| 研究生: |
陳俊霖 Chen, Chun-Lin |
|---|---|
| 論文名稱: |
高通量製程分析氧化釔-氧化鈦及氮參雜樣品組於高介電材料之研究 Combinatorial study of Y2O3-TiO2 and N2 doping composition spreads for the high-k application |
| 指導教授: |
張高碩
Chang, Kao-Shuo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 氧化釔 、氧化鈦 、高介電常數 、磁控濺鍍 |
| 外文關鍵詞: | Y2O3, TiO2, high-k, sputtering |
| 相關次數: | 點閱:71 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用金屬鈦(Ti)及氧化釔(Y2O3)做為濺鍍源,利用磁控濺
鍍製程,在矽基板上成長氧化釔及氧化鈦單層成分分佈薄膜,以及氧
化釔-氧化鈦成分分佈薄膜系統,最後以金屬鉭做為金屬閘極,形成
金屬/介電層/半導體(MOS)電容結構,並在還原性氣體下對成分分佈
薄膜進行退火熱處理(3500C)。探討氧化釔-氧化鈦成分分佈薄膜作為
高介電應用之電性行為及物理性質以及參雜氮之影響。
實驗結果顯示在此製程中獲得品質好的氧化釔-氧化鈦成分分佈
薄膜系統並藉此推算薄膜系統的成分變化;由於釔擴散與二氧化矽反
應成矽酸釔(yttrium silicate) 的緣故,中介層厚度從富含鈦的區
域到富含釔的區域逐漸增加,即從1.1 變化到2.7nm。從薄膜系統介
電層厚度變化中可看出均勻性高;在電性方面,結果顯示在氧化釔-
氧化鈦成分分佈薄膜系統中,當氧化鈦比例小於40%時,介電常數可
提高到約40,且此時漏電流密度約為10-5 A/cm2 。研究指出參雜氮可
減少位於介電層氧空位數量,且預防氧擴散到中介層,可改善元件性
能。在參雜氮後,介電性質從40%TiO2 改善至70%TiO2 且降低漏電流
一到兩個級數。
Y2O3-TiO2 composition spreads are prepared by reactive magnetron sputtering from Y2O3 and Ti targets, following by a forming gas annealing at 350 C. We have discussed the physical and electrical characteristics of the Y2O3-TiO2 composition spreads for the high-k application.
Second ion mass spectrometry (SIMS) and EDX (built in SEM) were utilized to determine the quality and compositions of the Y2O3-TiO2 composition spreads. High-resolution transmission electron microscopy (HRTEM) images were used to analyze the microstructures, including the thicknesses of oxide layers and interfacial layers. The crystallinity was
confirmed by select area electron diffraction (SAED) patterns. The thicknesses of the interfacial layers gradually increase from Ti-rich to Y-rich, namely from 1.1 nm to 2.7 nm, due to more yttrium diffusion.From the C-V/I-V measurements, we found some devices with reasonably low leakage current density (10-5 A/cm2), whose dielectric
constants could be tuned up to around 40 when concentration of TiO2 was ~ 40 % for Y2O3-TiO2 composition spreads.
In addition, N2-doped was studied as well. After N2 doping, the C-V characteristics could be enhanced up to 70 % of TiO2. Averagely the leakage current density was around one to two orders lower, compared to the composition spread without N2 doped.
References
1. Brinkman, W.F., D.E. Haggan, and W.W. Troutman, "A history of the invention
of the transistor and where it will lead us". Solid-State Circuits, IEEE Journal of,
1997. 32: p. 1858-1865.
2. Rosen, S., "Electronic Computers: A Historical Survey". ACM Comput. Surv.,
1969. 1: p. 7-36.
3. Kish, L.B., "End of Moore's law: thermal (noise) death of integration in micro
and nano electronics". Physics Letters A, 2002. 305: p. 144-149.
4. Brews, J.R., et al., "Generalized guide for MOSFET miniaturization". Electron
Device Letters, IEEE, 1980. 1: p. 2-4.
5. Robertson, J., "Interfaces and defects of high-K oxides on silicon". Solid-State
Electronics, 2005. 49: p. 283-293.
6. Davari, B., R.H. Dennard, and G.G. Shahidi, "CMOS scaling for high
performance and low power-the next ten years". Proceedings of the IEEE, 1995.
83: p. 595-606.
7. Doris, B., et al. "Extreme scaling with ultra-thin Si channel MOSFETs". in
Electron Devices Meeting, 2002. IEDM '02. International. 2002.
