簡易檢索 / 詳目顯示

研究生: 陳俊霖
Chen, Chun-Lin
論文名稱: 高通量製程分析氧化釔-氧化鈦及氮參雜樣品組於高介電材料之研究
Combinatorial study of Y2O3-TiO2 and N2 doping composition spreads for the high-k application
指導教授: 張高碩
Chang, Kao-Shuo
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 104
中文關鍵詞: 氧化釔氧化鈦高介電常數磁控濺鍍
外文關鍵詞: Y2O3, TiO2, high-k, sputtering
相關次數: 點閱:71下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用金屬鈦(Ti)及氧化釔(Y2O3)做為濺鍍源,利用磁控濺
    鍍製程,在矽基板上成長氧化釔及氧化鈦單層成分分佈薄膜,以及氧
    化釔-氧化鈦成分分佈薄膜系統,最後以金屬鉭做為金屬閘極,形成
    金屬/介電層/半導體(MOS)電容結構,並在還原性氣體下對成分分佈
    薄膜進行退火熱處理(3500C)。探討氧化釔-氧化鈦成分分佈薄膜作為
    高介電應用之電性行為及物理性質以及參雜氮之影響。
    實驗結果顯示在此製程中獲得品質好的氧化釔-氧化鈦成分分佈
    薄膜系統並藉此推算薄膜系統的成分變化;由於釔擴散與二氧化矽反
    應成矽酸釔(yttrium silicate) 的緣故,中介層厚度從富含鈦的區
    域到富含釔的區域逐漸增加,即從1.1 變化到2.7nm。從薄膜系統介
    電層厚度變化中可看出均勻性高;在電性方面,結果顯示在氧化釔-
    氧化鈦成分分佈薄膜系統中,當氧化鈦比例小於40%時,介電常數可
    提高到約40,且此時漏電流密度約為10-5 A/cm2 。研究指出參雜氮可
    減少位於介電層氧空位數量,且預防氧擴散到中介層,可改善元件性
    能。在參雜氮後,介電性質從40%TiO2 改善至70%TiO2 且降低漏電流
    一到兩個級數。

    Y2O3-TiO2 composition spreads are prepared by reactive magnetron sputtering from Y2O3 and Ti targets, following by a forming gas annealing at 350 C. We have discussed the physical and electrical characteristics of the Y2O3-TiO2 composition spreads for the high-k application.
    Second ion mass spectrometry (SIMS) and EDX (built in SEM) were utilized to determine the quality and compositions of the Y2O3-TiO2 composition spreads. High-resolution transmission electron microscopy (HRTEM) images were used to analyze the microstructures, including the thicknesses of oxide layers and interfacial layers. The crystallinity was
    confirmed by select area electron diffraction (SAED) patterns. The thicknesses of the interfacial layers gradually increase from Ti-rich to Y-rich, namely from  1.1 nm to  2.7 nm, due to more yttrium diffusion.From the C-V/I-V measurements, we found some devices with reasonably low leakage current density (10-5 A/cm2), whose dielectric
    constants could be tuned up to around 40 when concentration of TiO2 was ~ 40 % for Y2O3-TiO2 composition spreads.
    In addition, N2-doped was studied as well. After N2 doping, the C-V characteristics could be enhanced up to 70 % of TiO2. Averagely the leakage current density was around one to two orders lower, compared to the composition spread without N2 doped.

