salaquarda (2006), “The ISL Langmuir probe experiment processing onboard DEMETER: Scientific objectives, description and first results,” Planetary and Space Science 54, 5
    Lee, C. H. (2012), Development of Langmuir Probe for measuring electron energy distribution function, M.S. thesis, Institute of Space, Astrophysical and Plasma Sciences (ISAPS), National Cheng Kung University
    Leung, P. (1985), “Characterization of EMI Generated by the Discharge of a ‘VOLT’ Solar Array,” Final Report JPL D-2644
    Lin, C. H., J. Y. Liu, T. W. Fang, P. Y. Chang, H. F. Tsai, C. H. Chen, and C. C. Hsiao (2007), “Motions of the equatorial ionization anomaly crests imaged by FORMOSAT-3/COSMIC,” Geophys. Res. Lett., 34, L19101
    Marconi, E. M. (2004), “What is a sounding rocket?” http://www.nasa.gov/missions/research/f_sounding.html
    Marconi, G. (1909), “Wireless Telegraphic Communication: Nobel Lecture, 11 December 1909.” Nobel Lectures. Physics 1901-1921. Amsterdam: Elsevier Publishing Company, 1967: 196-222. p. 206
    Meyer, G., and N. M. Amer (1990), “Simultaneous measurement of lateral and normal forces with an optical‐beam‐deflection atomic force microscope,” Applied physics letters, 57(20), 2089-2091
    Minami, S., and Y. Takeya (1982), “Ion temperature determination in the ionosphere by retarding potential analyzer aboard sounding rocket,” J. Geopys. Res., 87, 713-730
    Morikawa, K., Y. Kazoe, K. Mawatari, T. Tsukahara, and T. Kitamori (2012), “Development of dielectric constant measurement method for unique reaction in extended-nano space,” 14th international conference on miniaturized systems for chemistry and life sciences, Oct. 28 - Nov. 1, 2012, Okinawa, Japan
    Mott-Smith, H., Jr., and I. Langmuir (1926), “The Theory of Collectors in Gaseous Discharges,” Phys. Rev. 28, 727-763
    Nugent, R., R. Munakata, A. Chin, R. Coelho, and J. Puig-Suari, (2008), “The cubesat: The picosatellite standard for research and education,” Aerospace Engineering, 805, 756-5087
    Oyama, K. -I., and H. Kunio (1975), “Erroneous evaluation of electron and ion temperatures from a contaminated retarding potential trap,” Planet. Space Sci. 23, 1309-1312
    Oyama, K.-I. (1975), Characterestic of the contaminated Langmuir probe and countermoves for its application to the space observations, Ph.D. thesis, ISAS Report No. 525.
    Oyama, K. -I. (1976), “A systematic investigation of several phenomena associated with contaminated Langmuir probes,” Planetary and Space Science, 24(2), 183-190
    Oyama, K. -I., and K. Hirao (1976), “Inaccuracies in electron density estimates due to surface contamination of Langmuir probes”, Planet Space Sci., 24, 87-89
    Oyama, K., and K. Hirao (1976), “Application of a glass-sealed Langmuir probe to ionosphere study,” Rev. Sci. Instrum., 47(1), 101-107
    Oyama, K.-I., C. H. Lee, H. K. Fang, and C. Z. Cheng (2012), “Means to remove electrode contamination effect of Langmuir probe measurement in space,” Rev. Sci. Instrum. 83, 055113
    Parrot, M. (2002), “The micro-satellite DEMETER,” J. Geodynamics, 33, 535-541
    Pigache, D. R. (1973), “A laboratory simulation of the ionospheric plasma,” AIAA Journal, 11(2), 129-130
    Popov, T. K., M. Dimitrova, F. M. Dias, V. N. Tsaneva, N. A. Stelmashenko, M. G. Blamire, and Z. H. Barber (2006), “Second derivative Langmuir probe diagnostics of gas discharge plasma at intermediate pressures (review article),” Journal of Physics: Conference Series (Vol. 44, No. 1, p. 60)
    Purvis, C. K., H. B. Garret, A. C. Whittlesey, and N. J. Stevens (1984), “Design Guidelines for Assessing and Controlling Spacecraft Charging Effects,” NASA TP-2361
    Reifman, A. and W. G. Dow (1949), “Dynamic probe measurements in the ionosphere,” Phys. Rev. 76, 987-988
    Sagalyn, R., M. Smiddy, and J. Wisnia (1963), “Measurement and interpretation of ion density distributions in the daytime F region,” J. Geopys. Res., 68, 199-209
    Sagalyn, R., and R. H. Wand (1971), “Daytime rocket and thomson scatter studies of the lower ionosphere,” J. Geopys. Res., 76, 3783-3794
    Schlatter, T. W. (2009), “Atmospheric Composition and Vertical Structure,” National Oceanic and Atmospheric Administration (NOAA), Boulder, CO
    Schott, L. (1968), Plasma Diagnostics, edited by W. Lochte-Holtgreven (North-Holland, Amsterdam, 1968), Chap. 11
    Shimoyama. M, K.-I. Oyama, T. Abe, A. W. Yau (2012), “Suprathermal plasma analyzer for the measurement of low-energy electron distribution in the ionosphere”, J. Phys. D: Appl. Phys., 45, 075205
    Sinha, H. S. S., and S. Prakash (1987), Ind. J. Radio Space Phys. 16, 102-113
    Stevens, N. J. (1979),”Interactions Between Spacecraft and the Charged-Particle Environment,” NASA CP-2017, pp. 268-294
    Stone, N. H., and W. K. Rehmann (1970). “The simulation of ionospheric conditions for space vehicles,” NASA TN D-5894
    Szuszczewicz, E. P., and J. C. Holmes (1975), “Surface contamination of active electrodes in plasmas: Distortion of conventional Langmuir probe measurements,” Journal of Applied Physics, 46(12), 5134-5139
    Takayama, K., H. Ikegami, and S. Aihara (1967), Proc. 8th Intern. Conf. Phenomena in Ionized Gases, 552
    Thomson, J. J. (1897), “Cathode Rays,” Philosophical Magazine 44, 293-316
    Thomson, J. J. (1899), “On the Masses of the Ions in Gases at Low Pressures,” Philosophical Magazine 48, 547-567
    Toepfer, A. J. (1967), “Observations of a Resonance Probe Effect near the Ion Plasma Frequency,” Phys. Fluids 10, 1599
    Toorian, A., K. Diaz, and S. Lee (2008), “The cubesat approach to space access,” Aerospace Conference, 2008 IEEE (pp. 1-14)
    Tsong, T. T., and E. W. Müller (1964), “Measurement of the energy distribution in field ionization,” The Journal of Chemical Physics, 41(11), 3279-3284
    Vayner, B. V., D. C. Ferguson, D. B. Snyder, and C. V. Doreswamy (1996), “Electromagnetic Radiation Generated by Arcing in Low Density Plasma,” NASA TM-107217

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE