簡易檢索 / 詳目顯示

研究生: 林億雄
Lin, Yi-Hsiung
論文名稱: 可維修系統之轉折點分析的研究
A Study on Change Point Analysis for Repairable Systems
指導教授: 任眉眉
Zen, Mei Mei
學位類別: 博士
Doctor
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 99
中文關鍵詞: 有限制的最大概似估計方法不均勻布瓦松過程核密度估計方法S型軟體可靠度成長模型加權式核密度估計方法貝氏分析方法可維修系統
外文關鍵詞: Constrained MLE, Bayesian analysis, S-shaped reliability growth model, Non-homogenous Poisson process, Repairable systems, Kernel method, Weighted kernel method
相關次數: 點閱:122下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討可維修系統可靠度的問題,一般而言我們稱該系統的可靠度衰退是指當系統兩相鄰錯誤發生的間隔時間持續縮短;反之,當系統兩相鄰錯誤發生的間隔時間持續延長,我們稱此系統可靠度成長。然而,一個系統執行中可能會受很多因素的影響,例如:工作環境的改善、重大策略的實行、資源的重新配置等使該系統的可靠度發生改變,其系統可靠度從成長至衰退(或衰退至成長)。上述的問題等同在不均勻布瓦松過程中探討可靠度狀態的改變,常見系統模型如:S型軟體可靠度成長模型。首先,我們從最簡單具有一個轉折點的布瓦松過程,其事件發生頻率在轉折點前後不同探討開始。對於具有一個轉折點的布瓦松過程,在其參數估計上我們使用貝氏分析方法。至於轉折點的先驗分布選擇,我們提出使用具有單峯性質的分布並以貝氏因子為比較選擇基準。研究發現具有單峯性質的轉折點先驗分布,其表現明顯優於均勻先驗分布;同時,在轉折點估計上我們提出使用有限制的最大概似估計方法,並且證明有限制的最大概似估計量具有一致性。接續,我們將系統模型推廣至具有單調性質的不均勻布瓦松過程中(例如:Power law process)。關於其錯誤再現率,我們提出使用無母數核密度估計方法。研究發現傳統無母數核密度估計方法無法保留系統可靠度的單調性質,因此我們提出使用無母數加權式核密度估計方法用於保留系統可靠度單調性質的限制。最後,我們亦以無母數加權式核密度估計方法推廣至估計S型軟體可靠度成長模型之具有單峯性質的錯誤再現率,該方法可以成功保留具有單峯限制的錯誤再現率,經模擬發現該方法有不錯的估計效果。

    The main purpose of this study is to discuss the problem of reliability in repairable systems. Generally, we say that a repairable system is deteriorating (reliability decay), if the time between failures tend to get shorter with advancing age; if the time between failures tend to increase, then we say that the system is improving (reliability growth). In fact, the reliability from growth to decay (or vice versa) in a system may be affected by many factors such as improvement of the environment, strategy and resources. It is closely related to the problem of changing reliable state for a non-homogenous Poisson process. For example, the S-shaped software reliability growth model is a kind of these models. This study is focused on the detection of time at which point processes undergo abrupt changes. First, we started with the simplest model, assuming events occur according to a Poisson process, whose rate changes at an unknown change point. We used Bayesian analysis for Poisson process with a change-point. Regarding to the prior of change-point, we suggested using unimodal property. On the choices of prior, we chose Bayes factors for comparison. Our research found that it is more realistic to put a unimodal prior on it, while outlines the important feature of prior beliefs. Meanwhile, a maximum likelihood estimator for the change-point subject to a suitable constraint was proposed, which was shown to be consistent. For power law process, we used nonparametric kernel method to estimate the intensity function. Since its intensity function is monotonic, we proposed a weighted kernel estimate subject to the monotonic constraint. For an S-shaped software reliability growth model, its intensity function is unimodal. A weighted kernel estimate fitted the model appropriately, where the ordinary kernel estimate didn't guarantee the unimodality for an S-shaped growth model.

