簡易檢索 / 詳目顯示

研究生: 鄒啟俊
Chao, Kai Chon
論文名稱: 高速公路交通事故延遲時間與等候車隊長度預測模式-以國道五號為例
Prediction of Traffic Accident Duration and Vehicle Queue Length – Case Study of National Freeway No.5 in Taiwan
指導教授: 魏健宏
Wei, Chien-Hung
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 96
中文關鍵詞: 事故延遲時間車隊等候長度車輛偵測器類神經網路預測模式
外文關鍵詞: Accident Duration, Queue Length, Vehicle Detector, Artificial Neural Networks, Prediction Model
相關次數: 點閱:156下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要針對高速公路上發生的交通事故,透過國內不同事故資料庫的整理,以彙整出相關之交通事故特性,並利用此特性找到對應事故延遲時間、等候車隊長度等事故衝擊特徵,藉此提供準確的交通資訊作為駕駛者、管理人員參考。
    進行本研究需要得到過去發生在高速公路上的交通事故資料,本研究蒐集處理國道五號交通事故之相關單位,其資料來源包括「國道高速公路局拖救記錄服務表」、「警政單位道路交通事故調查表」,由於資料格式各有差異,因此本研究統一交通事故記錄的格式,以建立完整的國道五號事故資料庫。另外,本研究亦針對交通事故資料中各項屬性進行分析,利用國道高速公路局在國道五號全線佈置之車輛偵測器進行交通事故延遲時間及車隊等候長度之推估,最後根據本研究所建立之事故屬性組合建構類神經網路預測模式,提供準確之旅行者用路資訊。
    根據類神經網路預測模式研究結果顯示,本模式具有準確之事故延遲時間、車隊等候長度之預測能力,對於用路人可有助於滿足了真實生活中之需求,對於高速公路管理單位在實際應用上具有穩定且準確之參考依據,藉此能夠發展更先進的交通控制系統。

    Traffic accident occurrence on freeway is the main cause that affects travel time anticipated. Accurate travel time information will help travelers make better decisions in terms of departure time, route selection and even mode choice. This study aims to analyze the importance of accident features and evaluate the impacts of accident existence (queue length and recovery time) on freeway. The ultimate goal is to estimate accident duration and queue length when given relevant accident features according the accident database and vehicle detector database. All these information needs to be cross-checked in order to confirm the significant accident features and resulting impacts. Artificial neural network models are constructed with the most relevant factors identified in the above processes to provide predictive information of accident duration.

    目錄 I 表目錄 VI 圖目錄 IV 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 4 1.3 研究範圍與對象 5 1.4 研究流程與內容 5 第二章 文獻回顧 8 2.1 交通事故延遲時間 8 2.2 事件資料分析 12 2.3 車隊等候長度 14 2.4 旅行時間預測模式 15 2.5 類神經網路 17 第三章 研究方法 19 3.1 國道五號交通事故資料庫建立 20   3.1.1資料庫整合 20 3.2 交通事故衝擊分析 21 3.2.1車輛偵測器之選取 22 3.2.2交通事故發生時間推估 22 3.2.3受交通事故影響之等候車隊長度推估 24 3.2.4交通事故恢復時刻推估 28 3.2.5車隊等候長度及恢復時刻判斷程序 30 3.3 交通事故屬性篩選 31 3.4類神經網路 33 3.5模式績效評估 35 第四章 資料整理與分析 36 4.1 國道五號交通事故資料庫 36 4.1.1國道高速公路局車輛拖救服務表 36 4.1.2警政署國道公路警察局交通事故調查表 38 4.1.3警政單位交通事故現場圖 41 4.1.4資料整合 41 4.2事故資料基本分析 44 4.3完整事故資料基本分析 47 4.4交通事故延遲時間資料分析 52 4.5車隊等候長度資料分析 54 4.6小結 56 第五章 模式建構及績效評估 58 5.1交通事故延遲時間預測模式建構 58 5.1.1 交通事故延遲時間預測模式屬性篩選 60 5.1.2 類神經網路模式建構-交通事故延遲時間部分 64 5.1.3 預測結果及績效評估 65 5.2車隊等候長度預測模式建構 71 5.2.1車隊等候長度預測模式屬性篩選 71 5.2.2類神經網路模式建構-車隊等候長度部分 75 5.2.3預測結果及績效評估 76 5.3 預測模式應用 79 5.4小結 82 第六章 結論與建議 84 6.1結論 84 6.2建議 86 參考文獻 88 附錄一 國道五號佈置偵測器編號與里程數 91 附錄二 交通事故延遲時間預測模式訓練樣本績效範例 94 附錄三 交通事故延遲時間預測模式測試樣本績效範例 96

    1.交通部運輸研究所(民88),台灣地區發展智慧型運輸系統(ITS)網要計畫。

    2.黃志偉(民 91),「高速公路肇事處理時間預測之研究-應用類神經網路分析」,國立中央大學土木工程研究所碩士論文。

    3.李穎(民91),「類神經網路應用於國道客運班車旅行時間預測模式之研究」,國立成功大交通管理研究所碩士論文。

    4.洪士傑(民 94),「高速公路事件影響區段範圍之研究」,淡江大學運輸管理學系運輸科學碩士班碩士論文。

    5.卓訓榮(民98),「高速公路旅行時間預測-以k-NN法及分群方法探討」,中華民國運輸學會98年學術論文研討會。

    6.邱孟佑(民99),「以交通狀態為基礎之旅行時間預測」,國立交通大學交通運輸研究所博士論文。

    7.何旺宗(民 99),「資料融合技術結合類神經網路對高速公路事件延遲時間預測之研究」,國立成功大學交通管理研究所碩士論文。

    8.交通部運輸研究所(民100),2011年台灣地區公路容量手冊。

    9.廖彩雲(民101),「交通意外事件持續時間之預測模型」,中華民國運輸學會101年學術論文國際研討會。

    10.Golob, T., Recher, W., Leonard, J., 1987. “An analysis of the severity and incident duration of truck-involved freeway accidents,”Accident Analysis and Prevention 19 (5), 375-395.

    11.Giuliano, G., 1989. Incident Characteristics,Frequency,and duration on a high volume urban freeway, Transportation Research Part A: General 23 (5), 387-396

    12.C.Sullivan, E., 1997. New model for predicting freeway incidents and incident delays, Journal of Transportation Engineering.

    13.Zhang, H.M., 2000. Recursive prediction of traffic conditions with neural network models, Journal of Transportation Engineering, 472-481.

    14.Jiang, Y., 2001. Estimation of traffic delays and vehicle queues at freeway work zones, Transportation Research Board.

    15.Ishak, S., AI-Deek, H., 2002. Performance evaluation of short-term time-series traffic prediction model, Journal of Transportation Engineering.

    16.Zhang, X., Rice, J.A., 2003. Short-term travel time prediction, Transportation Research Part C: Emerging Technologies 11 (3-4), 187-210.

    17.Karim, A., Adeli, H., 2003. Radial basis function neural network for work zone capacity and queue estimation, Journal of Transportation Engineering, 129 (5), 494-503.

    18.Chang, L.Y., Chen, W.C., 2005. Data mining of tree-based models to analyze freeway accident frequency, Journal of Safety Research 36 (4), 365-375.

    19.Qi, Y., Teng, H.L., 2008. An Information-Based Time Sequential Approach to Online Incident Duration Prediction, Journal of Intelligent Transportation Systems 12 (1), 1-12.

    20.Zhao, X.Q., Li, R.M., Yu, X.X., 2009. Incident Duration Model on Urban Freeways Based on Classification and Regression Tree, 2009 Second International Conference on Intelligent Computation Technology and Automation, 625-628.

    21.Chung, Y., 2010. Development of an accident duration prediction model on the Korean Freeway Systems, Accident Analysis Preview 42 (1), 282-289.

    22.Li, R.M., Zhao, X.Q., Yu, X.X., Li, J.W., Cheng, N., Zhang, J., 2010. Incident Duration Model on Urban Freeways Using Three Different Algorithms of Decision Tree, 2010 International Conference on Intelligent Computation Technology and Automation, 526-528.

    23.Xia, J.X., Chen, M., Qian, Z.D., 2010. Predicting Freeway Travel Time Under Incident Conditions, Transportation Research Record: Journal of the Transportation Research Board 2178 (1), 58-66.

    24.Valenti, G., Lelli, M., Cucina, D., 2010. A comparative study of models for the incident duration prediction, European Transport Research Review 2 (2), 103-111.

    25.Kim, W., Chang, G.L., 2011. Development of a Hybrid Prediction Model for Freeway Incident Duration: A Case Study in Maryland, International Journal of Intelligent Transportation Systems Research 10 (1), 22-33.

    26.Hou, L., Lao, Y.T., Wang, Y.H., Zhang, Z., Zhang, Y., Li Z.H., 2013. Modeling freeway incident response time: A mechanism-based approach, Transportation Research Part C: Emerging Technologies 28, 87-100.

    27.Weng, J.X., Yan, X.D., Qiao, W.X., Qu, X.B., 2013. Prediction of traffic accident duration distribution, Transportmetrica A: Transport Science.
    28.Lee, Y., Wei, C.H., 2009. Freeway travel time forecast using Artificial Neural Networks with Cluster Method, 12th International Conference on Information Fusion, 1331-1338. 

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE