| 研究生: |
吳錚 Wu Cheng |
|---|---|
| 論文名稱: |
孔洞矽酸鋁及孔洞碳材在除溼及廢水處理應用之研究 Synthesis of Porous Aluminum Silicate and Carbons for Applications in Adsorption-Desorption Loop and Wastewater Treatment |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 矽酸鋁孔洞材料 、生物碳 、金屬離子吸附 、有機物吸附 |
| 外文關鍵詞: | aluminum phyllosilicate, biochar, adsorption of metal ions, decreasing COD |
| 相關次數: | 點閱:161 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在於利用簡單的有機合成法合成孔體積大、高比表面積的矽酸鋁孔洞材料,再依材料性質應用於不同領域 (例如:應用於吸附製冷、吸附金屬離子),並和各種生物碳或微米尺度的矽藻土混合,改善材料的實際應用效果;以及觀察各種材料對有機物的吸附效果。
藉由調整適當的Al/Si比和水熱參數,合成高吸水性的矽酸鋁孔洞材料,再使用褐藻酸作為黏著劑,將粉末材料造粒,以利後續應用在吸附製冷和改善粉塵問題。此外,因為孔洞碳材料具高導熱性,本實驗在比較各種孔洞碳材料之吸脫水性能以及取得成本後,篩選出適當之孔洞碳材,和高吸水性且不易燃之矽酸鋁孔洞材料混合造粒,以便在實際應用時兼顧降低脫附溫度和安全的效果。本研究已成功製造公斤級的菱殼炭/矽酸鋁孔洞複合材造粒,以菱殼炭/矽酸鋁重量比例為0.5的複合材為例,此材料可在相對濕度43.6%的情況下,達到10.3%水氣吸附量,且在脫附溫度50°C時,於6.5分鐘內脫附一半的飽和吸附量,因此,此混合孔洞材料在量產及應用於吸附製冷上的潛力相當值得期待。
此外本實驗亦比較不同生物碳應用於吸附銅、鎳離子和吸附有機物上的效果,且成功利用雙氧水修飾含氧官能基至碳材上,增加碳材料的吸附效能。另外,本實驗室已成功開發以反滴定法合成之矽酸鐵孔洞材料,且在合成過程中不須水熱即可合成高比表面積之材料,在本研究中於反應中添加微米尺度的矽藻土,進一步提升材料之效能、加快造粒速度以及提升製程的穩定性,在未來大量製造和實際應用上相當有發展潛力。
另外本研究成功使用多次吸附的方法,使台塑廢液的COD值降低97%以上。
This research uses simple methods to synthesize aluminum phyllosilicate (Al-MS) and iron phyllosilicate and then apply them in different fields according to the material properties. The pure aluminum phyllosilicate demonstrated a good water adsorption performance but required a high desorption temperature. To reduce the desorption temperature, we compare the properties of different carbon and select the appropriate one, then mixed it with aluminum phyllosilicate. The desorption temperature was therefore reduced through the addition of porous water chestnut shell biochar (WCSB) with high thermal conductivity. The applicability of the WCSB/Al-MS for water adsorption-desorption loop applications was significantly improved by means of an alginate-calcium granulation process. Though the WCSB/Al-MS composite demonstrated decrease in adsorption rate compared with Al-MS composite, it showed a faster desorption rate. The results of a kinetics analysis indicated that the adsorption and desorption processes followed a pseudo-first order kinetics model of the adsorption-desorption loop. This research applied numerous carbons in the adsorption of metal ions and successfully used H2O2 to increase the capacity of carbons. Besides, the results of a kinetics analysis revealed that the adsorption and desorption processes followed a pseudo-first order kinetics model and the thermal dynamic analysis indicated that the adsorption behavior followed the Langmuir model. Ion phyllosilicate was synthesized by back-titration method. The process became faster and more robust after adding micron-sized diatomaceous earth. In addition, by adding more sodium alginate, the mechanical strength of the product maintained the same as the product without diatomaceous earth after granulation. Carbons with high surface area were good at decreasing the COD of wastewater. We successfully decrease 90% of the COD of wastewater by adsorption multiple times.
1 Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. ORDERED MESOPOROUS MOLECULAR-SIEVES SYNTHESIZED BY A LIQUID-CRYSTAL TEMPLATE MECHANISM. Nature 359, 710-712, doi:10.1038/359710a0 (1992).
