簡易檢索 / 詳目顯示

研究生: 鄭文義
Jeng, Wen-Yih
論文名稱: 利用核磁共振光譜分析大腸桿菌表現的人類細胞色素C重組蛋白之三維結構研究
Expression in E. coli and NMR Characterization of Human Cytochrome c
指導教授: 莊偉哲
Chuang, Woei-Jer
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 175
中文關鍵詞: 細胞色素C微過氧化酶核磁共振細胞凋零血基質蛋白質重組蛋白共同表現蛋白質基因工程
外文關鍵詞: cytochrome c, microperoxidase, NMR, apoptosis, hemoproteins, recombinant protein, coexpression, protein engineering
相關次數: 點閱:93下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   細胞色素C是一種電子攜帶蛋白,在電子傳遞鍊中會從cytochrome c reductase接受電子後再將電子傳遞給cytochrome c oxidase,除了電子傳遞的生理功能之外,細胞色素C具有促進Apaf-1與pro-caspase-9聚集形成apoptosome的複合體而導致細胞走向細胞凋零及促進氧化壓力(oxidative stress)誘導疾病發生之生理功能,細胞色素C能具有多樣性的生理功能,主要都是必須與其他的蛋白質進行蛋白質與蛋白質間交互作用(protein-protein interaction),才能執行正常的生理功能;雖然,已經有許多物種的細胞色素C被純化出來並做過許多詳細的研究,但是人類的細胞色素C的相關研究則相當貧乏,為了更透徹地研究人類細胞色素C,使人類細胞色素C可作為治療用蛋白,以及探討細胞色素C與Apaf-1如何進行交互作用及細胞色素C被nitrosylation後對其結構之影響,因此,首先我們必須獲得具有正確結構與功能的人類細胞色素C重組蛋白。

      微過氧化酶為水溶性的微血基質蛋白質,是一個被廣泛使用的血基質蛋白質模型,含有不同胜肽數的微過氧化酶(MP-5, MP-6, MP-8, MP-9, & MP-11)可由細胞色素C經不同的蛋白水解酶的水解後獲得,而乙醯化後的微過氧化酶(Ac-MPs)更可提高其對水的溶解度,微過氧化酶本身具有過氧化酶的酵素活性,在含有過氧化氫的狀態下可經由過氧化酶型態的反應氧化許多的有機物,除了過氧化酶的酵素活性之外,微過氧化酶也具有cytochrome P-450即單氧化酶(monooxygenase)的酵素活性可以對許多的有機物進行氫氧化反應,然而,微過氧化酶的過氧化氫酶活性尚未被清楚的研究,以及微過氧化酶的酵素活性比天然的過氧化酶的酵素活性低很多,因此,我們則對微過氧化酶的過氧化氫酶活性作了進一步的分析,以及為了改善微過氧化酶的酵素活性,我們利用蛋白質基因工程的方式製備不同的酵母菌細胞色素C的突變株,進而製備出各種不同的微過氧化酶進行相關的研究。

      在人類細胞色素C的研究中,我們在大腸桿菌中成功地表現出及純化到10-15 mg/L的人類細胞色素C重組蛋白,在氧化還原電位分析中,我們所製備的人類細胞色素C重組蛋白為0.246伏特與天然馬類細胞色素C的0.249伏特有近似的結果,同時根據NMR的研究結果發現人類細胞色素C重組蛋白與天然馬類細胞色素C具有相同的三級結構,進一步為了研究細胞色素C與Apaf-1如何進行交互作用,我們利用結構模擬的方式建構Apaf-1的兩個WD-40 repeats區域的結構,然後蛋白質docking的方式,推測出細胞色素C與Apaf-1進行交互作用的方式,我們的結果不僅證實利用大腸桿菌表現出來的人類細胞色素C重組蛋白與天然馬類細胞色素C具有相似的功能與結構,而且目前已經知道細胞色素C與許多的疾病的發生有關,因此,針對細胞色素C以及與細胞色素C有交互作用之蛋白的功能與結構之研究,將有助於獲得及洞悉與人類疾病相關資訊之基礎。

