簡易檢索 / 詳目顯示

研究生: 陳建宇
Chen, Jian-Yu
論文名稱: 雷射輔助塑膠銲接之研究
Study of the laser welding on plastics
指導教授: 林震銘
Lin, Jehn-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 124
中文關鍵詞: 有限元素法塑膠雷射銲接
外文關鍵詞: finite element, laser welding, plastics
相關次數: 點閱:56下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是探討雷射穿透式銲接(Laser Transmission Welding)技術接合尼龍材料,並分析銲接時接合試件產生之溫度分佈與熱應力行為。研究中分別使用連續式Nd-YAG雷射點熱源與脈衝式Nd-YAG雷射點熱源銲接尼龍材料,並以碳粉提高尼龍材料對雷射的吸收率。
    本文主要分成數值模擬與實驗兩部份。在數值分析部份,考慮材料之熱彈行為,採用熱機非耦合分析(Uncoupled Thermal-Mechanical Analysis)的模式,計算不同雷射熱源以求得溫度場與應力場。在實驗部分則是分別針對不同功率、移動速度、試件厚度與雷射脈衝時間等製程參數進行加工並利用熱影像分析儀量測溫度,再以光學顯微鏡觀察銲接結果。
    根據研究結果可知,在使用連續式Nd-YAG雷射點熱源銲接的過程中,尼龍試件會因過熱產生膨脹現象,增加厚度之後可改善因過熱導致膨脹的情形。而在使用脈衝式Nd-YAG雷射熱源銲接的過程中,銲道因脈衝雷射的能量過高造成之銲道變寬之現象。將數值分析結果與實驗所得的結果相比對可發現具有一致性,因此證明了本研究之加工方法的可行性。

    The aim of this thesis is to investigate the temperature distribution and thermal stress of nylon plates by laser transmission welding technology. The laser beam of Nd-YAG CW laser and Nd-YAG pulsed laser were used to weld the nylon plates, and also the carbon powder were used to increase the absorption of the optical energy in welding process.
    This research mainly includes numerical analysis and experiments. The numerical analysis was used to analyze the temperature distribution and thermal stress problems by laser transmission welding of nylon plates. A non-linear finite element software was used to simulate the problems for an uncoupled thermal-mechanical analysis system in three- dimensional domain. It was considered two different laser sources to solve the temperature field and stress field. The aspects of the experiment include the process parameters of the laser power, welding velocity, plate thickness and pulsed laser duration time. In the experiment, an infrared thermal detector was used to measure the surface temperature distribution in welding. Finally, the weld profiles were observed and analyzed.
    The results show that the expansion phenomenon is caused by overheating in the CW laser welding process. When varying the plates thickness, the expansion phenomena can be improved. In the pulsed laser welding process, the welding zone became wide by increasing the laser energy. The results show a good agreement between the numerical analysis and experiments.

    中文摘要............................................. Ⅰ 英文摘要............................................. Ⅱ 誌謝................................................. Ⅲ 目錄................................................. Ⅳ 表目錄............................................... Ⅶ 圖目錄............................................... Ⅷ 符號說明............................................. ⅩⅤ 第一章 緒論.......................................... 1 1.1 前言............................................. 1 1.2 文獻回顧......................................... 4 1.2.1 雷射銲接技術............................... 4 1.2.2 塑膠接合技術............................... 7 1.2.3 雷射銲接用於塑膠材料....................... 9 1.3 本文架構......................................... 13 第二章 製程說明與流變概論............................ 14 2.1 雷射穿透式銲接概論............................... 14 2.2 塑膠材料之種類與其流變行為....................... 15 2.2.1 塑膠的熔化................................. 16 2.2.2塑膠的黏彈性質.............................. 18 2.3 尼龍材料之簡介................................... 22 2.3.1 尼龍的材料性質............................. 24 第三章 數值模擬及分析................................ 27 3.1 有限元素分析軟體ABAQUS之計算流程................. 27 3.2 實例驗證......................................... 29 3.3 試件幾何尺寸與有限元素模型....................... 34 3.4 尼龍材料性質..................................... 35 3.5 加熱條件......................................... 36 3.6 基本假設與分析過程............................... 37 3.7 初始條件與邊界條件............................... 39 3.7.1 熱傳模式之邊界條件......................... 39 3.7.2 力學模式之邊界條件......................... 40 3.8 數值結果分析..................................... 41 3.8.1 不同熱源之溫度分析......................... 41 3.8.1.1 連續式點熱源之溫度分佈............... 41 3.8.1.2 脈衝式點熱源之溫度分佈............... 47 3.8.2 不同熱源之應力分析......................... 51 3.8.2.1 連續式點熱源之應力分佈............... 51 3.8.2.2 脈衝式點熱源之應力分佈............... 53 3.9 參數討論......................................... 55 第四章 雷射穿透式銲接實驗............................ 64 4.1 實驗配置與分析步驟............................... 64 4.2 實驗結果與討論................................... 69 4.2.1 連續式熱源之實驗結果....................... 69 4.2.2 脈衝式熱源之實驗結果....................... 87 4.2.3 溫度量測實驗............................... 91 4.2.4 功率量測實驗............................... 93 4.3實驗結果與數值模擬結果之比較...................... 94 4.4 結果與討論....................................... 99 第五章 結論與建議.................................... 102 5.1結論............................................. 102 5.2相關建議及未來發展............................... 105 參考文獻............................................. 107 附錄A................................................ 112 附錄B................................................ 120 附錄C................................................ 121 自述................................................. 124