2 Hoffmann, F., Cornelius, M., Morell, J. & Froba, M. Silica-based mesoporous organic-inorganic hybrid materials. Angew. Chem.-Int. Edit. 45, 3216-3251, doi:10.1002/anie.200503075 (2006).
3 Kresge, C. T. & Roth, W. J. The discovery of mesoporous molecular sieves from the twenty year perspective. Chem. Soc. Rev. 42, 3663-3670, doi:10.1039/c3cs60016e (2013).
4 Yu, J., Shi, J. L., Chen, H. R., Yan, J. N. & Yan, D. S. Effect of inorganic salt addition during synthesis on pore structure and hydrothermal stability of mesoporous silica. Microporous Mesoporous Mat. 46, 153-162, doi:10.1016/s1387-1811(01)00269-4 (2001).
5 Fan, J. et al. Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties. Angew. Chem.-Int. Edit. 42, 3146-3150, doi:10.1002/anie.200351027 (2003).
6 Wang, Y. P. et al. Control of pore size in mesoporous silica templated by a multiarm hyperbranched copolyether in water and cosolvent. Microporous Mesoporous Mat. 114, 222-228, doi:10.1016/j.micromeso.2008.01.006 (2008).
7 Lin, H. P., Kuo, C. L., Wan, B. Z. & Mou, C. Y. Optimum synthesis of mesoporous silica materials from acidic condition. J. Chin. Chem. Soc. 49, 899-906, doi:10.1002/jccs.200200127 (2002).
8 Alfredsson, V. & Anderson, M. W. Structure of MCM-48 revealed by transmission electron microscopy. Chem. Mat. 8, 1141-1146, doi:10.1021/cm950568k (1996).
9 Lin, H. P. & Mou, C. Y. Structural and morphological control of cationic surfactant-templated mesoporous silica. Accounts Chem. Res. 35, 927-935, doi:10.1021/ar000074f (2002).
10 Bhaumik, A. & Inagaki, S. Mesoporous titanium phosphate molecular sieves with ion-exchange capacity. J. Am. Chem. Soc. 123, 691-696, doi:10.1021/ja002481s (2001).
11 Zhang, Z. T. et al. Strongly acidic and high-temperature hydrothermally stable mesoporous aluminosilicates with ordered hexagonal structure. Angew. Chem.-Int. Edit. 40, 1258-+, doi:10.1002/1521-3773(20010401)40:7<1258::Aid-anie1258>3.3.Co;2-3 (2001).
12 Walcarius, A., Etienne, M. & Lebeau, B. Rate of access to the binding sites in organically modified silicates. 2. Ordered mesoporous silicas grafted with amine or thiol groups. Chem. Mat. 15, 2161-2173, doi:10.1021/cm021310e (2003).
13 Yokoi, T., Yoshitake, H. & Tatsumi, T. Synthesis of amino-functionalized MCM-41 via direct co-condensation and post-synthesis grafting methods using mono-, di- and tri-amino-organoalkoxysilanes. J. Mater. Chem. 14, 951-957, doi:10.1039/b310576h (2004).
14 Noll, F., Sumper, M. & Hampp, N. Nanostructure of diatom silica surfaces and of biomimetic analogues. Nano Letters 2, 91-95, doi:10.1021/nl015581k (2002).
15 Tian, Z. R. R., Liu, J., Voigt, J. A., McKenzie, B. & Xu, H. F. Hierarchical and self-similar growth of self-assembled crystals. Angew. Chem.-Int. Edit. 42, 414-+, doi:10.1002/anie.200390126 (2003).
16 Fang, X. L., Zhao, X. J., Fang, W. J., Chen, C. & Zheng, N. F. Self-templating synthesis of hollow mesoporous silica and their applications in catalysis and drug delivery. Nanoscale 5, 2205-2218, doi:10.1039/c3nr34006f (2013).
17 Zhong, Z. Y., Yin, Y. D., Gates, B. & Xia, Y. N. Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads. Adv. Mater. 12, 206-+, doi:10.1002/(sici)1521-4095(200002)12:3<206::Aid-adma206>3.0.Co;2-5 (2000).
18 Gao, W. H., Rigout, M. & Owens, H. Facile control of silica nanoparticles using a novel solvent varying method for the fabrication of artificial opal photonic crystals. J. Nanopart. Res. 18, 10, doi:10.1007/s11051-016-3691-8 (2016).
