簡易檢索 / 詳目顯示

研究生: 吳振輝
Wu, Zhen-Hui
論文名稱: 銦摻雜氧化鎂系列電阻式記憶體之研製
Fabrication and Investigation of In-doping MgO-based Resistive Switch Memory
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 81
中文關鍵詞: 氧化鎂氧化銦免電鑄摻雜氧空缺退火氣氛電阻式記憶體
外文關鍵詞: magnesium oxide, indium oxide, forming-free, doping, oxygen vacancy, annealed ambient, resistive memory
相關次數: 點閱:80下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以共濺鍍系統製作氧化鎂基底薄膜之電阻式記憶體元件。其結構為金屬鋁電極/氧化鎂基底薄膜(MgO-based)/氧化銦錫(ITO)。首先我們沉積未摻雜的氧化鎂薄膜,利用氧化鎂的穩定性製作電阻式記憶體。當薄膜厚度為30奈米且在真空環境中進行退火,元件有出色的性能。經由電特性分析,阻態的切換行為主要由氧空缺的導電燈絲形成與斷裂控制。在低阻態時電流傳導機制為歐姆傳導,在高阻態時為蕭基發射電流傳導機制。元件在有切換特性前需要一個電鑄過程(VForming = -9.4V),而在後續切換行為有低的操作電壓(VSET = -0.78V,VRESET = 0.98V)。在200次的切換過程中有相對密集的電流分布,其電流開關比大約為1.5×103。
    而後透過共靶濺鍍銦摻雜,進一步使記憶體性能有所提升。通過銦的摻雜,因為缺陷的增加、增加薄膜中的載子濃度,使元件轉變為免電鑄過程(Forming-free)之元件。因為避免了電鑄過程,減少了薄膜的崩潰,使元件有更好的穩定度和可靠性。找出氧化鎂功率100W,氧化銦功率40W為最佳功率比例,同時保持低的操作電壓(VSET = -0.88V,VRESET = 0.32V)。然而因為銦摻雜使高阻態的電阻值降低導致電流開關比降低兩倍為5.02×102
    最後進行不同氣氛退火條件,發現在氧氣環境中進行退火改變氧空缺濃度之元件有最佳的記憶體性能表現。元件的操作電壓並沒有明顯的變化(VSET = -0.86V,VRESET = 1.08V)。並且有好的可靠性,切換次數超過了1000次,和好的資料保存性(超過104秒)。然而因為在氧氣環境中退火使在低阻態時導電燈絲沒有一個完整的路徑連接上下電極,使電流在低阻態時有些微的降低。開關比相較於在真空環境中退火的元件大約降低5倍為1.51×102,雖然開關比降低但還是足以在二進制記憶體裝置中區分0和1。

    In this thesis, the MgO-based thin film was fabricated by co-sputtering. The resistive memory structure is Al / MgO-based thin film / ITO. First of all, we deposit undoped magnesium oxide thin film, and take advantage of the stability of magnesium oxide to make resistive memory. When the film thickness is 30nm and annealed in a vacuum environment, the device has excellent performance. Through the analysis of electrical characteristics, the switching behavior of the resistance state is mainly controlled by the formation and breakage of the oxygen vacancy conductive filament. The current conduction mechanism is ohmic conduction in the low resistance state, and the Schottky emission current conduction mechanism in the high resistance state. The component requires an electroforming process (VForming = -9.4V) before it has switching characteristics, and a low operating voltage (VSET = -0.78V, VRESET = 0.98V) in the subsequent switching behavior. During the 200 times switching cycle, there is a relatively dense current distribution, and the ON/OFF ratio is about 1.5×103.
    Then, through the doping of indium, because of the increase of defects and the increase of the carrier concentration in the thin film, the device is transformed into a forming-free device. Due to the electroforming process is avoided, the collapse of the film is reduced, and the device has better stability and reliability. Magnesium oxide power of 100W and indium oxide power of 40W is the best power ratio, while the device maintaining a low operating voltage (VSET = -0.88V, VRESET = 0.32V). However, indium doping reduces the resistance value of the high-resistance state, resulting in a 2-fold reduction in the ON/OFF ratio of 5.02×102.
    Finally, annealing conditions in different atmospheres were found, and it was found that the film annealed in an oxygen environment have the best memory performance. The operating voltage of the device does not change significantly (VSET = -0.86V, VRESET = 1.08V) And it has good reliability, the number of switching cycle exceeds 1000 times, and good data retention (over 104 seconds). However, due to annealing in an oxygen environment, the conductive filament does not have a complete path to connect the top and bottom electrodes in the low resistance state, so that the current is slightly reduced in the low resistance state. Although the ON/OFF ratio is reduced, it is still sufficient to distinguish between 0 and 1 in a binary memory device.

    Abstract (in Chinese)………………………………………………..I Abstract (in English)…….………………………………………...III Acknowledgement (in Chinese)………………………....………....V Contents…………………………………………………………...VI Table Captions…………………………………………………...VIII Figure Captions…………………………………………………... IV Chapter 1. Introduction 1-1 New Generation of Non-volatile Memory 1 1-1-1 Magnetoresistive Random Access Memory (MRAM) 1 1-1-2 Phase-Change Random Access Memory (PCRAM) 1 1-1-3 Ferroelectric Random Access Memory (FeRAM) 2 1-1-4 Resistive Random Access Memory (RRAM) 2 1-2 Filament Switching Mechanism Theory of RRAM 3 1-3 Motivation 3 Chapter 2. Literature Review 2-1 Characteristic of RRAM 8 2-1-1 Forming Process 8 2-1-2 SET/RESET Voltage 8 2-1-3 I-V Characteristic 9 2-1-4 Switching cycle, ON/OFF ratio & Retention time 9 2-2 Conduction mechanism 10 2-2-1 Ohmic Conduction 10 2-2-2 Space-Charge-Limited-Current Conduction (SCLC) 11 2-2-3 Frenkel-Poole Emission 12 2-2-4 Schottky Emission 12 Chapter 3. Experiment Processes 3-1 Device Fabrication 17 3-2 Measuring Instruments 18 Chapter 4. Anneal of MgO Thin Film Resistive Switching Memory 4-1 Characteristic of the MgO Resistive Memory 20 4-2 Physical Properties of the MgO Thin Film 21 4-3 Summary 22 Chapter 5. In-doped MgO Thin Film Resistive Switching Memory 5-1 Characteristic of the In-doped MgO Resistive Memory 39 5-2 Physical Properties of the MgInO Thin Film 40 5-3 Summary 41 Chapter 6. Effect of Annealing Ambient on MgInO 6-1 Characteristic of Different Annealing Ambient on MgInO Thin Film Resistive Memory 53 6-2 Physical Properties of the Different Annealing Ambient on MgInO Thin Film 54 6-3 Summary 55 Chapter 7. Conclusion & Future work 7-1 Conclusion 71 7-2 Future Work 72 Reference 74

    [1] S. P. Laura Wood. "Global Forecast to 2025 on the Non-volatile Memory Express (NVMe) Market - CAGR of 29.7% Expected During the Forecast Period." ResearchAndMarkets.com's. (accessed February 18, 2020).
    [2] S. Ikegawa, F. B. Mancoff, J. Janesky, and S. Aggarwal, "Magnetoresistive random access memory: Present and future," IEEE Transactions on Electron Devices, vol. 67, no. 4, pp. 1407-1419, 2020.
    [3] Rybkina, A. A., Rybkin, A. G., Klimovskikh, I. I., Skirdkov, P. N., Zvezdin, K. A., Zvezdin, A. K., and Shikin, A. M., "Advanced graphene recording device for spin–orbit torque magnetoresistive random access memory," Nanotechnology, vol. 31, no. 16, p. 165201, 2020.
    [4] S. Yuasa, K. Hono, G. Hu, and D. C. Worledge, "Materials for spin-transfer-torque magnetoresistive random-access memory," MRS Bulletin, vol. 43, no. 5, p. 352, 2018.
    [5] D. Apalkov, B. Dieny, and J. Slaughter, "Magnetoresistive random access memory," Proceedings of the IEEE, vol. 104, no. 10, pp. 1796-1830, 2016.
    [6] K. Konstantinou, T. H. Lee, F. C. Mocanu, and S. R. Elliott, "Origin of radiation tolerance in amorphous Ge2Sb2Te5 phase-change random-access memory material," Proceedings of the National Academy of Sciences, vol. 115, no. 21, pp. 5353-5358, 2018.