    1 Introduction 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Frame of the Work . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 A Change-point Poisson Process 9 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Parametric Inference for the Intensity . . . . . . . . . . . . . . . . 11 2.2.1 British Coal-mining Disaster Data . . . . . . . . . . . . . . 11 2.2.2 Parametric Bayes Estimation of the Intensity . . . . . . . . 12 2.2.3 Constrained Maximum Likelihood Estimators of the Intensity 30 2.2.4 Consistency of the Constrained MLE . . . . . . . . . . . . 33 2.2.5 Bootstrap Confidence Intervals for the Constrained MLE’s . 37 2.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 39 3 Power Law Process with a Change-point 41 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2 Power Law Process . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.1 Parametric inference for the intensity . . . . . . . . . . . . 42 3.2.2 Nonparametric inference for the intensity . . . . . . . . . . 42 3.2.3 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . 43 3.3 Power Law Process with a change-point . . . . . . . . . . . . . . . 50 3.3.1 Parametric inference for the intensity . . . . . . . . . . . . 52 3.3.2 Nonparametric inference for the intensity . . . . . . . . . . 55 3.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 56 4 S-shaped Software Reliability Growth Models 57 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2 Parametric NHPP-gamma-k model for the intensity . . . . . . . . . 58 4.2.1 Parametric estimation of the intensity . . . . . . . . . . . . 58 4.2.2 Confidence region . . . . . . . . . . . . . . . . . . . . . . 59 4.2.3 Bayesian Inference for the NHPP-gamma-k Model . . . . . 61 4.3 Nonparametric inference for the intensity . . . . . . . . . . . . . . 62 4.3.1 The unimodality kernel estimation method . . . . . . . . . 62 4.3.2 The confidence region by Bootstrap resampling . . . . . . . 63 4.3.3 Boundary effects adjustment . . . . . . . . . . . . . . . . . 64 4.4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.4.1 Parametric estimation . . . . . . . . . . . . . . . . . . . . . 64 4.4.2 Nonparametric estimation . . . . . . . . . . . . . . . . . . 66 4.4.3 Comparison between parametric and nonparametric approaches 67 4.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 70 5 Conclusions 72 Bibliography 74 A Estimation Methods 82 A.1 Gibbs Sampler Method . . . . . . . . . . . . . . . . . . . . . . . . 82 A.2 Metropolis-Hastings Algorithm . . . . . . . . . . . . . . . . . . . . 83 A.3 Kernel Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 A.4 Kernel Estimation with Constraints . . . . . . . . . . . . . . . . . . 85 B Constructing Approximate Confidence Intervals 89 B.1 Normal-Approximation Confidence Intervals . . . . . . . . . . . . 89 B.2 Bayesian Credible Sets . . . . . . . . . . . . . . . . . . . . . . . . 90 B.3 Bootstrap Resampling Confidence Intervals . . . . . . . . . . . . . 91 C Estimation in the PLP-CP Model 94 D Estimation of the change-point in the PLP-CP Model 97

    Akman, V. E. (1994). Change-point and change-curve modelling in stochastic
    process and spatial statistics. Journal of Applied Statistical Science 1(4),
    403–423.
    Akman, V. E. and Raftery, A. E. (1986). Asymptotic inference of a change-point
    poisson process. The Annals of Statistics 14, 1583–1590.
    Ascher, H. and Feingold, H. (1984). Repairable System Reliability: Modeling,
    Inference, Misconception and their Causes. New York: Marcel Dekker.
    Bain, L. J. and Engelhardt,M. (1991). Statistical Analysis of Reliability and Lifetesting
    Models 2nd. New York: Marcel Dekker.
    Baker, R. D. (1996). Some new tests of the power law process. Technometrics
    38(3), 256–265.
    Berger, J. (1990). Robust Bayesian analysis: senesitivity to the prior. Journal Of
    Statistical Planning and Inference 25, 303–328.
    Berger, J. O. (1995). Statistical Decision Theory and Bayesian Analysis. 2nd.
    New York: Springer-Verlag.
    Berliner, L. M. and Goel, P. (1986). Incorporating partial prior information with
    specified quantiles:ranges of posterior probabilities. Technical Report No.
    357, Ohio State University, Dept. of Statistics.
    Bowman, A. (1984). An alternative method of cross-validation for the smoothing
    of density estimates. Biometrika 71, 353–360.
    Carlin, B. P., Gelfand, A. E. and Smith, A. F. M. (1992). Hierararchical bayesian
    analysis of change-point problems. Applied Statistics 41, 389–405.
    Carlstein, E., Muller, H. G. and Siegmund, D. (1995). Change-Point problems.
    IMS Lecture Notes-Monograph Series, Volume 23. Institute of Math. Statist.:
    Hayward, CA.
    Casella, G. and George, E. I. (1992). Explaining the gibbs sampler. The American
    Statistician 46, 167–174.
    Chang, Y. P. (2001). Estimation of parameters for nonhomogenous poisson
    process : Software reliability with change-point model. Communication in
    Statistics–Simulation 30(3), 623–635.
    Chen, Y. P. and Singpurwalla, N. D. (1994). A non-gaussian kalman filter model
    for tracking software reliability. Statistica Sinica 46, 535–548.
    Chib, S. and Greenberg, E. (1995). Understanding the metropolis-hastings algorithm.
    The American Statistician 49, 327–335.
    Cline, D. and Hart, J. (1991). Kernel estimation of densities with discontinuities
    or discontinuous derivatives. Statistics 22, 69–84.
    Cowling, A., Hall, P. and Phillips, M. J. (1996). Bootstrap confidence regions for
    the intensity of a poisson point process. Journal of the American Statistical
    Association 91, 1516–1524.