19 Xia, Y. N., Gates, B., Yin, Y. D. & Lu, Y. Monodispersed colloidal spheres: Old materials with new applications. Adv. Mater. 12, 693-713, doi:10.1002/(sici)1521-4095(200005)12:10<693::Aid-adma693>3.0.Co;2-j (2000).
20 Jin, H., Wang, L. & Bing, N. Mesoporous silica helical ribbon and nanotube-within-a-nanotube synthesized by sol–gel self-assembly. Materials letters 65, 233-235 (2011).
21 Lin, H.-P. & Mou, C.-Y. Structural and morphological control of cationic surfactant-templated mesoporous silica. Accounts Chem. Res. 35, 927-935 (2002).
22 Vinu, A., Murugesan, V. & Hartmann, M. Pore size engineering and mechanical stability of the cubic mesoporous molecular sieve SBA-1. Chem. Mat. 15, 1385-1393 (2003).
23 Brinker, C. J. & Scherer, G. W. Sol→ gel→ glass: I. Gelation and gel structure. Journal of Non-Crystalline Solids 70, 301-322 (1985).
24 Beesley, L. et al. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environmental pollution 159, 3269-3282 (2011).
25 Zhang, Y. P., Adi, V. S. K., Huang, H. L., Lin, H. P. & Huang, Z. H. Adsorption of metal ions with biochars derived from biomass wastes in a fixed column: Adsorption isotherm and process simulation. Journal of Industrial and Engineering Chemistry 76, 240-244, doi:10.1016/j.jiec.2019.03.046 (2019).
26 Huang, H.-L., Huang, Z.-H., Chu, Y.-C., Lin, H.-P. & Chang, Y.-J. Application of metallic nanoparticle-biochars with ionic liquids for thermal transfer fluids. Chemosphere 250, 126219 (2020).
27 Chen, W.-H. et al. Biomass-derived biochar: From production to application in removing heavy metal-contaminated water. Process Safety and Environmental Protection (2022).
28 Chen, W.-H. et al. Novel renewable double-energy system for activated biochar production and thermoelectric generation from waste heat. Energy & Fuels 34, 3383-3393 (2020).
29 Sheldon, R. A., Wallau, M., Arends, I. & Schuchardt, U. Heterogeneous catalysts for liquid-phase oxidations: philosophers' stones or Trojan horses. Accounts Chem. Res. 31, 485-493 (1998).
30 Pavón, E. & Alba, M. D. Swelling layered minerals applications: A solid state NMR overview. Progress in Nuclear Magnetic Resonance Spectroscopy 124, 99-128 (2021).
31 Plabst, M., McCusker, L. B. & Bein, T. Exceptional ion-exchange selectivity in a flexible open framework lanthanum (III) tetrakisphosphonate. J. Am. Chem. Soc. 131, 18112-18118 (2009).
32 Laird, D. A. & Shang, C. Relationship between cation exchange selectivity and crystalline swelling in expanding 2: 1 phyllosilicates. Clays and Clay Minerals 45, 681-689 (1997).
33 Haruta, M., Yamada, N., Kobayashi, T. & Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. Journal of catalysis 115, 301-309 (1989).
34 Bang, L. et al. Effects of silicate and carbonate substitution on the properties of hydroxyapatite prepared by aqueous co-precipitation method. Materials & Design 87, 788-796 (2015).
35 Garcia, F. A. et al. Synthesis and characterization of CuO/Nb2O5/MCM-41 for the catalytic oxidation of diesel soot. Microporous Mesoporous Mat. 113, 562-574 (2008).
36 Chi, Y. et al. Synthesis and characterization of fluorinated aminoalkoxide and iminoalkoxide gallium complexes: Application in chemical vapor deposition of Ga2O3 thin films. Organometallics 23, 95-103 (2004).
37 Nares, R., Ramirez, J., Gutiérrez-Alejandre, A., Louis, C. & Klimova, T. Ni/Hβ-zeolite catalysts prepared by deposition− precipitation. The Journal of Physical Chemistry B 106, 13287-13293 (2002).
38 Lu, S. & Gibb, S. W. Copper removal from wastewater using spent-grain as biosorbent. Bioresour. Technol. 99, 1509-1517 (2008).
39 Wongsuwan, W., Kumar, S., Neveu, P. & Meunier, F. A review of chemical heat pump technology and applications. Applied Thermal Engineering 21, 1489-1519 (2001).
40 Rieth, A. J. et al. Tunable metal–organic frameworks enable high-efficiency cascaded adsorption heat pumps. J. Am. Chem. Soc. 140, 17591-17596 (2018).
