簡易檢索 / 詳目顯示

研究生: 連浩評
Lien, Hao-Pin
論文名稱: 變角度凸型百葉窗鰭片之三維熱液動性能分析及最佳化研究
3-D Thermal-Hydraulic and Optimization Analysis for a Variable Angle Convex-Louver Fin
指導教授: 張錦裕
Jang, Jiin-Yuh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 90
中文關鍵詞: 凸型百葉窗最佳化設計
外文關鍵詞: Convex-Louver fin, Optimization
相關次數: 點閱:59下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 波浪型鰭片(Wavy fin)主要利用平板型鰭片(Plain fin)折成波浪型鰭片增加流場擾動,提高熱傳效率。百葉窗型鰭片(Louver fin)則在鰭片上挖出百葉窗形狀之洞口,利用邊界層破壞原理使邊界層所產生的熱阻下降增加熱傳效果。凸型百葉窗型鰭片(Convex Louver fin)利用波浪型鰭片加工出百葉窗形狀,有增加熱傳面積和邊界層破壞之優點,其有絕佳熱傳能力。本文利用數值方法針對不同參數探討三維凸型百葉窗型熱交換器之熱流現象,研究參數包含百葉窗起始角度(θ_"initial" = 20°、24°)、百葉窗連續變角度(Δθ = 0°, 1° , 2°及3°)及百葉窗之定角度("θ" _"uniform" = 20°~ 28°),並在不同正向風速為1 ~ 12 m/s (以鰭片間距為特徵長度,〖"Re" 〗_"in" "=173~2076" )下進行數值運算,進而探討空氣進口速度(Vin)、百葉窗定角度(θ)與百葉窗連續變角度(Δθ)對熱傳性能之影響。此外,編寫Fortran程式將計算流體力學商用軟體與簡易共軛梯度法(Simplified Conjugate Gradient Method ,SCGM)結合,在固定進口風速(Vin)下,以熱交換器面積縮減率為目標函數,對凸型百葉型鰭片做最佳化分析。
    運用數值計算方法得知,在固定速度下百葉窗型鰭片與凸型百葉窗型鰭片皆有邊界層效應,但在凸型百葉窗鰭片下緣,有渦流產生,此渦流同時增加氣體熱傳率與摩擦。故發現發現熱傳因子j、壓降因子f,凸型百葉窗型鰭片皆大於百葉窗型鰭片。
    根據分析結果,發現熱傳因子j、壓降因子f與面積縮減率皆隨百葉窗角度增加而增大。當角度為20°上升至24°時,熱傳因子j、壓降因子f與面積縮減率(相較於板鰭片)上升16.8%、27.1%、11.8%,且角度為20°上升至28°時,熱傳因子j、壓降因子f與面積縮減率(相較於板鰭片)上升25.7%、61.1%、13%。但在角度為28°時,其熱傳因子j和面積縮減率上升逐漸趨緩,主要因為角度越大在下緣處產生渦流越劇,其壓降上升加劇。
    另外亦發現,增加百葉窗連續變角度(Δθ)可提升熱傳因子j及面積縮減率,但也同時提高壓降因子f;以起始角度為20°之鰭片為例,其連續變角度(範圍Δθ =1°~3°)之凸型百葉窗型鰭片可使熱傳因子j增加7%、14%、19.6%,而壓降因子f則提升9.5%、20%、32.8%及面積縮減率增加6.3%、11.6%、14%。
    本文同時以最佳化方法搜尋最佳百葉窗起始角度(θ_initial)與百葉窗連續變角度(∆θ)組合 (百葉窗起始角度約落在18° ~ 23°間,百葉窗連續變角度約介於2.5°~ 3°) , 依照最佳化結果,在"V" _"in" =2、4、6、8、10及12 m/s下,面積縮減率分別達50.9%、63.4%、55.5%、47.9%、40.6% 及33.3%。

    關鍵詞:凸型百葉窗型鰭片、熱交換器、最佳化分析

    SUMMARY
    The results showed that both the f and j factors are increased with the increase of the uniform louver angle; for a given louver pitch, increasing the uniform louver angle(θ_uniform), from 20° to 28°, the f and j factors are increased by 25.7% and 61.1%, respectively. Besides, the numerical results showed that both the f and j factors are also increased with the increase of the successive variable angle; with the same initial louver angle(θ_initial =20°), increasing the successive variable angle(Δθ), from 0° to 3°, the f and j factors are increased by 19.6% and 32.8%.Finally, the results of optimization analysis revealed that, with inlet frontal velocity ranging from 1 to 12 m/s, the optimal values of initial louver angle and successive variable angle are in the range of (18° to 23° ) and (2.5° to 3°), respectively. It is also found that, under the optimum conditions, the area reduction ratio could reach up to 33.3 % to 63.4%.
    Key words:Numerical simulation, Thermoelectric generator, Pin fin.

    摘要 II Abstract IV 致謝 XIII 圖目錄 IV 表目錄 VII 符號說明 VIII 第一章 緒論 1 1.1 研究緣起 1 1.2 文獻回顧 2 1.2.1 百葉窗鰭片之相關文獻 2 1.2.2 凸型百葉窗型鰭片之相關文獻 3 1.2.3 最佳化分析運用於熱交換器之相關文獻 5 1.3 研究目的 6 第二章 理論分析 13 2.1 統御方程式 13 2.2 邊界條件 14 2.3 熱傳係數與阻力係數之計算 15 2.4 熱交換器之性能評價方法(PEC) 18 第三章 數值分析與最佳化分析 25 3.1 數值方法 25 3.1.1 通用守恆方程式 25 3.1.2 有限體積法 26 3.1.3 SIMPLEC 演算法 29 3.1.4 邊界條件之離散 31 3.1.5 解題流程 32 3.1.6 收斂準則與格點測試 32 3.2 最佳化方法 33 3.2.1 共軛梯度法 33 3.2.2 最佳化搜尋流程 35 3.2.3 目標函數 36 第四章 結果與討論 46 4.1 進口風速影響 46 4.2 百葉窗角度影響 47 4.3 百葉窗連續變角度的影響 48 4.4 最佳化設計 50 第五章 結論 86 參考文獻 88

    [1] Webb, R.L., "Principles of Enhanced Heat Transfer," John Wiley and Sons, ed. Hoboken, USA, 1994.
    [2] Bergles, A.E., "Heat transfer enhancement: The encouragement and accommodation of high heat fluxes," ASME Journal of Heat Transfer, vol. 119, pp. 8-19, 1997.
    [3] Webb, R.L. and Jung, S.H., "Air side performance of enhanced brazed aluminum heat exchangers," ASHRAE Transactions,, vol. 98, Pt.2, pp. 391-401, 1992.
    [4] Wang, C.C., Tao, W.H., and Chang, C.J., "An investigation of the airside performance of the slit fin-and-tube heat exchangers," International Journal of Refrigeration, vol. 22, pp. 595-603, 1999.
    [5] Kays, W.M., and London, A.L., "Heat transfer and flow friction characteristics of some compact heat exchanger surfaces-Part I: Test system and procedure," ASME Journal of Heat Transfer, vol. 72, pp. 1075-1085, 1950.
    [6] Beauvais, F.N., "An aerodynamic look at automotive radiators," SAE paper No.650470, 1965.
    [7] Davenport, C.J., Heat Transfer and Fluid Flow in Louvred Triangular Ducts, Ph.D. thesis, CNAA, Lanchester Polytechnic, 1980.
    [8] Davenport, C.L., "Correlations for heat transfer and flow friction characteristics of louvred fin," AIChE Symposium Series, vol. 79, pp. 19-27, 1983.
    [9] Achaichia, A., and Cowell, T.A., "Heat transfer and pressure drop characteristics of flat tube and louvered plate fin surfaces," Experimental Thermal and Fluid Science, vol. 1, pp. 147-157, 1988.
    [10] Webb, R.L., and Trauger, P., "Flow structure in the louvered fin heat exchanger geometry," Experimental Thermal and Fluid Science, vol. 4, pp. 205-217, 1991.
    [11] Sahnoun, A. and Webb, R.L., "Prediction of heat transfer and friction for the louver fin geometry," Journal of Heat Transfer, vol. 114, pp. 893-900, 1992.
    [12] Chang, Y.J., Wang, C.C., and Chang, W.R., "Heat transfer and flow characteristics of automotive brazed aluminum heat exchangers," ASHRAE Transactions,, vol. 100, Pt.2, pp. 643-652, 1994.
    [13] Webb, R.L., Chang, Y.J., and Wang, C.C., "Heat transfer and friction correlation for the louver fin geometry," International journal heat and mass transfer, vol. 2, pp. 533-541, 1995.
    [14] Wang, C.C., Chi, K.Y., Chang, Y.J., and Chang, Y.P., "An experimental study of heat transfer and friction characteristics of typical louver fin-and-tube heat exchangers," International Journal of Heat and Mass Transfer, vol. 41, pp. 817-822, 1998.
    [15] Chang, Y.J., and Wang, C.C., "Air Side Performance of Brazed Aluminum Heat Exchangers," vol. 3, pp. 15-28, 1996.
    [16] Chang, Y.J., and Wang, C.C., "A generalized heat transfer correlation for Iouver fin geometry," International Journal of Heat and Mass Transfer, vol. 40, pp. 533-544, 1997.
    [17] Wang, C.C., Chang, Y.P., Chi, K.Y., and Chang, Y.J., "A study of non-redirection louvre fin-and-tube heat exchangers," Journal of Mechanical Engineering Science, vol. 212, pp. 1-14, 1998.
    [18] Hiramatsu, M., Ishimaru, T., and Matsuzaki, K., "Research on fins for air conditioning heat exchangers," JSME international journal series Ⅱ, vol. 33, pp. 749-756, 1990.
    [19] Hsieh, C.T. and Jang, J.Y., "3-D thermal-hydraulic analysis for louver fin heat exchangers with variable louver angle," Applied Thermal Engineering, vol. 26, pp. 1629-1639, 2006.
    [20] Li, B.Z. and Jang, J.Y., "3-D thermal-hydraulic analysis of High Performance Louver- finned Heat Exchangers with variable angles," Mechanical engineering ,National Cheng Kung University , 2013.
    [21] Wang , C.C., Liu ,M.S., Liu ,J.S. ,Liaw ,J.S. , "3-D simulation of the Thermal-Hydraulic characteristics of Louvered Fin-and-Tube Heat Exchanger With Oval tubes",ASHRAE Annual Meeting,2000.
    [22] Hatada, T., Senshu, T., "Experimental study on heat transfer characteristic of convex louver fin for air conditioning heat exchangers" ,ASME paper 84-HT-74,1984.
    [23] Bemisderfer, C.H., "Heat Transfer : A contemporary analytical tool for developing improved heat transfer surfaces", ASHRAE Trans. Part1,pp.1157-1166,1987.
    [24] Hadata,T., " Improved heat transfer performance of air coolers by strip fins controlling air flow distribution", ASHRAE Trans.,part I pp.160-170,1989.
    [25] Pauley ,L.L.,Hodgson, J.E., " Flow visualization of convex louver fin array to determine maximum heat transfer conditions ", Experimental thermal and fluid science Vol.9,pp.53-60,1994.
    [26] Wang , C.C., Chen , P. Y., Jang , J. Y., " Heat transfer and friction characteristics of convex-louver fin-and–tube heat exchangers" , Experimental heat transfer ,Vol.9, pp. 61-78,1996.
    [27] Wang , C.C., Tsai , Y. M., Lu , D.C., "Comprehensive study of convex-louver and wavy fin-and-tube heat exchangers " , Journal of thermophysics and heat transfer, Vol. 12 ,No.3, pp. 423-430,1998.
    [28] Jang, J.Y., Shien, K. P. and Ay, H., 2001, “3-D thermal-hydraulic analysis in convex louver finned -tube heat exchangers”, ASHRAE (American Society of Heating, Refrigeration and Air-conditioning Engineers) Transactions, Vol. 107, part 2, PP. 503-509.
    [29] Tayal, M.C., Fu, Y., and Diwekar, U.M., "Optimal Design of Heat Exchangers: A Genetic Algorithm Framework," Industrial & Engineering Chemistry Research, vol. 38, pp. 456-467, 1998.
    [30] Fabbri, G., "Heat transfer optimization in corrugated wall channels," International Journal of Heat and Mass Transfer, vol. 43, pp. 4299-4310, 2000.
    [31] Guo, L., Qin, F., Chen, J., Chen, Z., and Zhou, Y., "Influence of geometrical factors and pressing mould wear on thermal-hydraulic characteristics for steel offset strip fins at low Reynolds number," International Journal of Thermal Sciences, vol. 46, pp. 1285-1296, 2007.
    [32] Lihua, G., Jiangping, C., Feng, Q., and Zhijiu, C., "Geometrical optimization and mould wear effect on HPD type steel offset strip fin performance," Energy Conversion and Management, vol. 48, pp. 2473-2480, 2007.
    [33] Hsieh , C.T., and Jang , J.Y., "Parametric study and optimization of louver finned-tube heat exchangers by Taguchi method," Applied Thermal Engineering, vol. 42, pp. 101-110, 2012.
    [34] Cheng , C.H., and Chang, M.H., "A Simplified Conjugate-gradient Method for Shape Identification Based On Thermal Data," Numerical Heat Transfer, Part B: Fundamentals, vol. 43, pp. 489-507, 2003.
    [35] Jang , J.Y. and Tsai , Y.C., "Optimum louver angle design for a louvered fin heat exchanger," International Journal of the Physical Sciences vol. 6, pp. 6422-6438, 2011.
    [36] Shiu , L.F., and Jang , J.Y., "Optimization of the span angle and location of vortex generators in a plate-fin and tube heat exchanger " ,International Journal of Heat and Mass Transfer ,vol.67,pp.432-444,2013.
    [37] Van Doormaal, J.P., and Raithby, G.D., "Enhancements of The Simple Method For Predicting Incompressible Fluid Flows," Numerical Heat Transfer, vol. 7, pp. 147-163, 1984.
    [38] Patankar, S.V., Numerical heat transfer and fluid flow: Hemisphere Publishing Company, 1980.
    [39] Thompson, J.F., "Numerical Grid Generation Foundations and Applications" , North Holland , New York , 1985.
    [40] Mochizuki, S., Yagi, Y., Yang, W. J., "Flow pattern and turbulence intensity in stacks of interrupted parallel-plat surfaces",Experimental Thermal and Fluild Science Vol.1,pp.51-57,1988.

    下載圖示 校內:2019-08-05公開
    校外:2019-08-05公開
    QR CODE