      在微過氧化酶的研究中,我們發現微過氧化酶除了已知的過氧化酶與單氧化酶二種酵素型態的活性以外還具有過氧化氫酶型態的酵素活性,其中Ac-MP-8分解過氧化氫時的Km與kcat分別為40.9 mM與4.1 sec<sup>-1</sup>,而Ac-MP-8對分解過氧化氫的酵素活性(specificity constant)(kcat/Km)為100.2 M<sup>-1</sup> sec<sup>-1</sup>,這結果分別為過氧化酶酵素型態的活性的1/12 ~ 1/5及單氧化酶酵素型態的活性的1/100 ~ 1/50,這結果顯示微過氧化酶具有過氧化酶、單氧化酶及過氧化氫酶這三種酵素型態的活性,而第五配位基為組氨酸(Histidine)的微過氧化酶在這三種酵素型態的活性高低分別為:過氧化酶>單氧化酶>過氧化氫酶,在微過氧化酶進行過氧化酶酵素活性測定中加入一些guanidinium hydrochoride或ammonium-derivative bases分子,如: Mes、Mops、Hepes、Tricine與Tris,可以增加Ac-MP-8的過氧化酶型態的酵素活性3 ~ 11倍,另外,四種利用酵母菌細胞色素C的突變株所製備出來的微過氧化酶實驗中,我們發現在Cys-14到Cys-17中的胺基酸置換成帶正電荷的離氨酸(lysine)或蛋氨酸(arginine)可以增加其過氧化酶型態的酵素活性至原先活性的兩倍,此外,因為微過氧化酶在作為生物感應器(biosensor)及工業應用上具有相當大的發展潛力,因此,我們研究的成果希望可作為改善微過氧化酶酵素活性的基礎,用以發展出高活性之微過氧化酶期望可作為工業應用之酵素。

      Cytochrome c is an electron carrier protein that is responsible for accepting an electron from cytochrome c reductase and for transferring an electron to cytochrome c oxidase. In addition to functioning as an electron carrier, cytochrome c promotes the assembly of a caspase-activating complex to induce cell apoptosis and stimulates the oxidative stress-induced diseases. These diverse functions of cytochrome c are associated with the protein-protein interactions between cytochrome c and its interacting proteins. Although many cytochromes c from different species have been purified and studied, little is known about human cytochrome c. To characterize human cytochrome c, to use human cytochrome c as the therapeutic agent, and to study how cytochrome c interacts with Apaf-1 and effect of nitrosylation on structure-activity relationships of cytochrome c, it is essential to obtain recombinant human cytochrome c with the correct fold.

      Microperoxidases (MPs) are water-soluble heme species that can serve as models for the heme proteins. MPs with various peptides (MP-5, MP-6, MP-8, MP-9, MP-11, & MP-17) are obtained by proteolytic digestion of cytochromes c. (Ac-MPs) exhibit much less tendency to aggregate in aqueous solution than their unacetylated precursor. Both MPs and Ac-MPs the peroxidase activities and can convert a wide variety of organic compounds at the expense of hydrogen peroxide in a peroxidase-type reaction. In addition to the peroxidase-type reaction, MP also catalyzes cytochrome P450-type oxygen-transfer reactions. However, the catalase activity of MP is not well understood and the enzyme activities of MP are much lower than native enzyme. To improve the enzyme activities of MP, we engineered yeast cytochrome c by site-directed mutagenesis and obtained the modified MPs by proteolytic digestion of recombinant cytochromes c.

      In this study of human cytochrome c, we expressed human cytochrome c in E. coli and purified to homogeneity with a yield of 10-15 mg/L. The redox potential of recombinant human cytochrome c was 0.246 V which was measured by cyclic volatmmetry measurement. This is similar to that of horse cytochrome c with a value of 0.249 V. Based on our NMR studies, the recombinant human cytochrome c produced in E. coli exhibits the same tertiary fold as horse cytochrome c. To study the interaction between human cytochrome c and Apaf-1, we modeled 3D structure of Apaf-1 by homology modeling and docked the structure of cytochrome c into Apaf-1 structure. Our results provided the evidence that human cytochrome c expressed in E. coli possesses similar function and structure as that of horse protein. It is known that cytochrome c plays a role in many human diseases. This study serves as the basis for gaining insight into human diseases by exploring structure and function relationships of cytochrome c to its interacting proteins.

      In the study of microperoxidase, we report here that Ac-MP-8 catalyzes catalase-type reaction in addition to peroxidase-type and cytochrome P450-type reactions. The Km and kcat of the decomposition of H2O2 catalyzed by Ac-MP-8 are 40.9 mM and 4.1 sec<sup>-1</sup>, respectively. The specificity constant (kcat/Km) of Ac-MP-8 in catalase-type reaction of H2O2 is 100.2 M<sup>-1</sup> sec<sup>-1</sup> which is 5- to 12- and 50- to 100-fold less than those of microperoxidases in cytochrome P450-type reaction of aniline/H2O2 and peroxidase-type reaction of o-methoxyphenol/H2O2, respectively. These results indicate that Ac-MP-8 can catalyze three different types of reactions, and the relative catalytic specificities of Ac-MP-8 with a histidyl ligand exhibit the following orders: peroxidase-type > cytochrome P450-type > catalase-type reactions. Kinetic studies on Ac-MP-8 showed that guanidinium hydrochloride and ammonium-derivative based (MES, MOPS, HEPES, Tricine, and Tris) can cause 3-11 folds increase in the peroxidase activity of Ac-MP-8. Four modified MPs were obtained by proteolytic digestion of recombinant yeast cytochromes c. The mutation of the residues between Cys-14 and Cys-17 to the R or K residues caused 2-fold increase in peroxidase activity. It is known that MP has potential for application to biosensor technology. This study serves as the basis to improve the enzyme activities of MP that can be used for industrial application.