    Contents Chapter 1 Introduction................................... 1 1.1 History of integrated circuits....................... 1 1.2 Metal oxide semiconductors (MOS) .................... 2 1.2.1 Introduction of MOS ............................... 2 1.2.2 Ideal capacitance-voltage (C-V) characteristics ... 2 1.2.3 The defects in oxide layer and measurement for MOS.................................................... . 3 1.2.4 The measurement of defects ........................ 5 1.2.5 Problems with CMOS development .................... 6 1.2.6 The requirement of high-k materials ............... 7 1.3 The property of Y2O3................................ 10 1.3.1 Manufacturing processes for Y2O3 in the literatures ........................................................ 10 1.3.2 The growth mechanism of yttrium silicate in the interface11 1.4 The property of titanium dioxide (TiO2) .................................... 13 1.5 Combinatorial methodology ...................................................... 14 1.5.1 Introduction of Combinatorial Methodology .................... 14 1.5.2 How combinatorial Methodology works? ........................ 15 1.6 Motivation of this project .......................................................... 15 Chapter 2 Experimental design .............................................................. 31 2.1 Experimental materials .............................................................. 31 2.1.1 Sputtering Targets ............................................................ 31 2.1.2 Substrates......................................................................... 31 2.1.3 Sputtering Gas ................................................................. 31 2.1.4 Annealing Gas.................................................................. 31 2.1.5 Experimental Chemicals .................................................. 31 2.2 Experimental Equipment ........................................................... 32 2.2.1 Sputtering Deposition Tool .............................................. 32 2.2.2 Alpha-step profilometry ................................................... 34 2.2.3 Furnace ............................................................................ 34 2.2.4 Focused Ion Beam (FIB).................................................. 34 2.3 Experimental Procedures ........................................................... 35 2.3.1 Substrates Cleaning.......................................................... 35 2.3.2 Deposition of Y2O3 and TiO2 ........................................... 35 2.3.3 Photolithography.............................................................. 35 2.3.4 Deposition of Ta as a metal gate....................................... 36 2.3.5 Forming gas annealing ..................................................... 37 2.4 Characterization Tools ............................................................... 37 2.4.1 X-ray Diffractometer ....................................................... 37 2.4.2 Secondary Ion Mass Spectrometry (SIMS) ...................... 37 2.4.3 Transmission Electron Microscopy (TEM) ...................... 38 2.4.4 X-ray Photoelectron Spectroscopy ................................... 40 2.4.5 Capacitance-Voltage Curve: ............................................. 40 Chapter 3 Results and discussions ......................................................... 59 3.1 Manufacturing of a Y2O3 thickness gradient .............................. 59 3.2 Manufacturing of a TiO2 thickness gradient ............................... 60 3.3 Y2O3-TiO2 composition spreads ................................................ 60 3.3.1 Secondary ion mass spectrometry (SIMS) analysis .......... 61 3.3.2 Transmission electron microscopy (TEM) analysis .......... 62 3.3.3 Electrical Properties of the Y2O3-TiO2 composition spread ................................................................................................. 65 3.3.4 N2 doped Y2O3-TiO2 composition spreads ....................... 67 Chapter 4 Conclusions and future work ................................................. 96 4.1 Conclusions ............................................................................... 96 4.2 Future work ............................................................................... 97 References ............................................................................................. 98

    References
    1. Brinkman, W.F., D.E. Haggan, and W.W. Troutman, "A history of the invention
    of the transistor and where it will lead us". Solid-State Circuits, IEEE Journal of,
    1997. 32: p. 1858-1865.
    2. Rosen, S., "Electronic Computers: A Historical Survey". ACM Comput. Surv.,
    1969. 1: p. 7-36.
    3. Kish, L.B., "End of Moore's law: thermal (noise) death of integration in micro
    and nano electronics". Physics Letters A, 2002. 305: p. 144-149.
    4. Brews, J.R., et al., "Generalized guide for MOSFET miniaturization". Electron
    Device Letters, IEEE, 1980. 1: p. 2-4.
    5. Robertson, J., "Interfaces and defects of high-K oxides on silicon". Solid-State
    Electronics, 2005. 49: p. 283-293.
    6. Davari, B., R.H. Dennard, and G.G. Shahidi, "CMOS scaling for high
    performance and low power-the next ten years". Proceedings of the IEEE, 1995.
    83: p. 595-606.
    7. Doris, B., et al. "Extreme scaling with ultra-thin Si channel MOSFETs". in
    Electron Devices Meeting, 2002. IEDM '02. International. 2002.
    8. Baccarani, G., M.R. Wordeman, and R.H. Dennard, "Generalized scaling
    theory and its application to a ¼ micrometer MOSFET design". Electron
    Devices, IEEE Transactions on, 1984. 31: p. 452-462.
    9. Wilk, G.D., R.M. Wallace, and J.M. Anthony, "High-kappa gate dielectrics:
    Current status and materials properties considerations". Journal of Applied
    Physics, 2001. 89: p. 5243-5275.
    10. Forst, C.J., et al., "The interface between silicon and a high-k oxide". Nature,
    2004. 427: p. 53-56.