8. Baccarani, G., M.R. Wordeman, and R.H. Dennard, "Generalized scaling
theory and its application to a ¼ micrometer MOSFET design". Electron
Devices, IEEE Transactions on, 1984. 31: p. 452-462.
9. Wilk, G.D., R.M. Wallace, and J.M. Anthony, "High-kappa gate dielectrics:
Current status and materials properties considerations". Journal of Applied
Physics, 2001. 89: p. 5243-5275.
10. Forst, C.J., et al., "The interface between silicon and a high-k oxide". Nature,
2004. 427: p. 53-56.
11. Ballantine, A.W.R.L., NY), Buchanan, Douglas A. (Cortlandt Manor, NY),
Cartier, Eduard A. (New York, NY), Chan, Kevin K. (Staten Island, NY), Copel,
Matthew W. (Yorktown Heights, NY), D'emic, Christopher P. (Ossining, NY),
Gousev, Evgeni P. (Mahopac, NY), Mcfeely, Fenton Read (Ossining, NY),
Newbury, Joseph S. (Tarrytown, NY), Okorn-schmidt, Harald F. (Putnam
Valley, NY), Varekamp, Patrick R. (Croton-on-Hudson, NY), Zabel, Theodore
H. (Yorktown Heights, NY), "Interfacial oxidation process for high-k gate
dielectric process integration". 2002, International Business Machines
Corporation (Armonk, NY): United States.
12. Araiza, J.J., M.A. Aguilar-Frutis, and C. Falcony, "Optical, electrical, and
structural characteristics of yttrium oxide films deposited on plasma etched
silicon substrates". Journal of Vacuum Science & Technology B:
99
Microelectronics and Nanometer Structures, 2001. 19: p. 2206.
13. Wang, Z.M., et al., "Photoemission study of interfacial reactions during
annealing of ultrathin yttrium on SiO2/Si(1 0 0)". Applied Surface Science,
2005. 239: p. 464-469.
14. Durand, C., et al., "Structural and Electrical Characterizations of Yttrium
Oxide Films after Postannealing Treatments". Journal of The Electrochemical
Society, 2005. 152: p. F217.
15. Durand, C., et al., "Microstructure and electrical characterizations of yttrium
oxide and yttrium silicate thin films deposited by pulsed liquid-injection
plasma-enhanced metal-organic chemical vapor deposition". Journal of
Applied Physics, 2004. 96: p. 1719.
16. Sharma, R.N. and A.C. Rastogi, "Compositional and electronic properties of
chemical-vapor-deposited Y2O3 thin film-Si(100) interfaces". Journal of
Applied Physics, 1993. 74: p. 6691.
17. Ulrich, M.D., et al., "Bonding and structure of ultrathin yttrium oxide films for
Si field effect transistor gate dielectric applications". Journal of Vacuum
Science & Technology B: Microelectronics and Nanometer Structures, 2003. 21:
p. 1792.
18. Hunter, M.E., et al., "Epitaxial Y[sub 2]O[sub 3] films grown on Si(111) by
pulsed-laser ablation". Applied Physics Letters, 2000. 76: p. 1935.
19. Zhang, S. and R. Xiao, "Yttrium oxide films prepared by pulsed laser
deposition". Journal of Applied Physics, 1998. 83: p. 3842.
20. Horng, R.H., et al., "Effects of rapid thermal process on structural and
electrical characteristics of Y2O3 thin films by r.f.-magnetron sputtering". Thin
Solid Films, 1996. 289: p. 234-237.
21. Cho, M.H., et al., "Structural transition of crystalline Y2O3 film on Si(111) with
substrate temperature". Thin Solid Films, 1999. 349: p. 266-269.
22. GR, et al., "Re-assessment of the Y-O binary system". Vol. 87. 1996,
München, ALLEMAGNE: Hanser.
23. Lu, J., et al., "Optical properties and highly efficient laser oscillation of
Nd:YAG ceramics". Applied Physics B, 2000. 71: p. 469-473.
24. Huang, J.-F., et al., "Yttrium silicate oxidation protective coating for SiC coated
carbon/carbon composites". Ceramics International, 2006. 32: p. 417-421.
25. Tsutsumi, T., "Dielectric Properties of Y$_{2}$O$_{3}$ Thin Films Prepared
by Vacuum Evaporation". Japanese Journal of Applied Physics. 9: p. 735.