    [1]王振欽, “銲接學”, 登文書局, 1985.
    [2] Martukanitz R. P., “A critical review of laser beam welding”, Proceedings of SPIE - The International Society for Optical Engineering, v 5706, p 11-24, 2005.
    [3] Duley W. W., “Laser Welding”, John Wiley, New York, 1999.
    [4] Debroy T., Zacharia T., David S. A., Vitek J. M., “Weld pool development during GTA and laser beam welding of type 304 stainless steel Part I. Theoretical analysis”, Welding Journal, v 68, n 12, p 499s-509s, 1989.
    [5] Bransch H. N., Weckman D. C., Kerr H. W., “Effects of pulse shaping on Nd-YAG spot welds in austenitic stainless steel”, Welding Journal, v 73, n6, p 141s-151s, 1994.
    [6] Watson I. A., Ng E. S., “Characteristics of Nd-YAG laser welded high carbon steels”, Journal of Laser Applications, v 9, n 5, p 243-252, 1997.
    [7]林雲朗, “異厚鍍鋅鋼板雷射銲接之特性研究”, 台灣科技大學機械工程研究所碩士論文, 2000.
    [8]林家正, “422不銹鋼雷射銲補之機械特性探討”, 台灣大學材料科學與工程學研究所碩士論文, 2000.
    [9]何冠儀, “商業用純鈦在不同雷射銲接條件下連結強度之研究”, 中山醫學大學牙科材料研究所碩士論文, 2002.
    [10]趙芝山, “雷射銲接於光通訊元件封裝之有限元素分析”, 交通大學機械工程研究所碩士論文, 2002.
    [11] Mistry K., “Plastics welding technology for industry”, Assembly Automation, v 17, n 3, p 196-200, 1997.
    [12] Bates P. J., MacDonald J. J., Wang C. Y., Mah J., Liang H., “Vibration welding nylon 66 - Part I experimental study”, Journal of Thermoplastic Composite Materials, v 16, n 2, p 101-119, 2003.
    [13] Bates P. J., MacDonald J. J., Wang C. Y., Liang H., “Vibration welding nylon 66 - Part II finite element analysis”, Journal of Thermoplastic Composite Materials, v 16, n 3, p 197-211, 2003.
    [14] van Wijk H., Luiten G. A., van Engen P. G., Nonhof C. J., “Process optimization of ultrasonic welding”, Polymer Engineering and Science, v 36, n 9, Mid-May, p 1165-1176, 1996.
    [15] Suresh K. S., Rani M. R., Prakasan K., Rudramoorthy R., “Modeling of temperature distribution in ultrasonic welding of thermoplastics for various joint designs”, Journal of Materials Processing Technology, v 186, n 1-3, May 7, p 138-146, 2007.
    [16] Ziegler D., “Extrusion welding of thermoplastic materials”, Technical Paper-Society of Manufacturing Engineers. AD, n AD99-119, p AD99-119-1 - AD99-119-9, 1999.
    [17] Wise R. J., Froment I. D., “Microwave welding of thermoplastics”, Journal of Materials Science, v 36, n 24, Dec 15, p 5935-5954, 2001.
    [18] Helmut P., Odo K., Georg F., “Laser and microwave welding - the applicability of new process principles”, Macromolecular Materials and Engineering, v 287 , n11, p 734 – 744,2002.
    [19] Nonhof C. J., “Laser welding of polymers”, Polymer Engineering and Science, v 34, n 20, p 1547-1549, 1994.
    [20] Hilton P. A., Jones I. A., Kennish, Y., “Transmission laser welding of plastics”, Proceedings of SPIE - The International Society for Optical Engineering, v 4831, p 44-52, 2002.
    [21] Hoult T., Ong R., “Developments in laser joining and welding of plastics using high power-laser diodes”, Proceedings of SPIE - The International Society for Optical Engineering, v 4426, p 412-415, 2002.
    [22] Rooks B., “Laser processing of plastics”, Industrial Robot, v 31, n 4, p 338-342, 2004.
    [23] Rueffler C., Guers K., “Cutting and welding using a CO2 laser”, Optics and Laser Technology, v 4, n 6, Dec, p 265-269, 1972.
    [24] Nielsen S. E., “Laser material processing of polymers”, Polymer Testing, v 3, n 4, p 303-310, 1983.