    中文摘要 I 英文摘要 IV 誌謝 VI 目錄 VII 表目錄 X 圖目錄 XI 中英對照表 XV 縮寫檢索表 XVI 儀器 XVIII 第一章 緒論 1 1-1 背景簡介 2 1-1-1. 血基質蛋白 (Hemoproteins) 2 1-1-2. 細胞色素C (Cytochrome c) 3 1-1-3. 微過氧化酶 (Microperoxidases) 6 1-1-4. 利用核磁共振(NMR)決定蛋白質之三維結構 8 1-2 研究目標 10 第二章 材料與方法 12 2-1 細胞色素C重組蛋白質的製備 13 2-1-1 酵母菌細胞色素C的基因選殖及重組蛋白質的表現與純化 13 2-1-2 人類細胞色素C的基因選殖及重組蛋白質的表現與純化 17 2-1-3 基因選殖及重組蛋白質製備所用之相關實驗材料與方法 20 2-2 人類細胞色素C蛋白質之三維核磁共振結構 31 2-2-1 原理 31 2-2-2 樣品製備 31 2-2-3 NMR光譜的測定 32 2-2-4 NMR光譜的判定 33 2-2-5 限制條件的找尋 35 2-2-6 三維結構的計算 37 2-2-7 三維結構的顯示與排列(alignment) 41 2-2-8 Apaf-1之WD40 repeats區域之結構模擬 42 2-2-9 Cytochrome c與Apaf-1之WD40 repeats結構之docking 42 2-3 微過氧化酶的酵素活性測定 43 2-3-1 乙醯化微過氧化酶Ac-MP-8(5) 的製備 43 2-3-2 微過氧化酶的過氧化酶(peroxidase)的酵素活性測定 46 2-3-3 微過氧化酶的過氧化氫酶(catalase)的酵素活性測定 48 第三章 實驗結果 49 3-1 細胞色素C重組蛋白質製備及特性分析 50 3-1-1 酵母菌細胞色素C及其突變株重組蛋白的製備與鑑定 50 3-1-2 人類細胞色素C重組蛋白的製備與鑑定 52 3-2 人類細胞色素C重組蛋白之NMR圖譜及三維結構分析 55 3-2-1 人類細胞色素C重組蛋白之NMR圖譜分析 55 3-2-2 人類細胞色素C重組蛋白之三維結構計算 58 3-3 微過氧化酶的酵素活性研究 61 3-3-1 微過氧化酶的製備結果 61 3-3-2 微過氧化酶的過氧化酶(peroxidase)的酵素活性研究 61 3-3-3 影響因子對微過氧化酶的過氧化酶(peroxidase)的酵素活性影響 62 3-3-4 微過氧化酶的過氧化氫酶(catalase)的酵素活性研究 62 3-3-5 影響因子對微過氧化酶的過氧化氫酶(catalase)的酵素活性影響 63 3-3-6 微過氧化酶的氧氣消耗反應研究 64 3-3-7 血基質(hemin)的過氧化酶與過氧化氫酶的酵素活性研究 64 第四章 實驗討論 66 4-1 細胞色素C重組蛋白質的表現 67 4-2 人類細胞色素C重組蛋白質之三維結構 70 4-3 微過氧化酶的酵素活性 73 參考文獻 76 表 86 圖 98 發表的著作 154 附錄 155 自述 175

    1. Acehan, D., Jiang, X., Morgan, D. G., Heuser, J. E., Wang, X. and Akey, C. W.: Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol. Cell. 9, 423-432, 2002.

    2. Adams, J. M. and Cory, S.: Apoptosomes: engines for caspase activation. Curr. Opin. Cell Biol. 14, 715-720, 2002.

    3. Adams, P. A., Byfield, M. P., Milton, R. C. and Pratt, J. M.: Oxygen activation and ligand binding by pure heme-octapeptide microperoxidase-8 (MP-8). J. Inorg. Biochem. 34, 167-175, 1988.

    4. Adams, P. A.: The peroxidasic activity of the haem octapetide microperoxidase-8 (MP-8): The kinetic mechanism of the catalytic reduction of H2O2 by MP-8 using 2,2′-Azinobis-(3-ethylbenzothiazoline-6-sulphonate)(ABTS) as reducing substrate. J. Chem. Soc.-Perkin Trans. 2, 1407-1414, 1990.

    5. Adams, P. A.: Microperoxidase and Iron Porphyrins. In Peroxidases in Chemistry and Biology vol. II (Everse, J., Everse, K.E. & Grisham M.B., eds.), CRC Press, Boston MA, pp-171-200, 1993.

    6. Adrain, C. and Martin, S. J.: The mitochondrial apoptosome: a killer unleashed by the cytochrome seas. Trends Biochem Sci. 26, 390-397, 2001.

