簡易檢索 / 詳目顯示

研究生: 吳錚
Wu Cheng
論文名稱: 孔洞矽酸鋁及孔洞碳材在除溼及廢水處理應用之研究
Synthesis of Porous Aluminum Silicate and Carbons for Applications in Adsorption-Desorption Loop and Wastewater Treatment
指導教授: 林弘萍
Lin, Hong-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 82
中文關鍵詞: 矽酸鋁孔洞材料生物碳金屬離子吸附有機物吸附
外文關鍵詞: aluminum phyllosilicate, biochar, adsorption of metal ions, decreasing COD
相關次數: 點閱:161下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在於利用簡單的有機合成法合成孔體積大、高比表面積的矽酸鋁孔洞材料,再依材料性質應用於不同領域 (例如:應用於吸附製冷、吸附金屬離子),並和各種生物碳或微米尺度的矽藻土混合,改善材料的實際應用效果;以及觀察各種材料對有機物的吸附效果。
    藉由調整適當的Al/Si比和水熱參數,合成高吸水性的矽酸鋁孔洞材料,再使用褐藻酸作為黏著劑,將粉末材料造粒,以利後續應用在吸附製冷和改善粉塵問題。此外,因為孔洞碳材料具高導熱性,本實驗在比較各種孔洞碳材料之吸脫水性能以及取得成本後,篩選出適當之孔洞碳材,和高吸水性且不易燃之矽酸鋁孔洞材料混合造粒,以便在實際應用時兼顧降低脫附溫度和安全的效果。本研究已成功製造公斤級的菱殼炭/矽酸鋁孔洞複合材造粒,以菱殼炭/矽酸鋁重量比例為0.5的複合材為例,此材料可在相對濕度43.6%的情況下,達到10.3%水氣吸附量,且在脫附溫度50°C時,於6.5分鐘內脫附一半的飽和吸附量,因此,此混合孔洞材料在量產及應用於吸附製冷上的潛力相當值得期待。
    此外本實驗亦比較不同生物碳應用於吸附銅、鎳離子和吸附有機物上的效果,且成功利用雙氧水修飾含氧官能基至碳材上,增加碳材料的吸附效能。另外,本實驗室已成功開發以反滴定法合成之矽酸鐵孔洞材料,且在合成過程中不須水熱即可合成高比表面積之材料,在本研究中於反應中添加微米尺度的矽藻土,進一步提升材料之效能、加快造粒速度以及提升製程的穩定性,在未來大量製造和實際應用上相當有發展潛力。
    另外本研究成功使用多次吸附的方法,使台塑廢液的COD值降低97%以上。

    This research uses simple methods to synthesize aluminum phyllosilicate (Al-MS) and iron phyllosilicate and then apply them in different fields according to the material properties. The pure aluminum phyllosilicate demonstrated a good water adsorption performance but required a high desorption temperature. To reduce the desorption temperature, we compare the properties of different carbon and select the appropriate one, then mixed it with aluminum phyllosilicate. The desorption temperature was therefore reduced through the addition of porous water chestnut shell biochar (WCSB) with high thermal conductivity. The applicability of the WCSB/Al-MS for water adsorption-desorption loop applications was significantly improved by means of an alginate-calcium granulation process. Though the WCSB/Al-MS composite demonstrated decrease in adsorption rate compared with Al-MS composite, it showed a faster desorption rate. The results of a kinetics analysis indicated that the adsorption and desorption processes followed a pseudo-first order kinetics model of the adsorption-desorption loop. This research applied numerous carbons in the adsorption of metal ions and successfully used H2O2 to increase the capacity of carbons. Besides, the results of a kinetics analysis revealed that the adsorption and desorption processes followed a pseudo-first order kinetics model and the thermal dynamic analysis indicated that the adsorption behavior followed the Langmuir model. Ion phyllosilicate was synthesized by back-titration method. The process became faster and more robust after adding micron-sized diatomaceous earth. In addition, by adding more sodium alginate, the mechanical strength of the product maintained the same as the product without diatomaceous earth after granulation. Carbons with high surface area were good at decreasing the COD of wastewater. We successfully decrease 90% of the COD of wastewater by adsorption multiple times.