    [7] Ting-Ting Jiang, Jiang-Jing Wang, Lu Lu, Chuan-Sheng Ma, Dan-Li Zhang, Feng Rao, Chun-Lin Jia, and Wei Zhang, "Progressive amorphization of GeSbTe phase-change material under electron beam irradiation," APL Materials, vol. 7, no. 8, p. 081121, 2019.
    [8] M. Frumar, B. Frumarova, T. Wagner, and M. Hrdlicka, "Phase change memory materials–composition, structure, and properties," Journal of Materials Science: Materials in Electronics, vol. 18, no. 1, pp. 169-174, 2007.
    [9] Wong, H. S. P., Raoux, S., Kim, S., Liang, J., Reifenberg, J. P., Rajendran, and Goodson, K. E., "Phase change memory," Proceedings of the IEEE, vol. 98, no. 12, pp. 2201-2227, 2010.
    [10] Geoffrey W. Burr, Matthew J. Brightsky, Abu Sebastian, Huai-Yu Cheng, Jau-Yi Wu, Sangbum Kim, Norma E. Sosa, Nikolaos Papandreou, Hsiang-Lan Lung, Haralampos Pozidis, Evangelos Eleftheriou, and Chung H. Lam, "Recent progress in phase-change memory technology," IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 6, no. 2, pp. 146-162, 2016.
    [11] H. Funakubo, "Spontaneous Polarization and Crystal Orientation Control of MOCVD PZT and Bi 4 Ti 3 O 12-Based Films," in Ferroelectric Thin Films: Springer, 2005, pp. 77-91.
    [12] S. Kawashima and J. S. Cross, "FeRAM," in Embedded Memories for Nano-Scale VLSIs: Springer, 2009, pp. 279-328.
    [13] G. Pauls and T. S. Kalkur, "Parameterized ferroelectric capacitor macromodel suitable for mixed signal circuit design applications," Integrated Ferroelectrics, vol. 81, no. 1, pp. 165-179, 2006.
    [14] W. Bai, R. Huang, Y. Cai, Y. Tang, X. Zhang, and Y. Wang, "Record low-power organic RRAM with Sub-20-nA reset current," IEEE electron device letters, vol. 34, no. 2, pp. 223-225, 2013.
    [15] Wang, Y., Lv, Z., Liao, Q., Shan, H., Chen, J., Zhou, Ye., Li Zhou Xiaoli Chen, Vellaisamy A. L. Roy, Zhanpeng Wang, Yu‐Jia Zeng and Xu, Z., "Synergies of Electrochemical Metallization and Valance Change in All‐Inorganic Perovskite Quantum Dots for Resistive Switching," Advanced materials, vol. 30, no. 28, p. 1800327, 2018.
    [16] X. Guan, S. Yu, and H.-S. P. Wong, "On the switching parameter variation of metal-oxide RRAM—Part I: Physical modeling and simulation methodology," IEEE Transactions on electron devices, vol. 59, no. 4, pp. 1172-1182, 2012.
    [17] H. Bazzi, A. Harb, H. Aziza, M. Moreau, and A. Kassem, "RRAM-based non-volatile SRAM cell architectures for ultra-low-power applications," Analog Integrated Circuits and Signal Processing, pp. 1-11, 2020.
    [18] D. J. J. Loy, P. A. Dananjaya, X. L. Hong, D. Shum, and W. Lew, "Conduction mechanisms on high retention annealed MgO-based resistive switching memory devices," Scientific reports, vol. 8, no. 1, pp. 1-9, 2018.
    [19] T. Zhang, J. Yin, Y. Xia, W. Zhang, and Z. Liu, "Conduction mechanism of resistance switching in fully transparent MgO-based memory devices," Journal of Applied Physics, vol. 114, no. 13, 2013, doi: 10.1063/1.4821900.
    [20] Lin, C. Y., Chen, P. H., Chang, T. C., Chang, K. C., Zhang, S. D., Tsai, T. M., and Chang, Y. F., "Attaining resistive switching characteristics and selector properties by varying forming polarities in a single HfO2-based RRAM device with a vanadium electrode," Nanoscale, vol. 9, no. 25, pp. 8586-8590, 2017.