    7. Adrain, C., Slee, E. A., Harte, M. T. and Martin, S. J.: Regulation of apoptotic protease activating factor-1 oligomerization and apoptosis by the WD-40 repeat region. J. Biol. Chem. 274, 20855-20860, 1999.

    8. Aron, J., Baldwin, D. A., Marques, H. M., Pratt, J. M. and Adams, P. A.: Hemes and Hemoproteins. 1: Preparation and Analysis of the Heme-Containing Octapeptide (Microperoxidase-8) and Identification of the Monomeric Form in Aqueous Solution. J. Inorg. Biochem. 27, 227-243, 1986.

    9. Baldwin, D. A., Marques, H. M. and Pratt, J.M.: Hemes and hemeproteins, 2: The pH-dependent equilibria of microperoxidase-8 and characterization of the coordination sphere of Fe(III). J. Inorg. Biochem. 27, 245-254, 1986.

    10. Baldwin, D. A., Marques, H. M. and Pratt, J. M.: Hemes and Hemoproteins. 5: Kinetics of the Peroxidatic Activity of Microperoxidase-8: Model for the Peroxidase Enzymes. J. Inorg. Biochem. 30, 203-217, 1987.

    11. Banci, L., Bertini, I., Huber, J. G., Spyroulias, G. A. and Turano, P.: Solution structure of reduced horse heart cytochrome c. J. Biol. Inorg. Chem. 4, 21-31, 1999a.

    12. Banci, L., Bertini, I., Rosato, A. and Varani,
    G.: Mitochondrial cytochromes c: a comparative analysis. J. Biol. Inorg. Chem. 4, 824-837, 1999b.

    13. Bax, A.: Two-dimensional NMR and protein structure. Annu. Rev. Biochem. 58, 223-256, 1989.

    14. Bax, A., Clore, G. M. and Gronenborn, A. M.:
    Proton-proton correlation via isotropic mixing of carbon-13 magnetization, a new three-dimensional approach for assigning proton and carbon-13 spectra of carbon-13-enriched proteins. J. Magn. Reson. 88, 425-431, 1990.

    15. Benedict, M. A., Hu, Y., Inohara, N. and Nunez, G.: Expression and functional analysis of Apaf-1 isoforms. Extra Wd-40 repeat is required for cytochrome c binding and regulated activation of procaspase-9. J. Biol. Chem. 275, 8461-8468, 2000.

    16. Boehning, D., Patterson, R. L., Sedaghat, L., Glebova, N. O., Kurosaki, T. and Snyder, S. H.: Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat. Cell Biol. 5, 1051-1061, 2003.

    17. Bossy-Wetzel, E., Newmeyer, D. D. and Green, D. R.: Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J. 17, 37-49, 1998.

    18. Brunger, A. T.: X-PLOR Version 3.1: A system for X-ray crystallography and NMR. New Haven, CT: Yale University Press, 1992.

    19. Bushnell, G. W., Louie, G. V. and Brayer, G.D.: High-resolution three-dimensional structure of horse heart cytochrome c. J. Mol. Biol. 214, 585-595, 1990.

    20. Carraway, A. D., McCollum, M. G. and Peterson, J.: Characterization of N-Acetylated heme undecapeptide and some of its derivatives in aqueous media: monomeric model systems for hemoproteins. Inorg. Chem. 35, 6885-6891, 1996.

    21. Casella, L., De Gioia, L., Silvestri, G. F., Monzani, E., Redaelli, C., Roncone, R. and Santagostini, L.: Covalently modified microperoxidases as heme-peptide models for peroxidases. J. Inorg. Biochem. 79, 31-40, 2000.

    22. Cassina, A. M., Hodara, R., Souza, J. M., Thomson, L., Castro, L., Ischiropoulos, H., Freeman, B.A. and Radi, R.: Cytochrome c nitration by peroxynitrite. J. Biol. Chem. 275, 21409-21415, 2000.

    23. Cavanagh, J., Fairbrother, W. J., Palmer, A. G. and Skelton, N. J.: Protein NMR spectroscopy. San Diego,
    California: Academic Press; 1996.

    24. Chuang, W. J., Chang, Y. D., and Jeng, W. Y.: Kinetic and structural studies of N-acetyl-microperoxidase-5 and -microperoxidase-8. J. Inorg. Biochem. 75, 93-97, 1999.

    25. Chung, H. T., Pae, H. O., Choi, B. M., Billiar, T. R. and Kim, Y. M.: Nitric oxide as a bioregulator of apoptosis. Biochem. Biophys. Res. Commun. 282, 1075-10799, 2001.

    26. Clore, G. M. and Gronenborn, A M.: Determining the structures of large proteins and protein complexes by NMR. Trends Biotechnol. 16, 22-34, 1998.