    11. Ballantine, A.W.R.L., NY), Buchanan, Douglas A. (Cortlandt Manor, NY),
    Cartier, Eduard A. (New York, NY), Chan, Kevin K. (Staten Island, NY), Copel,
    Matthew W. (Yorktown Heights, NY), D'emic, Christopher P. (Ossining, NY),
    Gousev, Evgeni P. (Mahopac, NY), Mcfeely, Fenton Read (Ossining, NY),
    Newbury, Joseph S. (Tarrytown, NY), Okorn-schmidt, Harald F. (Putnam
    Valley, NY), Varekamp, Patrick R. (Croton-on-Hudson, NY), Zabel, Theodore
    H. (Yorktown Heights, NY), "Interfacial oxidation process for high-k gate
    dielectric process integration". 2002, International Business Machines
    Corporation (Armonk, NY): United States.
    12. Araiza, J.J., M.A. Aguilar-Frutis, and C. Falcony, "Optical, electrical, and
    structural characteristics of yttrium oxide films deposited on plasma etched
    silicon substrates". Journal of Vacuum Science & Technology B:
    99
    Microelectronics and Nanometer Structures, 2001. 19: p. 2206.
    13. Wang, Z.M., et al., "Photoemission study of interfacial reactions during
    annealing of ultrathin yttrium on SiO2/Si(1 0 0)". Applied Surface Science,
    2005. 239: p. 464-469.
    14. Durand, C., et al., "Structural and Electrical Characterizations of Yttrium
    Oxide Films after Postannealing Treatments". Journal of The Electrochemical
    Society, 2005. 152: p. F217.
    15. Durand, C., et al., "Microstructure and electrical characterizations of yttrium
    oxide and yttrium silicate thin films deposited by pulsed liquid-injection
    plasma-enhanced metal-organic chemical vapor deposition". Journal of
    Applied Physics, 2004. 96: p. 1719.
    16. Sharma, R.N. and A.C. Rastogi, "Compositional and electronic properties of
    chemical-vapor-deposited Y2O3 thin film-Si(100) interfaces". Journal of
    Applied Physics, 1993. 74: p. 6691.
    17. Ulrich, M.D., et al., "Bonding and structure of ultrathin yttrium oxide films for
    Si field effect transistor gate dielectric applications". Journal of Vacuum
    Science & Technology B: Microelectronics and Nanometer Structures, 2003. 21:
    p. 1792.
    18. Hunter, M.E., et al., "Epitaxial Y[sub 2]O[sub 3] films grown on Si(111) by
    pulsed-laser ablation". Applied Physics Letters, 2000. 76: p. 1935.
    19. Zhang, S. and R. Xiao, "Yttrium oxide films prepared by pulsed laser
    deposition". Journal of Applied Physics, 1998. 83: p. 3842.
    20. Horng, R.H., et al., "Effects of rapid thermal process on structural and
    electrical characteristics of Y2O3 thin films by r.f.-magnetron sputtering". Thin
    Solid Films, 1996. 289: p. 234-237.
    21. Cho, M.H., et al., "Structural transition of crystalline Y2O3 film on Si(111) with
    substrate temperature". Thin Solid Films, 1999. 349: p. 266-269.
    22. GR, et al., "Re-assessment of the Y-O binary system". Vol. 87. 1996,
    München, ALLEMAGNE: Hanser.
    23. Lu, J., et al., "Optical properties and highly efficient laser oscillation of
    Nd:YAG ceramics". Applied Physics B, 2000. 71: p. 469-473.
    24. Huang, J.-F., et al., "Yttrium silicate oxidation protective coating for SiC coated
    carbon/carbon composites". Ceramics International, 2006. 32: p. 417-421.
    25. Tsutsumi, T., "Dielectric Properties of Y$_{2}$O$_{3}$ Thin Films Prepared
    by Vacuum Evaporation". Japanese Journal of Applied Physics. 9: p. 735.
    26. Niu, D., et al., "Chemical, Physical, and Electrical Characterizations of Oxygen
    Plasma Assisted Chemical Vapor Deposited Yttrium Oxide on Silicon". Journal
    of The Electrochemical Society, 2003. 150: p. F102.
    100
    27. Niu, D., et al., "Electron energy-loss spectroscopy analysis of interface
    structure of yttrium oxide gate dielectrics on silicon". Applied Physics Letters,
    2002. 81: p. 676.
    28. Ohta, A., M. Yamaoka, and S. Miyazaki, "Photoelectron spectroscopy of
    ultrathin yttrium oxide films on Si(100)". Microelectronic Engineering, 2004.