    [25] Duley W. W., Mueller R. E., “CO2 laser welding of polymers”, Polymer Engineering and Science, v 32, n 9, p 582-585, 1992.
    [26] Atanasov P. A., “Laser welding of plastics: theory and experiments”, Optical Engineering, v 34, n 10, p 2976-2980, 1995.
    [27] Potente H., Korte J., Becker F., “Laser transmission welding of thermoplastics: Analysis of the heating phase”, Journal of Reinforced Plastics and Composites, v 18, n 10, p 914-920, 1999.
    [28] Potente H., Becker F., “A step towards understanding the heating phase of laser transmission welding in polymers”, Polymer Engineering and Science, v 42, n 2, p 365-374, 2002.
    [29] Sato K., Kurosaki Y., Saito T., Satoh I., “Laser welding of plastics transparent to near-infrared radiation”, Proceedings of SPIE - The International Society for Optical Engineering, v 4637, p 528-536, 2002.
    [30] Coelho Joao M. P., Abreu M. A., Rodrigues F. C., “Thermal modeling CO2 laser radiation transmission welding of superposed thermoplastic films”, Optical Engineering, v 42, n 11, p 3365-3373, 2003.
    [31] Kurosaki Y., “Radiative heat transfer in plastic welding process”, Journal of Quantitative Spectroscopy and Radiative Transfer, v 93, n 1-3 SPEC. ISS., Jun 15, p 25-41, 2005.
    [32] Mayboudi L. S., Birk A. M., Zak G., Bates P. J., “A two-dimensional thermal finite element model of laser transmission welding for T joint”, Journal of Laser Applications, v 18, n 3, p 192-198, 2006.
    [33]王聖禾, “塑膠透鏡光纖之新型構裝方式”, 中山大學機械與機電工程學系研究所, 2006.
    [34] Kagan V. A., Bray R. G., Kuhn W. P., “Laser transmission welding of semi-crystalline thermoplastics-Part I: Optical characterization of nylon based plastics”, Journal of Reinforced Plastics and Composites, v 21, n 12, p 1101-1122, 2002.
    [35] Kagan V. A., Pinho G. P., “Laser Transmission Welding of Semicrystalline Thermoplastics - Part II: Analysis of Mechanical Performance of Welded Nylon”, Journal of Reinforced Plastics and Composites, v 23, n 1, p 95-107, 2004.
    [36] Prabhakaran R., Kontopoulou M., Zak G., Bates P. J., Baylis B. K., “Contour laser - Laser-transmission welding of glass reinforced nylon 6”, Journal of Thermoplastic Composite Materials, v 19, n 4, p 427-439, 2006.
    [37] Potente H., Fiegler G., Haferkamp H., Fargas M., Von Busse A., Bunte J., “An approach to model the melt displacement and temperature profiles during the laser through-transmission welding of thermoplastics”, Polymer Engineering and Science, v 46, n 11, p 1565-1575, 2006.
    [38]陳世春, 劉守一, “塑膠材料潤滑性質”, 復漢出版社, 1988.
    [39]洪瑞庭, “塑膠加工技術與工程”, 高立圖書有限公司, 1988.
    [40]篠原康夫, “聚醯胺樹脂 (耐隆NYLON)”, 復漢出版社, 1989.
    [41] “Getting Strated with ABAQUS/Standard”, H. K. S. Inc., Pawtuckett, 1998.
    [42] Rosenthal D., Trans. ASME, p 849-866, 1946.
    [43] Lindgren Lars-Erik, “Temperature fields in simulation of butt-welding of large plates”, Communications in Applied Numerical Methods, v 2, n 2, p 155-164, 1986.
    [44] Kohan M. I., “Nylon Plastics Handbook”, Munich, New York, 1995.
    [45]王佑仁, “雷射線光源於玻璃切割之研究”, 成功大學機械工程研究所碩士論文, 2004.
    [46]李坤洲, “雷射成型於薄板變形之分析與量測”, 成功大學機械工程研究所碩士論文, 2001.
    [47] Bachmann F. G., Russek U. A., “Laser welding of polymers using high power diode lasers”, Proceedings of SPIE - The International Society for Optical Engineering, v 4637, p 505-518, 2002.

    下載圖示 校內:2017-07-14公開
    校外:2017-07-14公開
    QR CODE