    27. Cornilescu, G., Delaglio, F. and Bax, A.: Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR. 13, 289-302, 1999.

    28. Cutler, R. L., Pielak, G. J., Mauk, A. G. and Smith, M.: Replacement of cysteine-107 of Saccharomyces cerevisiae iso-1-cytochrome c with threonine: improved stability of the mutant protein. Protein Eng. 1, 95-99, 1987.

    29. Del Rio, L. A., Ortega, M. G., Lopez, A. L. and Gorge, J. L.: A More Sensitive Modification of the Catalase Assay with the Clark Oxygen Electrode. Anal. Biochem. 80, 409-415, 1977.

    30. Derman, A. I. and Beckwith, J.: Escherichia coli alkaline phosphatase fails to acquire disulfide bonds when retained in the cytoplasm. J. Bacteriol. 173, 7719-7722, 1991.

    31. Derman, A. I., Prinz, W. A., Belin, D. and Beckwith, J.: Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli. Science 262, 1744-1777, 1993.

    32. Dorovska-Taran, V., Posthumus, M. A., Boeren, S., Boersma, M. G., Teunis, C. J., Rietjens, I. M. and Veeger, C.: Oxygen exchange with water in heme-oxo intermediates during H2O2-driven oxygen incorporation in aromatic hydrocarbons catalyzed by microperoxidase-8. Eur. J. Biochem. 253, 659-668, 1998.

    33. Dumont, M. E., Ernst, J. F., Hampsey, D. M. and Sherman, F.: Identification and sequence of the gene encoding cytochrome c heme lyase in the yeast Saccharomyces cerevisiae. EMBO J. 6, 235-241, 1987.

    34. Fesik, S. W. and Zuiderweg, E. R. P.:
    Heteronuclear three-dimensional NMR spectroscopy. A strategy for the simplification of homonuclear two-dimensional NMR spectra. J. Magn. Reson. 78, 588-593, 1988.

    35. Gajhede, M., Schuller, D. J., Henriksen, A., Smith, A. T. and Poulos, T. L.: Crystal structure of horseradish peroxidase C at 2.15 A resolution. Nat. Struct. Biol. 4, 1032-1038, 1997.

    36. Goodhew, C. F., Brown, K. R. and Pettigrew, G. W.: Haem staining in gels, a useful tool in the study of bacterial c-type cytochromes. Biochim. Biophys. Acta. 852, 288-294, 1986.

    37. Gopal, D., Wilson, G. S., Earl, R. A. and Cusanovich, M. A.: Cytochrome c: ion binding and redox properties. Studies on ferri and ferro forms of horse, bovine, and tuna cytochrome c. J. Biol. Chem. 263, 11652-11656, 1988.

    38. Grzesiek, S., Anglister, J. and Bax, A.: Correlation of backbone amide and aliphatic side-chain resonances in 13C/15N-enriched proteins by isotropic mixing of carbon-13 magnetization. J. Magn. Reson. 101, 114-119,
    1993.

    39. Grzesiek, S. and Bax, A.: Improved 3D triple-
    resonance NMR techniques applied to a 31 kDa protein. J. Magn. Reson. 96, 432-440, 1992a.

    40. Grzesiek, S. and Bax, A.: Correlating backbone amide and side chain resonances in larger proteins by multiple relayed triple resonance NMR. J. Am. Chem. Soc. 114, 6291-6293, 1992b.

    41. Hashimoto, M., Takeda, A., Hsu, L. J., Takenouchi, T. and Masliah, E.: Role of cytochrome c as a stimulator of alpha-synuclein aggregation in Lewy body disease. J. Biol. Chem. 274, 28849-28852, 1999.

    42. Higuchi, R., Kummel, B. and Saiki, R. K.: A general method of invitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acides Res. 16, 7351-7367, 1988.

    43. Ho, S. N., Hunt, H. D., Morton, R. M., Pullen, J. K. and Pease, L. R.: Site directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51-59, 1989.

    44. Hortelano, S., Alvarez, A. M. and Bosca, L.: Nitric oxide induces tyrosine nitration and release of cytochrome c preceding an increase of mitochondrial transmembrane potential in macrophages. FASEB J. 13, 2311-2317, 1999.

    45. Hu, Y., Benedict, M. A., Ding, L. and Nunez, G.: Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis. EMBO J. 18, 3586-3595, 1999.

    46. Hu, Y., Ding, L., Spencer, D. M. and Nunez, G.: WD-40 repeat region regulates Apaf-1 self-association and procaspase-9 activation. J. Biol. Chem. 273, 33489-33494, 1998.

    47. Ikura, I., Kay, L. E. and Bax, A.: Improved three-
    dimensional proton-carbon- 13-proton correlation spectroscopy of a carbon-13-labeled protein using constant-time evolution. J. Biomol. NMR 1, 299-304, 1991.

    48. Iobbi-Nivol, C., Crooke, H., Griffiths, L., Grove, J., Hussain, H., Pommier, J., Mejean, V. and Cole, J. A.: A reassessment of the range of c-type cytochromes synthesized by Escherichia coli K-12. FEMS Microbiol. Lett. 119, 89-94, 1994.