    摘要I 目錄VII 圖目錄IX 表目錄XIV 第一章 緒論 1 1-1 中孔洞材料 1 1-1-1 中孔洞材料介紹 1 1-1-2 中孔洞材料研究範疇 2 1-2 矽酸鹽(Silicate)的介紹 3 1-3 孔洞生物碳 5 1-4 頁矽酸鹽之介紹29 7 1-4-1 頁矽酸鹽之常見合成方法 7 1-5 吸附理論 8 1-5-1 吸附理論簡介 8 1-5-2 等溫吸附模式 9 1-6 吸附製冷技術(Adsorption refrigeration)39,40 10 第二章 實驗部份及儀器介紹 12 2-1 實驗藥品 12 2-2 實驗步驟 13 2-2-1 矽酸鋁之合成步驟 13 2-2-2 孔洞造粒複合材之合成步驟 14 2-2-3 以微米級矽藻土為載體搭配反滴定法合成矽酸鐵及造粒 15 2-2-4 菱殼炭活化 16 2-3 實驗儀器 17 2-3-1 熱重分析儀( Thermogravimetry Analysis ; TGA) 17 2-3-2 氮氣等溫吸-脫附測量儀 (N2 adsorption-desorption isotherm) 17 2-3-3 火焰原子吸收光譜儀 (Atomic Absorption Spectrophotometer;AA) 22 2-3-4 掃描式電子顯微鏡 (Scanning Electron Microscopy;SEM) 23 2-3-5 COD加熱分解爐 23 2-3-6 化學需氧量檢測儀 (Chemical Oxygen Demand Detector) 24 2-3-7 氣相層析質譜儀 (GC-MS) 24 2-3-8 新式吸附脫附測試儀 25 第三章 氧化矽孔洞材料之合成與除溼應用之研究 26 3-1 研究動機及目的 26 3-2 不同鋁矽比對吸水性之影響 26 3-3 探討矽酸鋁造粒後之吸附效能及機械強度 29 3-4 Al/Si比對穩定性之影響 32 3-5 孔洞碳材對水吸脫附之效能 34 3-6 孔洞碳材穩定性 37 3-7 菱殼炭/矽酸鋁孔洞複合材及孔洞碳材用於除溼系統之研究 38 3-7-1 吸附動力學(Sorption kinetic)模式57,58 39 3-7-2 矽酸鋁孔洞材料、孔洞碳材、菱殼炭/矽酸鋁孔洞複合材造粒之吸附動力學探討 40 3-7-3 矽酸鋁孔洞材料、孔洞碳材、菱殼炭/矽酸鋁孔洞複合材造粒之脫附動力學探討 46 3-7-4 炭材/矽酸鋁複合材造粒以曝曬脫附 51 第四章 以生物炭材吸附廢液之研究 52 4-1 研究動機 52 4-2 環境pH值對吸附效果之影響 52 4-3 不同孔洞碳材對重金屬吸附之效果 53 4-3-1 孔洞碳材吸附重金屬之等溫吸附模型70-72 55 4-3-2 孔洞碳材吸附重金屬之動力學模型57,76 59 4-4 以過氧化氫改善孔洞碳材吸附之效果 61 4-4-1 水熱條件對孔洞碳材之影響 61 4-4-2 過氧化氫濃度、反應溫度對孔洞碳材之影響 62 4-4-3 過氧化氫劑量之影響 65 第五章 矽酸鐵吸附鍶離子之研究 66 5-1 研究動機 66 5-2 材料基本鑑定 67 5-3 矽藻土/矽酸鐵比例 67 5-4 鐵矽莫耳比對鍶離子吸附效能 68 5-5 矽酸鐵/矽藻土複合材對鍶離子之選擇性 68 第六章 吸附水溶液中有機物之研究 70 6-1 研究動機 70 6-2 廢液中有機物種類 71 6-3 不同材料吸附量之比較 71 6-4 多次吸附效果 73 第七章 總結 74 參考文獻 76 圖目錄 圖1- 1 ΜCM-41合成示意圖2 1 圖1- 2中孔洞分子篩材料介尺度結構分類3 2 圖1- 3pH值對氧化矽物質表面的氧化矽縮合速率、電荷性質和電荷密度的影響22 4 圖1- 4氧化矽寡聚物在酸性條件下的形式 5 圖1- 5氧化矽寡聚物在鹼性條件下的形式 5 圖1- 61:1、 2:1之 phyllosilicate 結構示意圖30。 