    72: p. 154-159.
    29. Stemmer, S., et al., "Reactions of Y[sub 2]O[sub 3] films with (001) Si
    substrates and with polycrystalline Si capping layers". Applied Physics Letters,
    2002. 81: p. 712.
    30. Yamamoto, T., et al., "Structural Changes of Y2O3and La2O3Films by Heat
    Treatment". Japanese Journal of Applied Physics, 2006. 45: p. 6196-6202.
    31. Seifert, H.J., et al., "Yttrium Silicate Coatings on Chemical Vapor
    Deposition-SiC-Precoated C/C-SiC: Thermodynamic Assessment and
    High-Temperature Investigation". Journal of the American Ceramic Society,
    2005. 88: p. 424-430.
    32. Chiam, S.Y., et al., "Investigation of silicon diffusion into yttrium using x-ray
    photoelectron spectroscopy". Applied Physics Letters, 2006. 88: p. 011904.
    33. Zhang, J., et al., "Electron energy-loss spectroscopy investigation of Y2O3 films
    on Si (001) substrate". Thin Solid Films, 2006. 496: p. 266-272.
    34. Pan, T.-M. and J.-D. Lee, "Influence of Oxygen Content on the Physical and
    Electrical Properties of Thin Yttrium Oxide Dielectrics Deposited by Reactive
    RF Sputtering on Si Substrates". Journal of Electronic Materials, 2007. 36: p.
    1395-1403.
    35. Kwon, K.-H., et al., "Effective formation of interface controlled Y2O3 thin film
    on Si(100) in a metal–(ferroelectric)–insulator–semiconductor structure".
    Microelectronic Engineering, 2008. 85: p. 1781-1785.
    36. Wang, X.J., et al., "Effects of post-deposition annealing on the structure and
    optical properties of Y2O3 thin films". Materials Letters, 2008. 62: p.
    4235-4237.
    37. Quah, H.J. and K.Y. Cheong, "Deposition and post-deposition annealing of thin
    Y2O3 film on n-type Si in argon ambient". Materials Chemistry and Physics,
    2011. 130: p. 1007-1015.
    38. Rastogi, A.C. and R.N. Sharma, "Structural and electrical characteristics of
    metal-insulator-semiconductor diodes based on Y2O3 dielectric thin films on
    silicon". Journal of Applied Physics, 1992. 71: p. 5041.
    39. Cho, M.H., et al., "YSi[sub 2−x] formation in the presence of interfacial
    SiO[sub 2] layer". Journal of Applied Physics, 2002. 92: p. 5555.
    40. Dimoulas, A., et al., "Structural and electrical quality of the high-k dielectric
    101
    Y[sub 2]O[sub 3] on Si (001): Dependence on growth parameters". Journal of
    Applied Physics, 2002. 92: p. 426.
    41. Jollet, F., et al., "Electronic structure of yttrium oxide". Physical Review B,
    1990. 42: p. 7587-7595.
    42. Busch, B.W., et al., "Interface reactions of high-κ Y[sub 2]O[sub 3] gate oxides
    with Si". Applied Physics Letters, 2001. 79: p. 2447.
    43. Cho, M.H., et al., "Structural and electrical characteristics of Y[sub 2]O[sub 3]
    films grown on oxidized Si(100) surface". Journal of Vacuum Science &
    Technology A: Vacuum, Surfaces, and Films, 2001. 19: p. 192.
    44. Chambers, J.J. and G.N. Parsons, "Yttrium silicate formation on silicon: Effect
    of silicon preoxidation and nitridation on interface reaction kinetics". Applied
    Physics Letters, 2000. 77: p. 2385.
    45. Rastogi, A.C. and R.N. Sharma, "Interfacial charge trapping in extrinsic
    Y2O3/SiO2 bilayer gate dielectric based MIS devices on Si(100)".
    Semiconductor Science and Technology, 2001. 16: p. 641-650.
    46. Tsutsumi, T., "DIELECTRIC PROPERTIES OF Y2O3 THIN FILMS
    PREPARED BY VACUUM EVAPORATION". Japanese Journal of Applied
    Physics, 1970. 9: p. 735-&.
    47. Chambers, J.J., et al., "Effects of surface pretreatments on interface structure
    during formation of ultra-thin yttrium silicate dielectric films on silicon".
    Applied Surface Science, 2001. 181: p. 78-93.