    49. John, R. W.: Catalase and Peroxidase. In Principles of enzymology for the food sciences, Marcel Dekker Press, New York, pp-565-578, 1994.

    50. Jiang, X. and Wang, X.: Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1. J. Biol. Chem. 275, 31199-31203, 2000.

    51. Kadokura, H., Katzen, F. and Beckwith, J.: Protein disulfide bond formation in prokaryotes. Annu. Rev. Biochem. 72, 111-135, 2003.

    52. Kluck, R. M., Bossy-Wetzel, E., Green, D. R. and Newmeyer, D. D.: The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275, 1132-1136, 1997a.

    53. Kluck, R. M., Ellerby, L. M., Ellerby, H. M., Naiem, S., Yaffe, M. P., Margoliash, E., Bredesen, D., Mauk, A. G., Sherman, F. and Newmeyer, D. D.: Determinants of cytochrome c pro-apoptotic activity. The role of lysine
    72 trimethylation. J. Biol. Chem. 275, 16127-16133, 2000.

    54. Kluck, R. M., Martin, S. J., Hoffman, B. M., Zhou, J. S., Green, D. R. and Newmeyer, D. D.: Cytochrome c activation of CPP32-like proteolysis plays a critical role in a Xenopus cell-free apoptosis system. EMBO J. 16, 4639-4649, 1997b.

    55. Koradi, R., Billeter, M. and Wuthrich, K.: MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51-55, 1996.

    56. Kranz, R., Lill, R., Goldman, B., Bonnard, G. and Merchant, S.: Molecular mechanisms of cytochrome c biogenesis: three distinct systems. Mol. Microbiol. 29, 383-396, 1998.

    57. Kraulis, P. J.: Protein three-dimensional structure determination and sequence-specific assignment of 13C and 15N-separated NOE data. A novel real-space ab initio approach. J. Mol. Biol., 243, 696-718, 1994.

    58. Kuwana, T., Smith, J. J., Muzio, M., Dixit, V., Newmeyer, D. D. and Kornbluth S.: Apoptosis induction by caspase-8 is amplified through the mitochondrial release of cytochrome c. J. Biol. Chem. 273, 16589-16594, 1998.

    59. Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S. and Wang, X.: Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 91, 479-489, 1997.

    60. Liu, X., Kim, C. N., Yang, J., Jemmerson, R. and Wang, X.: Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 86, 147-157, 1996.

    61. Marion, D., Driscoll, P. C., Kay, L. E., Wingfield, P. T., Bax, A., Gronenborn, A. M. and Clore, G. M.: Overcoming the overlap problem in the assignment of proton NMR spectra of larger proteins by use of three-dimensional heteronuclear proton-nitrogen-15 Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1. Biochemistry 28, 6150-6156, 1989.

    62. Metheringham, R., Griffiths, L., Crooke, H., Forsythe, S. and Cole, J.: An essential role for DsbA in cytochrome c synthesis and formate-dependent nitrite reduction by Escherichia coli K-12. Arch. Microbiol. 164, 301-307, 1995.

    63. Metheringham, R., Tyson, K. L., Crooke, H., Missiakas, D., Raina, S. and Cole, J. A.: Effects of mutations in genes for proteins involved in disulphide bond formation in the periplasm on the activities of anaerobically induced electron transfer chains in Escherichia coli K12. Mol. Gen. Genet. 253, 95-102, 1996.

    64. Michael, S., Jurgen, S. and Christian, G.: Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog. Nucl. Magn. Reson. Spectrosc. 34, 93-158, 1999.

    65. Miyamoto, K., Kanaya, S., Morikawa, K. and Inokuchi, H.: Overproduction, purification, and characterization of ferrochelatase from Escherichia coli. J. Biochem. 115, 545-551, 1994.

    66. Moore, G. R. and Pettigrew, G. W.: Cytochromes c.
    Evolutionary, Structural, and Physicochemical Aspects, Springer Verlag, New York, 1990.

    67. Muhandiram, D. R. and Kay, L. E.: Gradient-enhanced triple-resonance three-dimensional NMR experiments with improved sensitivity. J. Magn. Reson. 103, 203-216, 1994.

    68. Myer, Y. P., Saturno, A. F., Verma, B. C. and Pande, A.: Horse heart cytochrome c. The oxidation-reduction potential and protein structures. J. Biol. Chem. 254, 11202-11207, 1979.

    69. Nakamura, S., Mashino, T. and Hirobe, M.: 18O incorporation from H218O2 in the oxidation of N-methylcarbazole and sulfides catalyzed by microperoxidase 11. Tetrahedron Lett. 33, 5409-5412, 1992.

    70. Nelson, D. P. and Kiesow, L. A.: Enthalpy of
    decomposition of hydrogen peroxide by catalase at 25 degrees C (with molar extinction coefficients of H2O2 solutions in the UV). Anal. Biochem. 49, 474-478, 1972.

    71. Nicholson, D. W., Hergersberg, C. and Neupert, W.: Role of cytochrome c heme lyase in the import of cytochrome c into mitochondria. J. Biol. Chem. 263, 19034-19042, 1988.

    72. Nicholson, D. W. and Neupert, W.: Import of cytochrome c into mitochondria: reduction of heme, mediated by NADH and flavin nucleotides, is obligatory for its covalent linkage to apocytochrome c. Proc. Natl. Acad. Sci. USA, 86, 4340-4344, 1989.

    73. Nilges, M., Clore, G. M. and Gronenborn, A. M.: Determination of three-dimensional structures of proteins from interproton distance data by hybrid distance geometry-dynamic simulated annealing. FEBS Lett 229, 129-136, 1988.

    74. Olteanu, A., Patel, C. N., Dedmon, M. M., Kennedy, S., Linhoff, M. W., Minder, C. M., Potts, P. R., Deshmukh, M. and Pielak, G. J.: Stability and apoptotic activity of recombinant human cytochrome c. Biochem. Biophys. Res. Commun. 312, 733-740, 2003.

    75. Osman, A. M., Koerts, J., Boersma, M. G., Boeren, S., Veeger, C. and Rietjens, I. M.: Microperoxidase/H2O2-catalyzed aromatic hydroxylation proceeds by a cytochrome-P-450-type oxygen-transfer reaction mechanism. Eur. J. Biochem. 240, 232-238, 1996.

    76. Osman, A. M., Boeren, S., Boersma, M. G., Veeger, C. and Rietjens, I. M.: Microperoxidase/H2O2-mediated alkoxylating dehalogenation of halophenol derivatives in alcoholic media. Proc. Natl. Acad. Sci. USA 94, 4295-4299, 1997.

    77. Paleus, S., Ehrenberg, A. and Tuppy, H.: Study of a peptic degradation product of cytochrome-c. II. Investigation of the linkage between peptide moiety and prosthetic group. Acta Chem. Scand. 9, 365-374, 1955.

    78. Pearce, D. A. and Sherman, F. Differential ubiquitin-dependent degradation of the yeast apo-cytochrome c isozymes. J. Biol. Chem. 272, 31829-31836, 1997.

    79. Pettigrew, G. W. and Moore, G.R.: Cytochromes c.
    Biological Aspects, Springer Verlag, New York, 1987.

    80. Pollock, W. B., Rosell, F. I. and Twitchett, M. B.: Bacterial expression of a mitochondrial cytochrome c. Trimethylation of lys72 in yeast iso-1-cytochrome c and the alkaline conformational transition. Biochemistry 37, 6124-6131, 1998.

    81. Poulos, T. L., Finzel, B. C. and Howard, A. J.: High-resolution crystal structure of cytochrome P450cam. J. Mol. Biol. 195, 687-700, 1987.

    82. Qi, P. X., Di Stefano, D. L., and Wand, A. J.: Solution structure of horse heart ferrocytochrome c determined by high-resolution NMR and restrained simulated annealing. Biochemistry 33, 6408-6417, 1994.

    83. Reid, T. J. 3rd, Murthy, M. R., Sicignano, A., Tanaka, N., Musick, W. D. and Rossmann, M. G.: Structure and heme environment of beef liver catalase at 2.5 A resolution. Proc. Natl. Acad. Sci. USA. 78, 4767-4771, 1981.

    84. Rietsch, A. and Beckwith, J.: The genetics of disulfide bond metabolism. Annu. Rev. Genet. 32, 163-184, 1998.

    85. Rodriguez-Lopez, J. N., Smith, A. T. and
    Thorneley, R. N.: Role of arginine 38 in horseradish peroxidase. A critical residue for substrate binding and catalysis. J. Biol. Chem. 271, 4023-4030, 1996.

    86. Rusvai, E., Vegh, M., Kramer, M. and Horvath, I.: Hydroxylation of aniline mediated by heme-bound oxy-radicals in a heme peptide model system. Biochem. Parmacol. 37, 4574-4577, 1988.

    87. Saleh, A., Srinivasula, S. M., Acharya, S., Fishel, R. and Alnemri, E. S.: Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J. Biol. Chem. 274, 17941-17945, 1999.

    88. Schonhoff, C. M., Gaston, B. and Mannick, J. B.: Nitrosylation of cytochrome c during apoptosis. J. Biol. Chem. 278, 18265-18270, 2003.

    89. Scott, R. A. and Mauk, A.G.: Cytochrome c. A multidisciplinary approach, University Science Books, Sausalito, 1996.

    90. Shi, Y.: A structural view of mitochondria-
    mediated apoptosis. Nat. Struct. Biol. 8, 394-401, 2001.

    91. Spee, J. H., Boersma, M. G., Veeger, C., Samyn, B., Van Beeumen, J., Warmerdam, G., Canters, G. W., Van Dongen, W. M. and Rietjens, I. M.: The influence of the peptide chain on the kinetics and stability of microperoxidases. Eur. J. Biochem. 241, 215-220, 1996.