7 圖1- 7 Brunauer 的五大類型等溫吸附模式38 9 圖1- 8吸附製冷循環系統 10 圖1- 9理想吸附式製冷循環過程43 11 圖2- 1合成矽酸鋁孔洞材料之流程圖 13 圖2- 2造粒複合材流程圖 14 圖2- 3以反滴定法合成矽酸鐵孔洞材料及造粒流程圖 15 圖2- 4菱殼炭活化流程 16 圖2- 5 TGA加熱爐構造圖46 17 圖2- 6氣體分子以 (A)學吸附 (B)物理吸附 再受質上之示意圖 18 圖2- 7六大等吸附脫附曲線類型47 21 圖2- 8四大遲滯現象曲線47 22 圖2- 9原子吸收光譜儀基本構造 23 圖2- 10 化學需氧量檢測儀 24 圖2- 11 新式吸附脫附測試儀 (A)照片(B)結構圖 25 圖3- 1 pH值對氧化矽物質表面的氧化矽縮合速率、電荷性質和電荷密度的影響50 27 圖3- 2不同鋁矽比反應條件之矽酸鋁氮氣吸脫附圖 28 圖3- 3不同Al/Si比反應條件之矽酸鋁孔洞材料 (A):相對溼度85%,27°C下吸附水氣後之TGA曲線圖 (TGA升溫條件:5°C/min) (B)相對溼度85%下,溫度27°C水氣吸附速率關係圖 29 圖3- 4氯化鈣和海藻酸交聯反應示意圖 30 圖3- 5矽酸鋁造粒後不同粒徑尺寸圖。(A)粒徑0.5 cm,(B)粒徑0.3 cm。 30 圖3- 6鋁矽酸鹽孔洞材料之造粒前後(A)氮氣吸-脫附圖 (B)孔徑分布圖 31 圖3- 7矽酸鋁孔洞材料料經水氣飽和吸附後之 (A)TGA圖 (B)一次微分圖。(吸附條件:相對溼度85%,27°C。TGA升溫速率5°C/min) 31 圖3- 8不同鋁矽比之矽酸鋁造粒比表面積隨放置時間變化 32 圖3- 9矽酸鋁造粒放置不同時間之氮氣吸脫附圖 (A) Al/Si比 0.025% (B) Al/Si比0.075 (C)Al/Si比0.150。 33 圖3- 10不同Al/Si比之矽酸鋁造粒放置前後吸水比較 (A) Al/Si比0.025 (B) Al/Si比0.075 (C)Al/Si比0.150。(Origin測試之相對濕度 65%,放置一年多後測試之相對濕度 65%) 33 圖3- 11不同Al/Si比之造粒放置500多天後之水氣吸附圖(RH = 65%) 33 圖3- 12不同孔洞碳材於氮氣下之TGA曲線 35 圖3- 13不同孔洞碳材水氣吸附速率圖 (相對濕度85 %,27°C) 35 圖3- 14不同孔洞碳材之 (A)氮氣吸脫附圖 (B)孔徑分布圖 36 圖3- 15不同孔洞碳材之 (A)氮氣吸脫附圖 (B)孔徑分布圖 36 圖3- 16孔洞碳材料經水氣飽和吸附後之 (A)TGA圖 (B)一次微分圖。(吸附條件:相對溼度85%,27°C。TGA升溫速率5°C/min) 37 圖3- 17菱殼炭經水氣飽和吸附後之 (A)TGA圖 (B)一次微分圖。(吸附條件:相對溼度85%,27°C。TGA升溫速率5°C/min) 38 圖3- 18菱殼炭放置前後氮氣吸脫附圖 38 圖3-19不同Al/Si比之孔洞材料造粒主動式吸附速率圖 40 圖3- 20矽酸鋁造粒之水氣吸附動力學 (A)Pseudo-first order model (B)Pseudo-second order model。(We (g):總吸附量,Wt (g):在時間 t 時的吸附量) 41 圖3- 21矽酸鋁造粒放置超過500天後之水氣吸附動力學 (A)Pseudo-first order model (B)Pseudo-second order model。(We (g):總吸附量,Wt (g):在時間 t 時的吸附量) 42 圖3- 22不同孔洞碳材之造粒吸附圖 43 圖3- 23不同孔洞碳材之水氣吸附動力學 (A)Pseudo-first order model (B)Pseudo-second order model。(We (g):總吸附量,Wt (g):在時間 t 時的吸附量) 43 圖3- 24不同比例之菱殼炭混合矽酸鋁造粒之水氣吸附速率關係圖 45 圖3- 25不同比例之菱殼炭/矽酸鋁水氣吸附動力學 (A)Pseudo-first order model (B)Pseudo-second order model。(We (g):總吸附量,Wt (g):在時間 t 時的吸附量) 45 圖3- 26不同Al/Si比參數之矽酸鋁孔洞材料於60°C下(A)水氣脫附之重量變化(B) pseudo-first order 關係圖 47 圖3- 27不同Al/Si比參數之矽酸鋁孔洞材料於50°C下 (A)水氣脫附之重量變化 (B) pseudo-first order 關係圖 48 圖3- 28炭材料於60°C下 (A)水氣脫附之重量變化 (B) 之 pseudo-first order 關係圖 49 圖3- 29炭材料於50°C下 (A)水氣脫附之重量變化 (B) 之 pseudo-first order 關係圖 49 圖3- 30不同比例之複合材料於60°C下 (A)水氣脫附之重量變化 (B) 之 pseudo-first order 關係圖 50 圖3- 31不同比例之複合材料於50°C下 (A)水氣脫附之重量變化 (B) 之 pseudo-first order 關係圖 50 圖3- 32菱殼炭-矽酸鋁造粒複合材曝曬脫附關係圖 51 圖4- 1(A)菱稻炭在不同pH值下吸附Cu2+/Ni2+溶液之移除率(菱稻炭:0.15 g,溶液:50 mL,50 ppm) (B)銅、鎳離子溶液於不同pH值下濃度變化 53 圖4- 2不同孔洞碳材對鎳離子溶液之移除率 (孔洞碳材:0.15 g,溶液:50 mL,50 ppm) 54 圖4- 3菱殼炭吸附銅離子之(A)Langmuir模型 (B)Freundlich模型 (菱殼炭:0.3 g,溶液:50 mL,20-100 ppm) 57 圖4- 4不同孔洞碳材吸附鎳離子之Langmuir等溫吸附模型 (ACS20、竹炭、柚子木炭、銀合歡炭:0.5 g,溶液:50 mL,20-100 ppm;菱殼炭、活化菱殼炭、菱稻炭:0.3 g,溶液:50 mL,20-150 ppm) 57 圖4- 5不同孔洞碳材吸附銅離子之Langmuir等溫吸附模型 (ACS20、竹炭、柚子木炭、銀合歡炭:0.5 g,溶液:50 mL,15-100 ppm;菱殼炭、活化菱殼炭、菱稻炭:0.3 g,溶液:50 mL,20-150 ppm) 58 圖4- 6活化菱殼炭吸附銅離子 (A)不同時間移除率 (B)偽一級關係圖 (C)偽二級關係圖 (活化菱殼炭:0.30 g,銅離子溶液:50 ppm,50 mL) 59 圖4- 7菱殼炭以豆漿機 研磨之SEM 60 圖4- 8博陶公司研磨之菱殼炭SEM圖 60 圖4- 9微米級和奈米級之菱殼炭吸附銅離子關係圖 (孔洞碳材:0.3 g,溶液:50 mL,50 ppm) 61 圖4- 10不同水熱條件處理之銀合歡孔洞碳材對銅離子之移除率比較。銅離子溶液:50 ppm, 50 mL;孔洞碳材重:0.2 g 62 圖4- 11菱殼炭氧化前後氮氣吸脫附圖 64 圖4- 12 C1S的XPS (A)未處理的銀合歡炭 (B)氧化後的銀合歡炭 64 圖4- 13以雙氧水活化之銀合歡炭吸附銅離子(pH 6; Cu2+ 50 ppm, 50 mL; Carbon 0.2 g) 65 圖5- 1矽酸鐵附著於矽藻土之SEM 67 圖5- 2不同鐵矽莫爾比的矽藻土-矽酸對鍶離子之移除率關係圖 68 圖5- 3矽酸鐵孔洞材料於鹼性或中性下之示意圖 69 圖5- 4不同離子對鍶離子吸附之影響 69 圖6- 1不同孔洞碳材吸附有機物之移除率。劑量:1 g/10mL 72 圖6- 2COD值與吸附次數關係圖 73 表目錄 表1- 1孔洞大小分類及常見孔洞性物質 1 表2- 1實驗藥品 13 表3- 1鋁氧化矽材料於不同水熱條件下之比表面積和孔徑大小 28 表3- 2不同Al/Si比造粒之機械強度 30 表3- 3矽酸鋁孔洞材料粉末狀及造粒後之除溼劑性質整理 32 表3- 4不同孔洞碳材之性質整理 37 表3- 5矽酸鋁造粒之偽一級、偽二級動力學參數 41 表3- 6矽酸鋁造粒放置超過500天後之偽一級、偽二級動力學參數 42 表3- 7不同孔洞碳材造粒之偽一級、偽二級動力學參數 44 表3- 8不同比例之菱殼炭/矽酸鋁複合材造粒之偽一級、偽二級動力學參數 46 表3- 9不同Al/Si比造粒於不同溫度下之動力學參數 48 表3- 10不同炭材造粒於不同溫度下之動力學參數 49 表3- 11炭材/矽酸鋁造粒於不同溫度下之動力學參數 51 表 4 - 1不同孔洞碳材之元素比例 54 表 4 - 2不同孔洞碳材吸附銅、鎳離子之Langmuir等溫吸附模型參數 58 表 4 - 3活化菱殼炭之動力學參數 59 表 4 - 4以過氧化氫處理之銀合歡炭吸附銅離子之移除率 63 表 4 - 5以過氧化氫處理之柚子木炭吸附銅離子之移除率 63 表 4 - 6以過氧化氫處理之菱殼炭吸附銅離子之移除率 64 表 4 - 7氧化前後之銀合歡炭XPS數據 65 表 4 - 8台塑廢液成分 71 表5- 1矽酸鐵造粒之強度 67 表5- 2矽藻土添加量對過濾時間之影響 68 表6- 1不同材料性質整理 72

    1 Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. ORDERED MESOPOROUS MOLECULAR-SIEVES SYNTHESIZED BY A LIQUID-CRYSTAL TEMPLATE MECHANISM. Nature 359, 710-712, doi:10.1038/359710a0 (1992).
    2 Hoffmann, F., Cornelius, M., Morell, J. & Froba, M. Silica-based mesoporous organic-inorganic hybrid materials. Angew. Chem.-Int. Edit. 45, 3216-3251, doi:10.1002/anie.200503075 (2006).
    3 Kresge, C. T. & Roth, W. J. The discovery of mesoporous molecular sieves from the twenty year perspective. Chem. Soc. Rev. 42, 3663-3670, doi:10.1039/c3cs60016e (2013).
    4 Yu, J., Shi, J. L., Chen, H. R., Yan, J. N. & Yan, D. S. Effect of inorganic salt addition during synthesis on pore structure and hydrothermal stability of mesoporous silica. Microporous Mesoporous Mat. 46, 153-162, doi:10.1016/s1387-1811(01)00269-4 (2001).
    5 Fan, J. et al. Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties. Angew. Chem.-Int. Edit. 42, 3146-3150, doi:10.1002/anie.200351027 (2003).
    6 Wang, Y. P. et al. Control of pore size in mesoporous silica templated by a multiarm hyperbranched copolyether in water and cosolvent. Microporous Mesoporous Mat. 114, 222-228, doi:10.1016/j.micromeso.2008.01.006 (2008).
    7 Lin, H. P., Kuo, C. L., Wan, B. Z. & Mou, C. Y. Optimum synthesis of mesoporous silica materials from acidic condition. J. Chin. Chem. Soc. 49, 899-906, doi:10.1002/jccs.200200127 (2002).
    8 Alfredsson, V. & Anderson, M. W. Structure of MCM-48 revealed by transmission electron microscopy. Chem. Mat. 8, 1141-1146, doi:10.1021/cm950568k (1996).
    9 Lin, H. P. & Mou, C. Y. Structural and morphological control of cationic surfactant-templated mesoporous silica. Accounts Chem. Res. 35, 927-935, doi:10.1021/ar000074f (2002).
    10 Bhaumik, A. & Inagaki, S. Mesoporous titanium phosphate molecular sieves with ion-exchange capacity. J. Am. Chem. Soc. 123, 691-696, doi:10.1021/ja002481s (2001).
    11 Zhang, Z. T. et al. Strongly acidic and high-temperature hydrothermally stable mesoporous aluminosilicates with ordered hexagonal structure. Angew. Chem.-Int. Edit. 40, 1258-+, doi:10.1002/1521-3773(20010401)40:7<1258::Aid-anie1258>3.3.Co;2-3 (2001).
    12 Walcarius, A., Etienne, M. & Lebeau, B. Rate of access to the binding sites in organically modified silicates. 2. Ordered mesoporous silicas grafted with amine or thiol groups. Chem. Mat. 15, 2161-2173, doi:10.1021/cm021310e (2003).
    13 Yokoi, T., Yoshitake, H. & Tatsumi, T. Synthesis of amino-functionalized MCM-41 via direct co-condensation and post-synthesis grafting methods using mono-, di- and tri-amino-organoalkoxysilanes. J. Mater. Chem. 14, 951-957, doi:10.1039/b310576h (2004).
    14 Noll, F., Sumper, M. & Hampp, N. Nanostructure of diatom silica surfaces and of biomimetic analogues. Nano Letters 2, 91-95, doi:10.1021/nl015581k (2002).
    15 Tian, Z. R. R., Liu, J., Voigt, J. A., McKenzie, B. & Xu, H. F. Hierarchical and self-similar growth of self-assembled crystals. Angew. Chem.-Int. Edit. 42, 414-+, doi:10.1002/anie.200390126 (2003).
    16 Fang, X. L., Zhao, X. J., Fang, W. J., Chen, C. & Zheng, N. F. Self-templating synthesis of hollow mesoporous silica and their applications in catalysis and drug delivery. Nanoscale 5, 2205-2218, doi:10.1039/c3nr34006f (2013).
    17 Zhong, Z. Y., Yin, Y. D., Gates, B. & Xia, Y. N. Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads. Adv. Mater. 12, 206-+, doi:10.1002/(sici)1521-4095(200002)12:3<206::Aid-adma206>3.0.Co;2-5 (2000).