26. Niu, D., et al., "Chemical, Physical, and Electrical Characterizations of Oxygen
Plasma Assisted Chemical Vapor Deposited Yttrium Oxide on Silicon". Journal
of The Electrochemical Society, 2003. 150: p. F102.
100
27. Niu, D., et al., "Electron energy-loss spectroscopy analysis of interface
structure of yttrium oxide gate dielectrics on silicon". Applied Physics Letters,
2002. 81: p. 676.
28. Ohta, A., M. Yamaoka, and S. Miyazaki, "Photoelectron spectroscopy of
ultrathin yttrium oxide films on Si(100)". Microelectronic Engineering, 2004.
72: p. 154-159.
29. Stemmer, S., et al., "Reactions of Y[sub 2]O[sub 3] films with (001) Si
substrates and with polycrystalline Si capping layers". Applied Physics Letters,
2002. 81: p. 712.
30. Yamamoto, T., et al., "Structural Changes of Y2O3and La2O3Films by Heat
Treatment". Japanese Journal of Applied Physics, 2006. 45: p. 6196-6202.
31. Seifert, H.J., et al., "Yttrium Silicate Coatings on Chemical Vapor
Deposition-SiC-Precoated C/C-SiC: Thermodynamic Assessment and
High-Temperature Investigation". Journal of the American Ceramic Society,
2005. 88: p. 424-430.
32. Chiam, S.Y., et al., "Investigation of silicon diffusion into yttrium using x-ray
photoelectron spectroscopy". Applied Physics Letters, 2006. 88: p. 011904.
33. Zhang, J., et al., "Electron energy-loss spectroscopy investigation of Y2O3 films
on Si (001) substrate". Thin Solid Films, 2006. 496: p. 266-272.
34. Pan, T.-M. and J.-D. Lee, "Influence of Oxygen Content on the Physical and
Electrical Properties of Thin Yttrium Oxide Dielectrics Deposited by Reactive
RF Sputtering on Si Substrates". Journal of Electronic Materials, 2007. 36: p.
1395-1403.
35. Kwon, K.-H., et al., "Effective formation of interface controlled Y2O3 thin film
on Si(100) in a metal–(ferroelectric)–insulator–semiconductor structure".
Microelectronic Engineering, 2008. 85: p. 1781-1785.
36. Wang, X.J., et al., "Effects of post-deposition annealing on the structure and
optical properties of Y2O3 thin films". Materials Letters, 2008. 62: p.
4235-4237.
37. Quah, H.J. and K.Y. Cheong, "Deposition and post-deposition annealing of thin
Y2O3 film on n-type Si in argon ambient". Materials Chemistry and Physics,
2011. 130: p. 1007-1015.
38. Rastogi, A.C. and R.N. Sharma, "Structural and electrical characteristics of
metal-insulator-semiconductor diodes based on Y2O3 dielectric thin films on
silicon". Journal of Applied Physics, 1992. 71: p. 5041.
39. Cho, M.H., et al., "YSi[sub 2−x] formation in the presence of interfacial
SiO[sub 2] layer". Journal of Applied Physics, 2002. 92: p. 5555.
40. Dimoulas, A., et al., "Structural and electrical quality of the high-k dielectric
101
Y[sub 2]O[sub 3] on Si (001): Dependence on growth parameters". Journal of
Applied Physics, 2002. 92: p. 426.
41. Jollet, F., et al., "Electronic structure of yttrium oxide". Physical Review B,
1990. 42: p. 7587-7595.
42. Busch, B.W., et al., "Interface reactions of high-κ Y[sub 2]O[sub 3] gate oxides
with Si". Applied Physics Letters, 2001. 79: p. 2447.
43. Cho, M.H., et al., "Structural and electrical characteristics of Y[sub 2]O[sub 3]
films grown on oxidized Si(100) surface". Journal of Vacuum Science &
Technology A: Vacuum, Surfaces, and Films, 2001. 19: p. 192.
44. Chambers, J.J. and G.N. Parsons, "Yttrium silicate formation on silicon: Effect
of silicon preoxidation and nitridation on interface reaction kinetics". Applied
Physics Letters, 2000. 77: p. 2385.
45. Rastogi, A.C. and R.N. Sharma, "Interfacial charge trapping in extrinsic
Y2O3/SiO2 bilayer gate dielectric based MIS devices on Si(100)".
Semiconductor Science and Technology, 2001. 16: p. 641-650.