41 Vasiliev, L., Mishkinis, D., Antukh, A. & Vasiliev Jr, L. Solar–gas solid sorption heat pump. Applied Thermal Engineering 21, 573-583 (2001).
42 羅凱帆、黃蒨芸、李建宏、康育豪. 吸附式製冷循環系統技術. Journal of Taiwan Energy 1, 157-171 (2014).
43 Pal, A. et al. Thermodynamic analysis of adsorption cooling cycle using consolidated composite adsorbents-ethanol pairs. ARPN J. Eng. Appl. Sci 11, 12234-12238 (2016).
44 Saliba, S. et al. Combined influence of pore size distribution and surface hydrophilicity on the water adsorption characteristics of micro-and mesoporous silica. Microporous Mesoporous Mat. 226, 221-228 (2016).
45 Wang, D. et al. Study of a novel silica gel–water adsorption chiller. Part I. Design and performance prediction. International journal of refrigeration 28, 1073-1083 (2005).
46 石燕鳳. 熱分析儀器原理及應用, <https://slidesplayer.com/slide/11535387/> (2017).
47 ALOthman, Z. A. A review: fundamental aspects of silicate mesoporous materials. Materials 5, 2874-2902 (2012).
48 黃韻勳. 我國住宅部門電力消費關鍵影響因素分析. 臺灣能源期刊 5, 351-365 (2018).
49 蔡宜庭. 氧化矽及矽酸鐵孔洞材料之合成與應用 碩士 thesis, 國立成功大學, (2019).
50 Wu, S.-H., Mou, C.-Y. & Lin, H.-P. Synthesis of mesoporous silica nanoparticles. Chem. Soc. Rev. 42, 3862-3875 (2013).
51 孫甯媯. 氧化矽及矽酸鐵孔洞材料在牙本質小管填補及鍶離子吸附應用之研究 碩士 thesis, 國立成功大學, (2020).
52 Moura, P. et al. Water adsorption and hydrothermal stability of CHA zeolites with different Si/Al ratios and compensating cations. Catalysis Today 390, 99-108 (2022).
53 Sizmur, T., Fresno, T., Akgul, G., Frost, H. & Moreno-Jimenez, E. Biochar modification to enhance sorption of inorganics from water. Bioresour. Technol. 246, 34-47, doi:10.1016/j.biortech.2017.07.082 (2017).
54 Fletcher, A. J., Uygur, Y. & Thomas, K. M. Role of surface functional groups in the adsorption kinetics of water vapor on microporous activated carbons. The Journal of Physical Chemistry C 111, 8349-8359 (2007).
55 Arrigo, R., Havecker, M., Schlogl, R. & Su, D. S. Dynamic surface rearrangement and thermal stability of nitrogen functional groups on carbon nanotubes. Chem. Commun., 4891-4893, doi:10.1039/b812769g (2008).
56 Dungen, P., Schlogl, R. & Heumann, S. Non-linear thermogravimetric mass spectrometry of carbon materials providing direct speciation separation of oxygen functional groups. Carbon 130, 614-622, doi:10.1016/j.carbon.2018.01.047 (2018).
57 Xie, Y. et al. Adsorption behavior and mechanism of Mg/Fe layered double hydroxide with Fe3O4-carbon spheres on the removal of Pb (II) and Cu (II). Journal of colloid and interface science 536, 440-455 (2019).
58 Lagorsse, S., Campo, M., Magalhães, F. & Mendes, A. Water adsorption on carbon molecular sieve membranes: Experimental data and isotherm model. Carbon 43, 2769-2779 (2005).
59 Sultan, M. et al. Water vapor sorption kinetics of polymer based sorbents: Theory and experiments. Applied Thermal Engineering 106, 192-202 (2016).
60 Foley, N., Thomas, K., Forshaw, P., Stanton, D. & Norman, P. Kinetics of water vapor adsorption on activated carbon. Langmuir 13, 2083-2089 (1997).
61 Aristov, Y. I., Tokarev, M., Cacciola, G. & Restuccia, G. Selective water sorbents for multiple applications, 1. CaCl2 confined in mesopores of silica gel: Sorption properties. Reaction Kinetics and Catalysis Letters 59, 325-333 (1996).
62 Paserba, K. R. & Gellman, A. J. Kinetics and energetics of oligomer desorption from surfaces. Physical review letters 86, 4338 (2001).
63 Tokarev, M. & Aristov, Y. I. Selective water sorbents for multiple applications, 4. CaCl2 confined in silica gel pores: sorption/desorption kinetics. Reaction Kinetics and Catalysis Letters 62, 143-150 (1997).
64 中華民國工業安全衛生協會教材編輯委員會. 特定化學物質作業主管(職業安全衛生教育訓練教材). (中華民國工業安全衛生協會, 109).
65 Zieliński, E., Wielgus, A., Sas, K. & Żukow, W. Health hazards resulting from exposure to heavy metals generated during the incineration of electronic and electrical waste in developing countries on the example of Agbogbloshie. (2018).
66 Kim, H. S., Kim, Y. J. & Seo, Y. R. An overview of carcinogenic heavy metal: molecular toxicity mechanism and prevention. Journal of cancer prevention 20, 232 (2015).
67 Zafar, M. N. et al. Characterization of chemically modified biosorbents from rice bran for biosorption of Ni (II). Journal of the Taiwan Institute of Chemical Engineers 46, 82-88 (2015).
68 Agarwal, M. & Singh, K. Heavy metal removal from wastewater using various adsorbents: a review. Journal of Water Reuse and Desalination 7, 387-419 (2017).
69 Inyang, M. I. et al. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology 46, 406-433 (2016).
70 Eltaweil, A. S., Mohamed, H. A., Abd El-Monaem, E. M. & El-Subruiti, G. M. Mesoporous magnetic biochar composite for enhanced adsorption of malachite green dye: Characterization, adsorption kinetics, thermodynamics and isotherms. Advanced Powder Technology 31, 1253-1263, doi:10.1016/j.apt.2020.01.005 (2020).
71 Ezzati, R. Derivation of Pseudo-First-Order, Pseudo-Second-Order and Modified Pseudo-First-Order rate equations from Langmuir and Freundlich isotherms for adsorption. Chemical Engineering Journal 392, doi:10.1016/j.cej.2019.123705 (2020).
72 Atkins, P. & Paula, J. d. Physical chemistry thermodynamics, structure, and change. (WH Freeman and Company New York, 2014).
73 Peter Atkins, J. d. P. Physical Chemistry: Thermodynamics, Structure, and Change, Tenth Edition. (Jessica Fiorillo, 2014).
74 Yang, G.-X. & Jiang, H. Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater. Water research 48, 396-405 (2014).
75 Hadjittofi, L., Prodromou, M. & Pashalidis, I. Activated biochar derived from cactus fibres–preparation, characterization and application on Cu (II) removal from aqueous solutions. Bioresour. Technol. 159, 460-464 (2014).
76 Plazinski, W., Rudzinski, W. & Plazinska, A. Theoretical models of sorption kinetics including a surface reaction mechanism: a review. Advances in colloid and interface science 152, 2-13 (2009).
77 Cheng, R. et al. Adsorption of Sr (II) from water by mercerized bacterial cellulose membrane modified with EDTA. Journal of hazardous materials 364, 645-653 (2019).
78 Zhou, Y. et al. Sorption of heavy metals on chitosan-modified biochars and its biological effects. Chemical engineering journal 231, 512-518 (2013).
79 Zhang, S. et al. Bamboo derived hydrochar microspheres fabricated by acid-assisted hydrothermal carbonization. Chemosphere 263, 7, doi:10.1016/j.chemosphere.2020.128093 (2021).
80 Hwang, E.-D. et al. Effect of precipitation and complexation on nanofiltration of strontium-containing nuclear wastewater. Desalination 147, 289-294 (2002).
81 Hong, H.-J. et al. Investigation of the strontium (Sr (II)) adsorption of an alginate microsphere as a low-cost adsorbent for removal and recovery from seawater. Journal of environmental management 165, 263-270 (2016).
82 Horwitz, E. P., Dietz, M. L. & Fisher, D. E. SREX: a newprocess for the extraction and recovery of strontium from acidic nuclear waste streams. Solvent Extraction and Ion Exchange 9, 1-25 (1991).
83 Feng, Z. H., Hu, W. W., Rom, W. N., Beland, F. A. & Tang, M. S. 4-aminobiphenyl is a major etiological agent of human bladder cancer: evidence from its DNA binding spectrum in human p53 gene. Carcinogenesis 23, 1721-1727, doi:10.1093/carcin/23.10.1721 (2002).
84 Vol. 環署水字第1080028628號令 (2019).