    18 Gao, W. H., Rigout, M. & Owens, H. Facile control of silica nanoparticles using a novel solvent varying method for the fabrication of artificial opal photonic crystals. J. Nanopart. Res. 18, 10, doi:10.1007/s11051-016-3691-8 (2016).
    19 Xia, Y. N., Gates, B., Yin, Y. D. & Lu, Y. Monodispersed colloidal spheres: Old materials with new applications. Adv. Mater. 12, 693-713, doi:10.1002/(sici)1521-4095(200005)12:10<693::Aid-adma693>3.0.Co;2-j (2000).
    20 Jin, H., Wang, L. & Bing, N. Mesoporous silica helical ribbon and nanotube-within-a-nanotube synthesized by sol–gel self-assembly. Materials letters 65, 233-235 (2011).
    21 Lin, H.-P. & Mou, C.-Y. Structural and morphological control of cationic surfactant-templated mesoporous silica. Accounts Chem. Res. 35, 927-935 (2002).
    22 Vinu, A., Murugesan, V. & Hartmann, M. Pore size engineering and mechanical stability of the cubic mesoporous molecular sieve SBA-1. Chem. Mat. 15, 1385-1393 (2003).
    23 Brinker, C. J. & Scherer, G. W. Sol→ gel→ glass: I. Gelation and gel structure. Journal of Non-Crystalline Solids 70, 301-322 (1985).
    24 Beesley, L. et al. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental pollution 159, 3269-3282 (2011).
    25 Zhang, Y. P., Adi, V. S. K., Huang, H. L., Lin, H. P. & Huang, Z. H. Adsorption of metal ions with biochars derived from biomass wastes in a fixed column: Adsorption isotherm and process simulation. Journal of Industrial and Engineering Chemistry 76, 240-244, doi:10.1016/j.jiec.2019.03.046 (2019).
    26 Huang, H.-L., Huang, Z.-H., Chu, Y.-C., Lin, H.-P. & Chang, Y.-J. Application of metallic nanoparticle-biochars with ionic liquids for thermal transfer fluids. Chemosphere 250, 126219 (2020).
    27 Chen, W.-H. et al. Biomass-derived biochar: From production to application in removing heavy metal-contaminated water. Process Safety and Environmental Protection (2022).
    28 Chen, W.-H. et al. Novel renewable double-energy system for activated biochar production and thermoelectric generation from waste heat. Energy & Fuels 34, 3383-3393 (2020).
    29 Sheldon, R. A., Wallau, M., Arends, I. & Schuchardt, U. Heterogeneous catalysts for liquid-phase oxidations: philosophers' stones or Trojan horses. Accounts Chem. Res. 31, 485-493 (1998).
    30 Pavón, E. & Alba, M. D. Swelling layered minerals applications: A solid state NMR overview. Progress in Nuclear Magnetic Resonance Spectroscopy 124, 99-128 (2021).
    31 Plabst, M., McCusker, L. B. & Bein, T. Exceptional ion-exchange selectivity in a flexible open framework lanthanum (III) tetrakisphosphonate. J. Am. Chem. Soc. 131, 18112-18118 (2009).
    32 Laird, D. A. & Shang, C. Relationship between cation exchange selectivity and crystalline swelling in expanding 2: 1 phyllosilicates. Clays and Clay Minerals 45, 681-689 (1997).
    33 Haruta, M., Yamada, N., Kobayashi, T. & Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. Journal of catalysis 115, 301-309 (1989).
    34 Bang, L. et al. Effects of silicate and carbonate substitution on the properties of hydroxyapatite prepared by aqueous co-precipitation method. Materials & Design 87, 788-796 (2015).
    35 Garcia, F. A. et al. Synthesis and characterization of CuO/Nb2O5/MCM-41 for the catalytic oxidation of diesel soot. Microporous Mesoporous Mat. 113, 562-574 (2008).
    36 Chi, Y. et al. Synthesis and characterization of fluorinated aminoalkoxide and iminoalkoxide gallium complexes: Application in chemical vapor deposition of Ga2O3 thin films. Organometallics 23, 95-103 (2004).
    37 Nares, R., Ramirez, J., Gutiérrez-Alejandre, A., Louis, C. & Klimova, T. Ni/Hβ-zeolite catalysts prepared by deposition− precipitation. The Journal of Physical Chemistry B 106, 13287-13293 (2002).
    38 Lu, S. & Gibb, S. W. Copper removal from wastewater using spent-grain as biosorbent. Bioresour. Technol. 99, 1509-1517 (2008).