    48. Lee, C.K. and H.H. Park, "Interface control of Y2O3 thin film with Si(100) in a
    metal-(ferroelectric)-insulator-semiconductor structure". Journal of the Korean
    Physical Society, 2005. 46: p. 254-257.
    49. Escobar-Alarcon, L., et al., "Structural characterization of TiO2 thin films
    obtained by pulsed laser deposition". Applied Surface Science, 1999. 137: p.
    38-44.
    50. Lee, B.H., et al., "Effects of interfacial layer growth on the electrical
    characteristics of thin titanium oxide films on silicon". Applied Physics Letters,
    1999. 74: p. 3143.
    51. Yokogawa, Y., et al., "Formation of the Microstructure of TiO2Film Through
    Anodic Oxidation of Titanium". IOP Conference Series: Materials Science and
    Engineering, 2011. 18: p. 182003.
    52. Asiah, M.N., M.Z. Basri, and M. Rusop, "Electrical Properties of
    Nanostructured Titanium Dioxide Thin Films Prepared by Sol-Gel
    Spin-Coating Method". Defect and Diffusion Forum, 2011. 312-315: p.
    1027-1031.
    53. Martin, N., et al., "Microstructure modification of amorphous titanium oxide
    102
    thin films during annealing treatment". Thin Solid Films, 1997. 300: p.
    113-121.
    54. Kim, S., et al., "Oxygen migration in TiO2-based higher-k gate stacks". Journal
    of Applied Physics, 2010. 107.
    55. Lee, C.C. and C.J. Tang, "TiO2-Ta2O5 composite thin films deposited by radio
    frequency ion-beam sputtering". Applied Optics, 2006. 45: p. 9125-9131.
    56. Yagi, E., R.R. Hasiguti, and M. Aono, "Electronic conduction above 4 K of
    slightly reduced oxygen-deficient rutile TiO_{2-x}". Physical Review B, 1996.
    54: p. 7945-7956.
    57. Khan, M.Z.R., et al., "Trapped charge dynamics in a sol–gel based TiO 2 highk
    gate dielectric silicon metal–oxide–semiconductor field effect transistor".
    Journal of Physics: Condensed Matter, 2009. 21: p. 215902.
    58. Yang, W. and C.A. Wolden, "Plasma-enhanced chemical vapor deposition of
    TiO2 thin films for dielectric applications". Thin Solid Films, 2006. 515: p.
    1708-1713.
    59. Sarkar, D.K., et al., "Dielectric properties of sol–gel derived high-k titanium
    silicate thin films". Thin Solid Films, 2007. 515: p. 4788-4793.
    60. Brassard, D. and M.A. El Khakani, "Pulsed-laser deposition of high-k titanium
    silicate thin films". Journal of Applied Physics, 2005. 98: p. 054912.
    61. Sarkar, D.K., E. Desbiens, and M.A. El Khakani, "High-k titanium silicate
    dielectric thin films grown by pulsed-laser deposition". Applied Physics Letters,
    2002. 80: p. 294.
    62. Luo, Z.J., et al., "Temperature dependence of gate currents in thin Ta[sub
    2]O[sub 5] and TiO[sub 2] films". Applied Physics Letters, 2001. 79: p. 2803.
    63. Sankur, H. and W. Gunning, "Crystallization and diffusion in composite
    TiO2-SiO2 thin films". Journal of Applied Physics, 1989. 66: p. 4747.
    64. Ji, L.F. and Y.J. Jiang, "Investigations of dielectric enhancement in
    (Ta2O5)1-x(TiO2)x ceramics prepared by laser-sintering technique". Applied
    Physics A, 2007. 87: p. 733-738.
    65. Gluck, N.S., et al., "Microstructure and composition of composite SiO2/TiO2
    thin films". Journal of Applied Physics, 1991. 69: p. 3037.
    66. Kwon, C.H., et al., "Preparation and characterization of TiO2–SiO2
    nano-composite thin films". Ceramics International, 2003. 29: p. 851-856.
    67. Gallas, B., et al., "SiO[sub 2]–TiO[sub 2] interfaces studied by ellipsometry and
    x-ray photoemission spectroscopy". Journal of Applied Physics, 2002. 92: p.
    1922.
    68. Gracia, F., et al., "SiO2/TiO2 thin films with variable refractive index prepared
    by ion beam induced and plasma enhanced chemical vapor deposition". Thin
    103
    Solid Films, 2006. 500: p. 19-26.