    Cox, D. R. and Lewis, P. A.W. (1966). The Statistical analysis of Series of events.
    London: Methuen.
    Crow, L. H. (1974). Reliability analysis for complex system:repairable systems.
    Reliability and Biometry, 379–410.
    Crowder,M. J., Kimber, A. C., Smith, R. L. and Sweeting, T. J. (1991). Statistical
    Analysis of Reliability Data. London: Chapman and Hall.
    DasGupta, A. and Bose, A. (1988). -minmax estimation and restricted risk
    Bayes estimation of multiple Poisson means. Statistics and Decsions 6, 311–
    341.
    DeRobertis, L. (1978). The use of partial prior knowledge in bayesian inference.
    Ph.D. dissertation, Yale University, Dept. of Statistics.
    Diggle, P. and Marron, J. S. (1989). Equivalence of smoothing parameter selectors
    in density and intensity estimation. Journal of the American Statistical
    Association 83, 739–800.
    Duane, J. T. (1964). Learning curve approach to reliability. IEEE Transaction on
    Aerospace 2, 563–566.
    Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. New
    York: Chapman and Hall.
    Feller,W. (1971). An introduction to Probability and its application 2. New York:
    2nd ed, John Wiley.
    Gelfand, A. E. and Smith, A. F. M. (1990). Sampling based approaches to calculating
    marginal densities. Journal of the American Statistical Association 85,
    398–409.
    Geman, S. and Geman, D. (1984). Stochastic relaxation, gibbs distributions, and
    the bayesian restoration of images. IEEE Transactions on Pattern Analysis
    and Machine Intelligence 6, 721–741.
    Goel, A. L. and Okumoto, K. (1979). Time dependent error detection rate model
    for software reliability and other performance measures. IEEE Transactions
    on Reliability 28, 206–211.
    Good, I. J. (1983). Good Thinking: The Foundations of Probability and Its Applications.
    Minneapolis: University of Minnesota.
    Green, P. J. (1995). Reversible jump markov chain monte carlo computation and
    bayesian model determination. Biometrika 82, 711–732.
    Hall, P. and Huang, L. S. (2002). Unimodal density estimation using kernel methods.
    Statistica Sinica 12, 965–990.
    Hall, P., Huang, L. S., Gifford, J. A. and Gijbels, I. (2001). Nonparametric estimation
    of hazard rate under the constraint of monotonicity. Journal of Computational
    and Graphical Statistics 10(3), 592–614.
    Henderson, R. and Matthews, J. N. S. (1993). An investigation of change-points
    in the annual number of cases of haemolytic uraemic syndrome. Applied
    Statistics 42, 461–471.
    Hinkley, D. V. (1970). Inference about the change-point in a sequence of random
    variables. Biometrika 57(1), 1–17.
    Hinkley, D. V. (1971). Inference about the change-point from cumulative sum
    tests. Biometrika 58(3), 509–523.
    Huber, P. J. (1973). Robust Statistics. New York: John Wiley.
    Jarrett, R. G. (1979). A note on the intervals between coal mining disasters.
    Biometrika 66, 191–193.
    Khoshgoftaar, T. M. and Woodcock, T. G. (1991). Software reliability model
    selection, a case study. Proc. Int. Symp. on Software Reliability Eng., 183–
    191.
    Krishnaiah, R. R. and Miao, B. Q. (1988). Review about estimation of changepoints
    In Handbook of Statistics 7. Amsterdam: North-Holland.
    Kuo, L., Lee, J. C., Choi, K. and Yang, T. Y. (1997). Bayes inference for s-shaped
    software reliability growth models. IEEE Transactions on Reliability 46(1),
    76–80.
    Kuo, L. and Yang, T. Y. (1995). Bayesian computation of software reliability.
    Journal of Computational and Graphical Statistics 4, 65–82.
    Lee, C. B. (1998). Bayesian analysis of a change-point in exponential families
    with application. Computational Statistics and Data Analysis 27, 195–208.
    Lee, C. H., Kim, Y. T. and Park, D. H. (2004). S-shaped software reliability
    growth models derived from stochastic differential equations. IIE Transactions
    36, 1193–1199.
    Lee, L. (1980). Testing adequacy of the weibull and log linear models for a poisson
    process. Technometrics 22, 195–200.
    Lin, Y. H. and Zen, M. M. (2003). Change-point estimation of a poisson process
    based on arrival times. Technical Report No. 52, Department of Statistics,
    National Cheng-Kung University.
    Lin, Y. H. and Zen,M.M. (2007). Empirical Bayesian analysis of a change-point
    Poisson process. Bulletin of Diwan College of Management 2, 1–15.
    Loader, C. R. (1992). A log-linear model for a change point poisson process. The
    Annals of Statistics 20, 1391–1411.