    92. Sundaramoorthy, M., Terner, J. and Poulos, T. L.: The crystal structure of chloroperoxidase: a heme peroxidase--cytochrome P450 functional hybrid. Structure. 3, 1367-1377, 1995.

    93. Thony-Meyer, L.: Cytochrome c maturation: a complex pathway for a simple task? Biochem. Soc. Trans. 30, 633-638, 2002.

    94. Thony-Meyer, L., Fischer, F., Kunzler, P., Ritz, D. and Hennecke, H.: Escherichia coli genes required for cytochrome c maturation. J. Bacteriol. 177, 4321-4326, 1995.

    95. Thony-Meyer, L., Ritz, D. and Hennecke, H.: Cytochrome c biogenesis in bacteria: a possible pathway begins to emerge. Mol. Microbiol. 12, 1-9, 1994.

    96. Tsou, C. L.: Cytochrome-c modified by digestion with proteolytic enzymes. II. Properties of pepsin-modified cytochrome c. Biochem. J. 49, 362-367, 1951.

    97. Tuppy, H. and Paleus, S.: Study of a peptic degradation product of cytochrome-c. I. Purification and chemical composition. Acta Chem. Scand. 9, 353-364, 1955.

    98. Vuister, G. W. and Bax, A.: Measurement of four-bond HN-H alpha J-couplings in staphylococcal nuclease. J. Biomol. NMR 4, 193-200, 1994.

    99. Wang, A. C., Lodi, P. J., Qin, J., Vuister, G. W., Gronenborn, A. M. and Clore, G. M.: An efficient triple-resonance experiment for proton-directed sequential backbone assignment of medium-sized proteins. J. Magn. Reson. 105, 196-198, 1994.

    100. Wang, J. S. and Van Wart, H. E.: Resonance Raman characterization of the heme c group in N-acetyl-microperoxidase-8: a thermal intermediate spin-high spin state mixture. J. Phys. Chem. 93, 7925-7931, 1989.

    101. Wittekind, M. and Mueller, L.: HNCACB, a high-sensitivity 3D NMR experiment to correlate amide-proton and nitrogen resonances with the alpha-carbon and beta-carbon resonances in proteins. J. Magn. Reson. 101, 201-205, 1993.

    102. Wolf, C. M. and Eastman, A.: The temporal relationship between protein phosphatase, mitochondrial cytochrome c release, and caspase activation in apoptosis. Exp. Cell Res. 247, 505-513, 1999.

    103. Wuthrich, K.: NMR of Proteins and Nucleic Acid. New York: John Wiley & Sons, 1986.

    104. Wuthrich, K.: NMR studies of structure and function of biological macromolecules (Nobel Lecture). J. Biomol. NMR 27, 13-39, 2003.

    105. Yang, J., Liu, X., Bhalla, K., Kim, C. N., Ibrado, A. M., Cai, J., Peng, T. I., Jones, D. P. and Wang, X.: Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science. 275, 1129-1132, 1997.

    106. Yu, T., Wang, X., Purring-Koch, C., Wei, Y. and McLendon, G. L.: A mutational epitope for cytochrome C binding to the apoptosis protease activation factor-1. J. Biol. Chem. 276, 13034-13038, 2001.

    107. Zhan, X., Schwaller, M., Gilbert, H. F., and Georgiou, G.: Facilitating the formation of disulfide bonds in the Escherichia coli periplasm via coexpression of yeast protein disulfide isomerase. Biotechnol. Prog. 15, 1033-1038, 1999.

    108. Zhang, Z., and Gerstein, M.: The human genome has 49 cytochrome c pseudogenes, including a relic of a primordial gene that still functions in mouse. Gene 312, 61-72, 2003.

    109. Zou, H., Henzel, W. J., Liu, X., Lutschg, A. and Wang, X.: Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell. 90, 405-413, 1997.

    110. 張育達,微過氧化酵素之功能與結構的研究。國立成功大
    學生物化學研究所碩士論文, 1996。

    111. 陳彥青, 馬來蝮蛇蛇毒蛋白及其突變株的結構與動力學之研究。國立成功大學生物化學研究所碩士論文, 2002。

    112. 許家豪,含RGD序列蛋白在辨識組合蛋白上的結構與功能關係之研究。國立成功大學生物化學研究所碩士論文, 2003。

    113. 劉沛棻, 利用核磁共振光譜決定間白素結合因子(ILF)核酸結合區的水溶液中三度空間結構。 國立成功大學生物化學研究所碩士論文, 2001。

    下載圖示 校內:2007-07-30公開
    校外:2007-07-30公開
    QR CODE