46. Tsutsumi, T., "DIELECTRIC PROPERTIES OF Y2O3 THIN FILMS
PREPARED BY VACUUM EVAPORATION". Japanese Journal of Applied
Physics, 1970. 9: p. 735-&.
47. Chambers, J.J., et al., "Effects of surface pretreatments on interface structure
during formation of ultra-thin yttrium silicate dielectric films on silicon".
Applied Surface Science, 2001. 181: p. 78-93.
48. Lee, C.K. and H.H. Park, "Interface control of Y2O3 thin film with Si(100) in a
metal-(ferroelectric)-insulator-semiconductor structure". Journal of the Korean
Physical Society, 2005. 46: p. 254-257.
49. Escobar-Alarcon, L., et al., "Structural characterization of TiO2 thin films
obtained by pulsed laser deposition". Applied Surface Science, 1999. 137: p.
38-44.
50. Lee, B.H., et al., "Effects of interfacial layer growth on the electrical
characteristics of thin titanium oxide films on silicon". Applied Physics Letters,
1999. 74: p. 3143.
51. Yokogawa, Y., et al., "Formation of the Microstructure of TiO2Film Through
Anodic Oxidation of Titanium". IOP Conference Series: Materials Science and
Engineering, 2011. 18: p. 182003.
52. Asiah, M.N., M.Z. Basri, and M. Rusop, "Electrical Properties of
Nanostructured Titanium Dioxide Thin Films Prepared by Sol-Gel
Spin-Coating Method". Defect and Diffusion Forum, 2011. 312-315: p.
1027-1031.
53. Martin, N., et al., "Microstructure modification of amorphous titanium oxide
102
thin films during annealing treatment". Thin Solid Films, 1997. 300: p.
113-121.
54. Kim, S., et al., "Oxygen migration in TiO2-based higher-k gate stacks". Journal
of Applied Physics, 2010. 107.
55. Lee, C.C. and C.J. Tang, "TiO2-Ta2O5 composite thin films deposited by radio
frequency ion-beam sputtering". Applied Optics, 2006. 45: p. 9125-9131.
56. Yagi, E., R.R. Hasiguti, and M. Aono, "Electronic conduction above 4 K of
slightly reduced oxygen-deficient rutile TiO_{2-x}". Physical Review B, 1996.
54: p. 7945-7956.
57. Khan, M.Z.R., et al., "Trapped charge dynamics in a sol–gel based TiO 2 highk
gate dielectric silicon metal–oxide–semiconductor field effect transistor".
Journal of Physics: Condensed Matter, 2009. 21: p. 215902.
58. Yang, W. and C.A. Wolden, "Plasma-enhanced chemical vapor deposition of
TiO2 thin films for dielectric applications". Thin Solid Films, 2006. 515: p.
1708-1713.
59. Sarkar, D.K., et al., "Dielectric properties of sol–gel derived high-k titanium
silicate thin films". Thin Solid Films, 2007. 515: p. 4788-4793.
60. Brassard, D. and M.A. El Khakani, "Pulsed-laser deposition of high-k titanium
silicate thin films". Journal of Applied Physics, 2005. 98: p. 054912.
61. Sarkar, D.K., E. Desbiens, and M.A. El Khakani, "High-k titanium silicate
dielectric thin films grown by pulsed-laser deposition". Applied Physics Letters,
2002. 80: p. 294.
62. Luo, Z.J., et al., "Temperature dependence of gate currents in thin Ta[sub
2]O[sub 5] and TiO[sub 2] films". Applied Physics Letters, 2001. 79: p. 2803.
63. Sankur, H. and W. Gunning, "Crystallization and diffusion in composite
TiO2-SiO2 thin films". Journal of Applied Physics, 1989. 66: p. 4747.
64. Ji, L.F. and Y.J. Jiang, "Investigations of dielectric enhancement in
(Ta2O5)1-x(TiO2)x ceramics prepared by laser-sintering technique". Applied
Physics A, 2007. 87: p. 733-738.
65. Gluck, N.S., et al., "Microstructure and composition of composite SiO2/TiO2
thin films". Journal of Applied Physics, 1991. 69: p. 3037.
66. Kwon, C.H., et al., "Preparation and characterization of TiO2–SiO2
nano-composite thin films". Ceramics International, 2003. 29: p. 851-856.
67. Gallas, B., et al., "SiO[sub 2]–TiO[sub 2] interfaces studied by ellipsometry and
x-ray photoemission spectroscopy". Journal of Applied Physics, 2002. 92: p.
1922.
68. Gracia, F., et al., "SiO2/TiO2 thin films with variable refractive index prepared
by ion beam induced and plasma enhanced chemical vapor deposition". Thin
103
Solid Films, 2006. 500: p. 19-26.
69. Wang, X., et al., "Thermal Annealing Effect on Optical Properties of Binary
TiO2-SiO2 Sol-Gel Coatings". Materials, 2012. 6: p. 76-84.
70. Wang, X.R., et al., "Microstructure and optical properties of amorphous
TiO2-SiO2 composite films synthesized by helicon plasma sputtering". Thin
Solid Films, 1999. 338: p. 105-109.
71. Cappellani, A., et al., "Processing and characterisation of sol-gel deposited
Ta2O5 and TiO2-Ta2O5 dielectric thin films". Solid-State Electronics, 1999. 43:
p. 1095-1099.
72. Schaller, R.R., "Moore's law: past, present and future". Spectrum, IEEE, 1997.
34: p. 52-59.
73. Arora, N., "MOSFET Models for VLSI Circuit Simulation: Theory and
Practice". 1993: Springer-Verlag New York, Inc. 632.
74. Deal, B.E., "Standardized terminology for oxide charges associated with
thermally oxidized silicon". Electron Devices, IEEE Transactions on, 1980. 27:
p. 606-608.
75. Robertson, J., "Electronic Structure and Band Offsets of
High-Dielectric-Constant Gate Oxides". MRS bulletin, 2002. 27: p. 217-221.
76. Schlom, D.G. and J.H. Haeni, "A Thermodynamic Approach to Selecting
Alternative Gate Dielectrics". MRS bulletin, 2002. 27: p. 198-204.
77. Okamoto, H., "O-Y (oxygen-yttrium)". Journal of Phase Equilibria, 1998. 19: p.
402-402.
78. Gaboriaud, R., et al., "Yttrium oxide thin films, Y2O3, grown by ion beam
sputtering on Si". Journal of Physics D: Applied Physics, 2000. 33: p. 2884.
79. Toropov, N.A., "Some Rare Earth Silicates". International Ceramic Congress,
1961: p. p. 435-442.
80. Landmann, M., E. Rauls, and W.G. Schmidt, "The electronic structure and
optical response of rutile, anatase and brookite TiO 2". Journal of Physics:
Condensed Matter, 2012. 24: p. 195503.
81. Benninghoven, A., F. Rudenauer, and H.W. Werner, "Secondary ion mass
spectrometry: basic concepts, instrumental aspects, applications and trends".
1987.
82. Binnig, G. and H. Rohrer, "Scanning tunneling microscopy". IBM Journal of
research and development, 2000. 44: p. 279-293.
83. Dupin, J.-C., et al., "Systematic XPS studies of metal oxides, hydroxides and
peroxides". Physical Chemistry Chemical Physics, 2000. 2: p. 1319-1324.
84. Zhang, J., "Application of Electron Energy Loss Spectroscopy to Ferroelectric
Thin Films". 2004.
104
85. Gun'ko, V.M., et al., "Characterization of Fumed Alumina/Silica/Titania in the
Gas Phase and in Aqueous Suspension". Journal of Colloid and Interface
Science, 1999. 220: p. 302-323.
86. Niu, D., et al., "Effect of N[sub 2] plasma on yttrium oxide and
yttrium–oxynitride dielectrics". Journal of Vacuum Science & Technology A:
Vacuum, Surfaces, and Films, 2004. 22: p. 445.
87. Zhimin, L., et al., "Structural and electrical characteristics of RF sputtered
YON gate dielectrics and their thin-film transistor applications". Journal of
Physics D: Applied Physics, 2011. 44: p. 155403.
88. Wang, X.J., et al., "The chemical and electronic structures of YO[sub x]N[sub y]
on Si(100)". Applied Physics Letters, 2008. 92: p. 042905.
89. Liang, J.-J., et al., "Enthalpy of Formation of Rare-earth Silicates Y2SiO5 and
Yb2SiO5 and N-containing Silicate Y10(SiO4)6N2". Journal of Materials
Research, 1999. 14: p. 1181-1185.
90. Wang, X.J., et al., "Interfacial and optical properties of YOxNygate dielectrics
at different deposition temperatures". Journal of Physics D: Applied Physics,
2009. 42: p. 215405.
校內:2016-08-15公開