    39 Wongsuwan, W., Kumar, S., Neveu, P. & Meunier, F. A review of chemical heat pump technology and applications. Applied Thermal Engineering 21, 1489-1519 (2001).
    40 Rieth, A. J. et al. Tunable metal–organic frameworks enable high-efficiency cascaded adsorption heat pumps. J. Am. Chem. Soc. 140, 17591-17596 (2018).
    41 Vasiliev, L., Mishkinis, D., Antukh, A. & Vasiliev Jr, L. Solar–gas solid sorption heat pump. Applied Thermal Engineering 21, 573-583 (2001).
    42 羅凱帆、黃蒨芸、李建宏、康育豪. 吸附式製冷循環系統技術. Journal of Taiwan Energy 1, 157-171 (2014).
    43 Pal, A. et al. Thermodynamic analysis of adsorption cooling cycle using consolidated composite adsorbents-ethanol pairs. ARPN J. Eng. Appl. Sci 11, 12234-12238 (2016).
    44 Saliba, S. et al. Combined influence of pore size distribution and surface hydrophilicity on the water adsorption characteristics of micro-and mesoporous silica. Microporous Mesoporous Mat. 226, 221-228 (2016).
    45 Wang, D. et al. Study of a novel silica gel–water adsorption chiller. Part I. Design and performance prediction. International journal of refrigeration 28, 1073-1083 (2005).
    46 石燕鳳. 熱分析儀器原理及應用, <https://slidesplayer.com/slide/11535387/> (2017).
    47 ALOthman, Z. A. A review: fundamental aspects of silicate mesoporous materials. Materials 5, 2874-2902 (2012).
    48 黃韻勳. 我國住宅部門電力消費關鍵影響因素分析. 臺灣能源期刊 5, 351-365 (2018).
    49 蔡宜庭. 氧化矽及矽酸鐵孔洞材料之合成與應用 碩士 thesis, 國立成功大學, (2019).
    50 Wu, S.-H., Mou, C.-Y. & Lin, H.-P. Synthesis of mesoporous silica nanoparticles. Chem. Soc. Rev. 42, 3862-3875 (2013).
    51 孫甯媯. 氧化矽及矽酸鐵孔洞材料在牙本質小管填補及鍶離子吸附應用之研究 碩士 thesis, 國立成功大學, (2020).
    52 Moura, P. et al. Water adsorption and hydrothermal stability of CHA zeolites with different Si/Al ratios and compensating cations. Catalysis Today 390, 99-108 (2022).
    53 Sizmur, T., Fresno, T., Akgul, G., Frost, H. & Moreno-Jimenez, E. Biochar modification to enhance sorption of inorganics from water. Bioresour. Technol. 246, 34-47, doi:10.1016/j.biortech.2017.07.082 (2017).
    54 Fletcher, A. J., Uygur, Y. & Thomas, K. M. Role of surface functional groups in the adsorption kinetics of water vapor on microporous activated carbons. The Journal of Physical Chemistry C 111, 8349-8359 (2007).
    55 Arrigo, R., Havecker, M., Schlogl, R. & Su, D. S. Dynamic surface rearrangement and thermal stability of nitrogen functional groups on carbon nanotubes. Chem. Commun., 4891-4893, doi:10.1039/b812769g (2008).
    56 Dungen, P., Schlogl, R. & Heumann, S. Non-linear thermogravimetric mass spectrometry of carbon materials providing direct speciation separation of oxygen functional groups. Carbon 130, 614-622, doi:10.1016/j.carbon.2018.01.047 (2018).
    57 Xie, Y. et al. Adsorption behavior and mechanism of Mg/Fe layered double hydroxide with Fe3O4-carbon spheres on the removal of Pb (II) and Cu (II). Journal of colloid and interface science 536, 440-455 (2019).
    58 Lagorsse, S., Campo, M., Magalhães, F. & Mendes, A. Water adsorption on carbon molecular sieve membranes: Experimental data and isotherm model. Carbon 43, 2769-2779 (2005).
    59 Sultan, M. et al. Water vapor sorption kinetics of polymer based sorbents: Theory and experiments. Applied Thermal Engineering 106, 192-202 (2016).
    60 Foley, N., Thomas, K., Forshaw, P., Stanton, D. & Norman, P. Kinetics of water vapor adsorption on activated carbon. Langmuir 13, 2083-2089 (1997).
    61 Aristov, Y. I., Tokarev, M., Cacciola, G. & Restuccia, G. Selective water sorbents for multiple applications, 1. CaCl2 confined in mesopores of silica gel: Sorption properties. Reaction Kinetics and Catalysis Letters 59, 325-333 (1996).
    62 Paserba, K. R. & Gellman, A. J. Kinetics and energetics of oligomer desorption from surfaces. Physical review letters 86, 4338 (2001).
    63 Tokarev, M. & Aristov, Y. I. Selective water sorbents for multiple applications, 4. CaCl2 confined in silica gel pores: sorption/desorption kinetics. Reaction Kinetics and Catalysis Letters 62, 143-150 (1997).
    64 中華民國工業安全衛生協會教材編輯委員會. 特定化學物質作業主管(職業安全衛生教育訓練教材). (中華民國工業安全衛生協會, 109).
    65 Zieliński, E., Wielgus, A., Sas, K. & Żukow, W. Health hazards resulting from exposure to heavy metals generated during the incineration of electronic and electrical waste in developing countries on the example of Agbogbloshie. (2018).
    66 Kim, H. S., Kim, Y. J. & Seo, Y. R. An overview of carcinogenic heavy metal: molecular toxicity mechanism and prevention. Journal of cancer prevention 20, 232 (2015).
    67 Zafar, M. N. et al. Characterization of chemically modified biosorbents from rice bran for biosorption of Ni (II). Journal of the Taiwan Institute of Chemical Engineers 46, 82-88 (2015).
    68 Agarwal, M. & Singh, K. Heavy metal removal from wastewater using various adsorbents: a review. Journal of Water Reuse and Desalination 7, 387-419 (2017).
    69 Inyang, M. I. et al. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology 46, 406-433 (2016).
    70 Eltaweil, A. S., Mohamed, H. A., Abd El-Monaem, E. M. & El-Subruiti, G. M. Mesoporous magnetic biochar composite for enhanced adsorption of malachite green dye: Characterization, adsorption kinetics, thermodynamics and isotherms. Advanced Powder Technology 31, 1253-1263, doi:10.1016/j.apt.2020.01.005 (2020).
    71 Ezzati, R. Derivation of Pseudo-First-Order, Pseudo-Second-Order and Modified Pseudo-First-Order rate equations from Langmuir and Freundlich isotherms for adsorption. Chemical Engineering Journal 392, doi:10.1016/j.cej.2019.123705 (2020).
    72 Atkins, P. & Paula, J. d. Physical chemistry thermodynamics, structure, and change. (WH Freeman and Company New York, 2014).
    73 Peter Atkins, J. d. P. Physical Chemistry: Thermodynamics, Structure, and Change, Tenth Edition. (Jessica Fiorillo, 2014).
    74 Yang, G.-X. & Jiang, H. Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater. Water research 48, 396-405 (2014).
    75 Hadjittofi, L., Prodromou, M. & Pashalidis, I. Activated biochar derived from cactus fibres–preparation, characterization and application on Cu (II) removal from aqueous solutions. Bioresour. Technol. 159, 460-464 (2014).
    76 Plazinski, W., Rudzinski, W. & Plazinska, A. Theoretical models of sorption kinetics including a surface reaction mechanism: a review. Advances in colloid and interface science 152, 2-13 (2009).
    77 Cheng, R. et al. Adsorption of Sr (II) from water by mercerized bacterial cellulose membrane modified with EDTA. Journal of hazardous materials 364, 645-653 (2019).
    78 Zhou, Y. et al. Sorption of heavy metals on chitosan-modified biochars and its biological effects. Chemical engineering journal 231, 512-518 (2013).
    79 Zhang, S. et al. Bamboo derived hydrochar microspheres fabricated by acid-assisted hydrothermal carbonization. Chemosphere 263, 7, doi:10.1016/j.chemosphere.2020.128093 (2021).
    80 Hwang, E.-D. et al. Effect of precipitation and complexation on nanofiltration of strontium-containing nuclear wastewater. Desalination 147, 289-294 (2002).
    81 Hong, H.-J. et al. Investigation of the strontium (Sr (II)) adsorption of an alginate microsphere as a low-cost adsorbent for removal and recovery from seawater. Journal of environmental management 165, 263-270 (2016).
    82 Horwitz, E. P., Dietz, M. L. & Fisher, D. E. SREX: a newprocess for the extraction and recovery of strontium from acidic nuclear waste streams. Solvent Extraction and Ion Exchange 9, 1-25 (1991).
    83 Feng, Z. H., Hu, W. W., Rom, W. N., Beland, F. A. & Tang, M. S. 4-aminobiphenyl is a major etiological agent of human bladder cancer: evidence from its DNA binding spectrum in human p53 gene. Carcinogenesis 23, 1721-1727, doi:10.1093/carcin/23.10.1721 (2002).
    84 Vol. 環署水字第1080028628號令 (2019).

    下載圖示 校內:2025-07-30公開
    校外:2025-07-30公開
    QR CODE