    Maguire, B. A., Pearson, E. S. and Wynn, A. H. A. (1952). The time intervals
    between industrial accidents. Biometrika 39, 168–180.
    Meeker, W. Q. and Escobar, L. A. (1998). Statistical Methods for Reliability
    Data. New York: John Wiley and Sons, Inc.
    Morris, C. (1983). Parametric empirical Bayes inference: theory and applications.
    Journal of the American Statistical Association 78, 47–65.
    Nikora, A. P. and Lyu, M. R. (1996). Software reliability measurement experience.
    New York: McGraw-Hill.
    Ohba, M., Yamada, S., Takeda, K. and Osaki, S. (1982). S-shaped software reliability
    growth curve:how good is it? COMPSAC’82, 38–44.
    Park, W. J. and Kim, Y. G. (1992). Goodness-of-fit tests for the power law process.
    IEEE Transactions on Reliability 41(1), 107–111.
    Phillips, M. J. (2000). Bootstrap confidence regions for the expected rocof of a
    repairable system. IEEE Transactions on Reliability 49(2), 204–208.
    Phillips, M. J. (2001). Estimation of the expected rocof of a repairable system
    with bootstrap confidence region. Quality and Reliability Engineering International
    17, 159–162.
    Raftery, A. E. and Akman, V. E. (1986). Bayesian analysis of a poisson process
    with a change-point. Biometrika 73, 85–89.
    Rigdon, S. E. and Basu, A. P. (1989a). Estimating the intensity function of a
    weibull process at the current time: Failure truncated case. Journal of Statistical
    Computation and Simulation 30, 17–38.
    Rigdon, S. E. and Basu, A. P. (1989b). The power law process: A model for the
    reliability of repairable system. Journal of Quality Technology 21(4), 251–
    260.
    Rigdon, S. E. and Basu, A. P. (2000). Statistical Methods for the Reliability of
    Repairable Systems. New York: John Wiley.
    Robbins, J. (1955). An empirical Bayes approach to statistcs: senesitivity to the
    prior. In Proc. Third Berkeley Symp. Math. Statist. Probab. University of California
    Press, Berkeley.
    Rudemo, C. (1982). Empirical choice of histograms and kernel density estimators.
    Scandinavian Journal of Statistics 9, 65–78.
    Ruggeri, F. and Sivaganesan, S. (2005). On modelling cahnge-points in nonhomogenous
    poisson processes. Statistical Inference for Stochastic Processes
    8, 311–329.
    Scariano, S. M. and Watkins, T. A. (1988). Nonparametric point estimators for
    the change-point problem. Communication in Statistics–Theory and Methods
    17(11), 3645–3675.
    Schuster, E. F. (1985). Incorporating support constraints into nonparametric estimators
    of densities. Communication in Statistics–Theory and Methods 14,
    1123–1136.
    Silverman, B. W. (1993). Density Estimation for Statistics and Data Analysis.
    London: Chapman and Hall.
    Sivaganesan, S. and Berger, J. (1989). Ranges of posterior measures for priors
    with unimodal contaminations. The Annals of Statistics 17(2), 868–889.
    Smith, A. F. M. (1975). A bayesian approach to inference about a change-point
    in a sequence of random variables. Biometrika 62(2), 407–416.
    Tanner, M. and Wong, W. (1987). The calculation of posterior distributions by
    data augmentation. Journal of the American Statistical Association 82, 528–
    550.
    Tierney, L. (1994).Markov chains for exploring posterior distributions (with discussion).
    The Annals of Statistics 22, 1701–1758.
    West, W. R. and Ogden, R. T. (1997). Continuous-time estimation of a changepoint
    in a poisson process. Journal of Statistical Computation and Simulation
    56, 293–302.
    Worsley, K. J. (1986). Confidence regions and test for a change-point in a sequence
    of exponential family random variables. Biometrika 73, 91–104.
    Yamada, S., Ohba, M. and Osaki, S. (1983). S-shaped reliability growth modeling
    for software error detection. IEEE Transactions on Reliability 32, 475–
    478.
    Yamada, S. and Osaki, S. (1983). Reliability growth models for hardware and
    software systems based on nonhomogeneous poisson process: A survey. Microelectronics
    and Reliability 23, 91–112.
    Yao, Y. C. (1986). Maximum likelihood estimation in hazard rate models with
    a change-point. Communication in Statistics–Theory and Methods 15(8),
    2455–2466.
    Zen, M.M. and DasGupta, A. (1993). Estimating a Binomial parameter:is robust
    Bayes real Bayes. Statistics and Decsions 11, 37–60.
    Zhao, M. (1993). Change-point problems in software and hardware reliability.
    Communication in Statistics–Theory and Methods 22, 757–768.

    下載圖示 校內:2010-12-29公開
    校外:2010-12-29公開
    QR CODE