    [21] Wong, H. S. P., Lee, H. Y., Yu, S., Chen, Y. S., Wu, Y., Chen, P. S., and Tsai, M. J., "Metal–Oxide RRAM," Proceedings of the IEEE, vol. 100, no. 6, pp. 1951-1970, 2012, doi: 10.1109/jproc.2012.2190369.
    [22] Qi, M., Tao, Y., Wang, Z., Xu, H., Zhao, X., Liu, W., and Liu, Y., "Highly uniform switching of HfO2−x based RRAM achieved through Ar plasma treatment for low power and multilevel storage," Applied Surface Science, vol. 458, pp. 216-221, 2018, doi: 10.1016/j.apsusc.2018.07.095.
    [23] U. Russo, D. Ielmini, C. Cagli, and A. L. Lacaita, "Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) devices," IEEE Transactions on Electron Devices, vol. 56, no. 2, pp. 186-192, 2009.
    [24] R. Waser, "Resistive non-volatile memory devices," Microelectronic Engineering, vol. 86, no. 7-9, pp. 1925-1928, 2009.
    [25] S. Yu and H.-S. P. Wong, "A phenomenological model for the reset mechanism of metal oxide RRAM," IEEE Electron Device Letters, vol. 31, no. 12, pp. 1455-1457, 2010.
    [26] D. Jana, M. Dutta, S. Samanta, and S. Maikap, "RRAM characteristics using a new Cr/GdO x/TiN structure," Nanoscale Research Letters, vol. 9, no. 1, pp. 1-9, 2014.
    [27] F. Zahoor, T. Z. Azni Zulkifli, and F. A. Khanday, "Resistive random access memory (RRAM): an overview of materials, switching mechanism, performance, multilevel cell (MLC) storage, modeling, and applications," Nanoscale Research Letters, vol. 15, pp. 1-26, 2020.
    [28] F. Nardi, C. Cagli, D. Ielmini, and S. Spiga, "Reset current reduction and set-reset instabilities in unipolar NiO RRAM," in 2011 3rd IEEE International Memory Workshop (IMW), 2011: IEEE, pp. 1-4.
    [29] Shiwei Wu, Hong Wang, Jing Sun, Fang Song, Zhan Wang, Mei Yang, He Xi, Yong Xie, Haixia Gao, Jigang Ma, Xiaohua Ma, and Yue Hao, "Dissolvable and biodegradable resistive switching memory based on magnesium oxide," IEEE Electron Device Letters, vol. 37, no. 8, pp. 990-993, 2016.
    [30] D.-L. Chen, H.-C. Yu, C.-C. Yang, Y.-K. Su, C.-W. Chou, and J.-L. Ruan, "Performance enhancement of Pt/ZnO/Pt resistive random access memory (RRAM) with UV-Ozone treatment," in 2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), 2016: IEEE, pp. 213-214.
    [31] F.-C. Chiu, "A review on conduction mechanisms in dielectric films," Advances in Materials Science and Engineering, vol. 2014, 2014.
    [32] H. Altuntas and K. Kaplan, "Electrical conduction mechanisms and dielectric relaxation in Al2O3 thin films deposited by thermal atomic layer deposition," Materials Science in Semiconductor Processing, vol. 86, pp. 111-114, 2018.
    [33] W. Zhu, T. Chen, Y. Liu, and S. Fung, "Conduction mechanisms at low-and high-resistance states in aluminum/anodic aluminum oxide/aluminum thin film structure," Journal of Applied Physics, vol. 112, no. 6, p. 063706, 2012.
    [34] M.-T. Wang, S.-Y. Deng, T.-H. Wang, B. Y.-Y. Cheng, and J. Y.-m. Lee, "The ohmic conduction mechanism in high-dielectric-constant ZrO2 thin films," Journal of The Electrochemical Society, vol. 152, no. 7, p. G542, 2005.
    [35] Q. Liu, W. Guan, S. Long, R. Jia, M. Liu, and J. Chen, "Resistive switching memory effect of Zr O 2 films with Zr+ implanted," Applied physics letters, vol. 92, no. 1, p. 012117, 2008.