    69. Wang, X., et al., "Thermal Annealing Effect on Optical Properties of Binary
    TiO2-SiO2 Sol-Gel Coatings". Materials, 2012. 6: p. 76-84.
    70. Wang, X.R., et al., "Microstructure and optical properties of amorphous
    TiO2-SiO2 composite films synthesized by helicon plasma sputtering". Thin
    Solid Films, 1999. 338: p. 105-109.
    71. Cappellani, A., et al., "Processing and characterisation of sol-gel deposited
    Ta2O5 and TiO2-Ta2O5 dielectric thin films". Solid-State Electronics, 1999. 43:
    p. 1095-1099.
    72. Schaller, R.R., "Moore's law: past, present and future". Spectrum, IEEE, 1997.
    34: p. 52-59.
    73. Arora, N., "MOSFET Models for VLSI Circuit Simulation: Theory and
    Practice". 1993: Springer-Verlag New York, Inc. 632.
    74. Deal, B.E., "Standardized terminology for oxide charges associated with
    thermally oxidized silicon". Electron Devices, IEEE Transactions on, 1980. 27:
    p. 606-608.
    75. Robertson, J., "Electronic Structure and Band Offsets of
    High-Dielectric-Constant Gate Oxides". MRS bulletin, 2002. 27: p. 217-221.
    76. Schlom, D.G. and J.H. Haeni, "A Thermodynamic Approach to Selecting
    Alternative Gate Dielectrics". MRS bulletin, 2002. 27: p. 198-204.
    77. Okamoto, H., "O-Y (oxygen-yttrium)". Journal of Phase Equilibria, 1998. 19: p.
    402-402.
    78. Gaboriaud, R., et al., "Yttrium oxide thin films, Y2O3, grown by ion beam
    sputtering on Si". Journal of Physics D: Applied Physics, 2000. 33: p. 2884.
    79. Toropov, N.A., "Some Rare Earth Silicates". International Ceramic Congress,
    1961: p. p. 435-442.
    80. Landmann, M., E. Rauls, and W.G. Schmidt, "The electronic structure and
    optical response of rutile, anatase and brookite TiO 2". Journal of Physics:
    Condensed Matter, 2012. 24: p. 195503.
    81. Benninghoven, A., F. Rudenauer, and H.W. Werner, "Secondary ion mass
    spectrometry: basic concepts, instrumental aspects, applications and trends".
    1987.
    82. Binnig, G. and H. Rohrer, "Scanning tunneling microscopy". IBM Journal of
    research and development, 2000. 44: p. 279-293.
    83. Dupin, J.-C., et al., "Systematic XPS studies of metal oxides, hydroxides and
    peroxides". Physical Chemistry Chemical Physics, 2000. 2: p. 1319-1324.
    84. Zhang, J., "Application of Electron Energy Loss Spectroscopy to Ferroelectric
    Thin Films". 2004.
    104
    85. Gun'ko, V.M., et al., "Characterization of Fumed Alumina/Silica/Titania in the
    Gas Phase and in Aqueous Suspension". Journal of Colloid and Interface
    Science, 1999. 220: p. 302-323.
    86. Niu, D., et al., "Effect of N[sub 2] plasma on yttrium oxide and
    yttrium–oxynitride dielectrics". Journal of Vacuum Science & Technology A:
    Vacuum, Surfaces, and Films, 2004. 22: p. 445.
    87. Zhimin, L., et al., "Structural and electrical characteristics of RF sputtered
    YON gate dielectrics and their thin-film transistor applications". Journal of
    Physics D: Applied Physics, 2011. 44: p. 155403.
    88. Wang, X.J., et al., "The chemical and electronic structures of YO[sub x]N[sub y]
    on Si(100)". Applied Physics Letters, 2008. 92: p. 042905.
    89. Liang, J.-J., et al., "Enthalpy of Formation of Rare-earth Silicates Y2SiO5 and
    Yb2SiO5 and N-containing Silicate Y10(SiO4)6N2". Journal of Materials
    Research, 1999. 14: p. 1181-1185.
    90. Wang, X.J., et al., "Interfacial and optical properties of YOxNygate dielectrics
    at different deposition temperatures". Journal of Physics D: Applied Physics,
    2009. 42: p. 215405.

    無法下載圖示 校內:2016-08-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE