簡易檢索 / 詳目顯示

研究生: 蔡宗立
Tsai, Chung-Li
論文名稱: 微流道內鋸齒狀無動件閥之比較研究
A Comparative Study of Saw-Toothed No-Moving-Part Valves(NMPV) in Micro-Channels
指導教授: 潘大知
Pan, Dartzi
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 59
中文關鍵詞: 晶片微流道微機電無動件閥
外文關鍵詞: NMPV, MEMS, lab-on-chip, microvalve
相關次數: 點閱:94下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討各式鋸齒狀微流道無動件閥之設計。無動件閥為不具活動元件的閥門,應用於微流道時,其工作原理是以不對稱的流道幾何形狀,使流道中往返流動之阻力不同,具有如同單向閥的阻力雙極性效果。其不具活動元件的設計可省去複雜的結構,並避免阻塞,或對流體中分子造成傷害。
    本研究以計算流體力學為工具,針對各種擴張閥以及鋸齒狀結構之無動件閥作計算與分析,就不同構型於不同雷諾數下阻力雙極性變化探討其差異。本研究發現,在某些雷諾數範圍時阻力雙極性可能發生方向變異(Diodicity Reversal),並對無動件閥之效能表現產生顯著影響。本研究試圖就此雙極性方向變異現象提出改良設計。

    This thesis compares various designs of Saw-toothed No-Moving-Part Valves (NMPV) for flows in micro-channels. NMPV is a valve design without any mechanical moving-part. The working principle of NMPV is the drag diodicity resulting from the asymmetric shape of the flow passages of the valve design. Under the same pressure difference across the valve, the flow drag is smaller in one direction (the preferred direction) than the drag in the opposite direction. This drag diodicity allows the flow passage function like a one-way check valve. Comparing with the traditional mechanical valves, a NMPV has the advantage of simplicity in both design and manufacturing, and also avoids the possible damage to fluid particles due to the on/off motion of the mechanical pump.
    This research uses Computational Fluid Dynamics as a tool to analyze designs of NMPV. In particular, the Reynolds number effect on various saw-toothed NMPV and diffuser valves are examined. It is found that in certain range of Reynolds number, the drag diodicity reversal will significantly affect the performance of a NMPV.

    目錄 中文摘要.....I 英文摘要.....II 目錄.........IV 表目錄.......VII 圖目錄.......IX 符號說明.....XII 第一章 簡介................1 1-1 導論...................1 1-2 微流體驅動系統介紹.....2 1-3 微流體方向閥...........5 (1)主動式閥門.............5 (2)被動式閥門.............6 (3)無活動元件閥(NMPV)...7 (a)Tesla Valve............7 (b)擴張閥(Diffuser Valve)....8 (c)鋸齒閥(Saw-toothed Valve).....10 1-4 利用無動件閥(NMPV)之微幫浦設計.....11 1-5 無動件閥(NMPV)之雙極性.....13 (a) 壓力雙極性(Pressure Diodicity).....13 (b)流量雙極性(Mass Flow Diodicity).....13 1-6 研究目的.....14 第二章 微流體流場數值模擬.....15 2-1 CFD流場模擬工具簡介.......15 2-2 網格設計..................15 2-3 邊界條件之設定............17 2-4 無活動元件閥流場重要參數.....18 (a)壓力雙極性(Pressure Diodicity).....18 (b)流量雙極性(Mass Flow Diodicity).....18 (c)雷諾數(Reynolds number).....19 2-5 鋸齒閥網格獨立性研究.....19 2-6 參考擴散閥與噴嘴閥 (Reference Diffuser Valve & Nozzle Valve).....21 2-7 鋸齒閥(Saw-toothed Valve)之低雷諾數特性.....24 2-8 利用無動件閥之壓電幫浦動態模擬分析.....26 第三章 鋸齒閥之改良研究.....30 3-1 小角度鋸齒閥之特性......30 3-2 流道改變對鋸齒閥之影響 .....34 (a)喉部圓鋸齒角.....34 (b)轉角圓角.....37 (c)截斷鋸齒.....39 3-4 大角度鋸齒閥之特性.....41 (a) α=35.5∘.....43 (b) α=45∘.....44 (c) α=60∘.....45 3-5 各種無動件閥之壓電幫浦動態模擬分析 47 3-6 鋸齒閥與噴嘴閥之特性比較 49 3-7 各種鋸齒閥之比較與應用 51 第四章 結論 54 參考文獻 56

    [1] Ngyen, N. T., Huang, X., Chuan, T. K., “MEMS-Micropumps: A Review,” Transactions of the ASME Journal of Fluids Engineering, Vol. 124, No.2, June 2002, pp. 384-392.
    [2] Laser, D. J., Santiago, J. G., “A Review of Micropumps,” Journal of Micromechanics and Microengineering, No.14, 2004, R35-R64.
    [3] Fuhr, G., Hagedorn, R., Muller, T., Benecke, W., and Wagner, B., “Pumping of water of water solution in microfabricated electrohydrodynamic system,” Proc. IEEE-MEMS Workshop, 1992, pp. 25-29.
    [4] 龔鼎琮, “氣動式雙向微流體驅動系統之研究,” 國立成功大學航空太空研究所碩士論文, 中華民國93年6月
    [5] Huff, M. A., Gilbert, J. and Schmidt, M. A., “Flow Characteristics of a Pressure-Balanced Microvalve,” Solid-State Sensors and Actuators, 1993, pp. 98-101.
    [6] Vieider, C., Ohman, O. and Elderstig, “A Pneumatically Actuated Micro Valve with a Silicone Rubber Membrane for Integration with Fluid-Handling Systems,” Solid-State Sensors and Actuators , No. l2, 1995, pp. 284-286.
    [7] Zengerle, R., Ulrich, J., Kluge, S., Richter, M., and Richter, A., “A Bidirectional Silicon Micropump,” Sensors and Actuators A, Vol. 50, 1995, pp. 81-86.
    [8] Tesla, N., “Valvular conduit,” United States Patent US1,329,599,Feb. 3,1920
    [9] Gamboa, A. R., Morris, C. J., and Forster, F. K., “Optimization of the fixed-geometry valve for increased micropump performance,” Proc. IMECE03 ASME International Mechanical Engineering Congress, November, 2003 , pp. 525-534.
    [10] Olsson, A., Stemme, G., Stemme, E., “Micromachined Diffuser/Nozzle Elements For Valve-less Pumps,” Proc. IEEE-MEMS Workshop, 1996, pp. 378-383.
    [11] Olsson, A., Stemme, G., Stemme, E., “Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps,” Sensors and Actuators , No.84, 2000, pp.165-175.
    [12] Olsson, A., Stemme, G., Stemme, E., “A numerical design study of the valveless diffuser pump using a lumped-mass model,” J. Micromech. Microeng. , No. 9, 1999, 34–44.
    [13] Gerlach, T., Schuenemann, M., and Wurmus, H., “A new micropump principle of the reciprocation type using pyramidic micro flow channels as passive valves,” Journal of Micromechanics and Microengineering, Vol. 5, 1995, pp.199-201.
    [14] Gerlach, T., and Wurmus, H., “Working principle and performance of the dynamic micropump,” Sensors and Actuator, Vol. A50 (1995) 135-140.
    [15] White, F. M., Fluid Mechanics, McGraw-Hill, New York, 1986.
    [16] 廖鵬飛, “微管道流無動件閥之研究,” 國立成功大學航空太空研究所碩士論文, 中華民國93年7月

    下載圖示 校內:立即公開
    校外:2006-08-08公開
    QR CODE