    [36] R. Swain, K. Jena, and T. R. Lenka, "Modeling of forward gate leakage current in moshemt using trap-assisted tunneling and poole–frenkel emission," IEEE Transactions on Electron Devices, vol. 63, no. 6, pp. 2346-2352, 2016.
    [37] E. W. Lim and R. Ismail, "Conduction mechanism of valence change resistive switching memory: a survey," Electronics, vol. 4, no. 3, pp. 586-613, 2015.
    [38] S. Chakraborty, M. Bera, S. Bhattacharya, and C. Maiti, "Current conduction mechanism in TiO2 gate dielectrics," Microelectronic Engineering, vol. 81, no. 2-4, pp. 188-193, 2005.
    [39] Steven Chuang, Corsin Battaglia, Angelica Azcatl, Stephen McDonnell, Jeong Seuk Kang, Xingtian Yin, Mahmut Tosun, Rehan Kapadia, Hui Fang, Robert M. Wallace, and Ali Javey, "MoS2 p-type transistors and diodes enabled by high work function MoO x contacts," Nano letters, vol. 14, no. 3, pp. 1337-1342, 2014.
    [40] Chen, K. H., Tsai, T. M., Cheng, C. M., Huang, S. J., Chang, K. C., Liang, S. P., and Young, T. F., "Schottky emission distance and barrier height properties of bipolar switching Gd: SiOx RRAM devices under different oxygen concentration environments," Materials, vol. 11, no. 1, p. 43, 2018.
    [41] D. L. Meier, "Ohm’s law in the fast lane: General relativistic charge dynamics," The Astrophysical Journal, vol. 605, no. 1, p. 340, 2004.
    [42] Cavallaro, A., Pramana, S. S., Ruiz-Trejo, E., Sherrell, P. C., Ware, E., Kilner, J. A., and Skinner, S. J., "Amorphous-cathode-route towards low temperature SOFC," Sustainable Energy & Fuels, vol. 2, no. 4, pp. 862-875, 2018, doi: 10.1039/c7se00606c.
    [43] S. H. Pan, J. P. O'Neal, R. L. Badzey, C. Chamon, H. Ding, J. R. Engelbrecht, Z. Wang, H. Eisaki, S. Uchida, A. K. Gupta, K.-W. Ng, E. W. Hudson, K. M. Lang, and J. C. Davis, "Microscopic electronic inhomogeneity in the high-T c superconductor Bi 2 Sr 2 CaCu 2 O 8+ x.," Nature, vol. 413.6853, pp. 282-285, 2001.
    [44] Z. Wu, P. Li, Q. Qin, Z. Li, and X. Liu, "N-doped graphene combined with alloys (NiCo, CoFe) and their oxides as multifunctional electrocatalysts for oxygen and hydrogen electrode reactions," Carbon, vol. 139, pp. 35-44, 2018.
    [45] M. F. A. M. van Hest, M. S. Dabney, J. D. Perkins, and D. S. Ginley, "High-mobility molybdenum doped indium oxide," Thin Solid Films, vol. 496, no. 1, pp. 70-74, 2006, doi: 10.1016/j.tsf.2005.08.314.
    [46] M. Tang, J. A. Valdez, Y. Wang, J. Zhang, B. P. Uberuaga, and K. E. Sickafus, "Ion irradiation-induced crystal structure changes in inverse spinel MgIn2O4," Scripta Materialia, vol. 125, pp. 10-14, 2016.
    [47] C. Zhao, B. Huang, E. Xie, J. Zhou, and Z. Zhang, "Improving gas-sensing properties of electrospun In2O3 nanotubes by Mg acceptor doping," Sensors and Actuators B: Chemical, vol. 207, pp. 313-320, 2015, doi: 10.1016/j.snb.2014.10.087.
    [48] K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, and S. Sivaramakrishnan, "Ultrasonic-assisted CdO–MgO nanocomposite for multifunctional applications," Materials Technology, vol. 34, no. 7, pp. 403-414, 2019, doi: 10.1080/10667857.2019.1574963.
    [49] Y. Rao, W. Wang, F. Tan, Y. Cai, J. Lu, and X. Qiao, "Influence of different ions doping on the antibacterial properties of MgO nanopowders," Applied Surface Science, vol. 284, pp. 726-731, 2013, doi: 10.1016/j.apsusc.2013.08.001.
    [50] P. J. Rous, "Multiple-scattering theory of the surface resistivity of stepped Al surfaces.," Physical Review, vol. B 61.12, pp. 8484-8488, 2000.
    [51] Kwang Hwan Ji, Ji-In Kim, Hong Yoon Jung, Se Yeob Park, Rino Choi, Un Ki Kim, Cheol Seong Hwang, Daeseok Lee, Hyungsang Hwang, and Jae Kyeong Jeong, "Effect of high-pressure oxygen annealing on negative bias illumination stress-induced instability of InGaZnO thin film transistors," Applied Physics Letters, vol. 98, no. 10, 2011, doi: 10.1063/1.3564882.
    [52] H.-w. Park, K.-B. Chung, and J.-S. Park, "A role of oxygen vacancy on annealed ZnO film in the hydrogen atmosphere," Current Applied Physics, vol. 12, pp. S164-S167, 2012, doi: 10.1016/j.cap.2012.02.052.
    [53] X. Q. Wei, B. Y. Man, M. Liu, C. S. Xue, H. Z. Zhuang, and C. Yang, "Blue luminescent centers and microstructural evaluation by XPS and Raman in ZnO thin films annealed in vacuum, N2 and O2," Physica B: Condensed Matter, vol. 388, no. 1-2, pp. 145-152, 2007, doi: 10.1016/j.physb.2006.05.346.
    [54] Dan Wang, Dong Han, Damien West, Nian-Ke Chen, Sheng-Yi Xie, Wei Quan Tian, Vincent Meunier, Shengbai Zhang, and Xian-Bin Li, "Excitation to defect-bound band edge states in two-dimensional semiconductors and its effect on carrier transport," npj Computational Materials, vol. 5, no. 1, 2019, doi: 10.1038/s41524-018-0145-0.
    [55] Weitao Qiu Dr., Shuang Xiao, Jingwen Ke, Dr. Zheng Wang, Songtao Tang, Kai Zhang, Wei Qian, Dr. Yongchao Huang, Duan Huang, Prof. Yexiang Tong, and Prof. Shihe Yang, "Freeing the Polarons to Facilitate Charge Transport in BiVO4 from Oxygen Vacancies with an Oxidative 2D Precursor," Angew Chem Int Ed Engl, vol. 58, no. 52, pp. 19087-19095, Dec 19 2019, doi: 10.1002/anie.201912475.
    [56] Y. H. Tseng, C.-E. Huang, C.-H. Kuo, Y.-D. Chih, Y.-C. King, and C. J. Lin, "A new high-density and ultrasmall-cell-size contact RRAM (CR-RAM) with fully CMOS-logic-compatible technology and circuits," IEEE transactions on electron devices, vol. 58, no. 1, pp. 53-58, 2010.
    [57] Cheng-Yu Zhao, Jun Li, De-Yao Zhong, Chuan-Xin Huang, Jian-Hua Zhang, Xi-Feng Li, Xue-Yin Jiang, and Zhi-Lin Zhang, "Mg Doping to Simultaneously Improve the Electrical Performance and Stability of MgInO Thin-Film Transistors," IEEE Transactions on Electron Devices, vol. 64, no. 5, pp. 2216-2220, 2017, doi: 10.1109/ted.2017.2678544.
    [58] H. LU, L. ZHANG, H. ZHOU, and S. ZHANG, "Photo-electrical Properties of Amorphous MgInO Thin Film Transistors," Optoelectronic Technology, no. 1, p. 5, 2017.
    [59] Yang Yin Chen, Masanori Komura, Robin Degraeve, Bogdan Govoreanu, Ludovic Goux, Andrea Fantini, Naga Raghavan, Sergiu Clima, Leqi Zhang, Attilio Belmonte, Augusto Redolfi, Gouri Sankar Kar, Guido Groeseneken, Dirk J. Wouters, and Malgorzata Jurczak, "Improvement of data retention in HfO 2/Hf 1T1R RRAM cell under low operating current," in 2013 IEEE International Electron Devices Meeting, 2013: IEEE, pp. 10.1. 1-10.1. 4.

    下載圖示 校內:2024-08-12公開
    校外:2024-08-12公開
    QR CODE