| 研究生: |
黃琮偉 Huang, Cong-Wei |
|---|---|
| 論文名稱: |
利用數位光束處理3D列印技術及離子凝膠製作具自癒性與感知功能之軟式機器人 Soft robotics with self-healing and sensing capability achieved by digital light processing and ionogels |
| 指導教授: |
游聲盛
Yu, Sheng-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 軟式機器人 、3D列印 、數位光束處理 、離子凝膠 、深共熔溶劑 、自修復行為 、電容式壓力感測器 |
| 外文關鍵詞: | soft robot, 3D printing, digital light processing, ionogel, deep eutectic solvent, self-healing behavior, capacitive sensor |
| 相關次數: | 點閱:41 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,由於3D列印技術的快速發展,我們能夠以簡單且迅速的方式製造複雜結構。這項技術的出現使得複雜結構的軟式機器人能夠整合成一體,促使軟式機器人領域的研究更加深入。軟式機器人以其柔軟和可變形的特性為特點,具有廣泛的應用潛力。然而,設計複雜且功能性的軟式機器人系統仍然具有挑戰性。
本研究介紹了一種新的方法,使用數位光處理3D列印技術來製造複雜的流體彈性致動器結構,用於軟式機器人。該方法基於一種深共熔溶劑系統開發可列印樹脂,其中包括氫鍵受體氯化膽鹼,以及氫鍵供體甘油和丙烯醯胺。通過調整氯化膽鹼、甘油和丙烯醯胺的比例,可以調節樹脂的性能以滿足軟式機器人的需求。
除了製造複雜結構外,本研究還探討了由基於深共熔溶劑系統製作的可列印樹脂的自修復行為和感知能力。在較高溫度下,弱化的氫鍵作用力使聚合物鏈能夠穿過離子凝膠結構,實現了樹脂和3D列印的軟式機器人的自修復行為。此外,導電性離子凝膠的整合使得軟式機器人能夠擁有電容式壓力感測器,提高其對外部環境的感知能力。
本研究的發現對於軟式機器人材料的發展以及整個機器人領域具有重要意義。通過利用基於深共熔溶劑製作而成的可列印樹脂的優勢,研究人員和工程師們能夠克服在設計複雜軟式機器人系統時所面臨的挑戰,實現具有自修復行為和增強感知能力的仿生機器人的開發。這為在各個領域中創造具適應性和反應靈敏的機器人,實現各種任務帶來了令人興奮的可能性。
Soft robotics, inspired by nature's flexible and adaptable organisms, seeks to replicate the remarkable abilities of living creatures to move, perceive their surroundings, and respond to stimuli using soft and flexible structures. Over the past few years, researchers and scientists have made significant strides in soft robotics, driven by the goal of creating bionic robots.
This study introduces a novel approach to fabricating complex fluidic elastomer actuator (FEA) structures for soft robots using digital light processing (DLP) 3D printing. A printable ionogel based on a deep eutectic solvent (DES) system, consisting of choline chloride (ChCl) as a hydrogen bond acceptor, and glycerol (Gly) and acrylamide (AAm) as hydrogen bond donors, is employed. By adjusting the ratios of ChCl, Gly, and AAm, the ionogel’s properties can be tailored to meet the specific requirements of soft robots.
In addition to achieving intricate structures, this study delves into the self-healing behavior of the DES-based printable ionogel and explores the integration of capacitive pressure sensors for enhanced sensing capabilities. The ionogel’s self-healing properties, derived from weakened hydrogen bonding forces at higher temperatures, enable polymer chains to navigate through the ionogel matrix, resulting in resilient, soft robot structures. Furthermore, the incorporation of conductive ionogels enables the integration of capacitive pressure sensors, facilitating the soft robot’s ability to sense and interact with its environment.
The findings of this research contribute to the advancement of soft robot materials and bionic robotics as a whole. By leveraging the capabilities of the DES-based printable ionogel, researchers, and engineers can overcome challenges in designing intricate soft robot systems, enabling the development of bionic robots that exhibit self-healing behavior and enhanced sensing capabilities. This strategy opens up exciting possibilities for creating adaptive and responsive robots that can achieve various tasks.
1. Chi, Y. D.; Li, Y. B.; Zhao, Y.; Hong, Y. Y.; Tang, Y. C.; Yin, J., Bistable and multistable actuators for soft robots: structures, materials, and functionalities. Advanced Materials 2022, 34 (19), Article 2110384.
2. Polygerinos, P.; Correll, N.; Morin, S. A.; Mosadegh, B.; Onal, C. D.; Petersen, K.; Cianchetti, M.; Tolley, M. T.; Shepherd, R. F., Soft robotics: review of fluid-driven intrinsically soft devices; manufacturing, sensing, control, and applications in human-robot interaction. Advanced Engineering Materials 2017, 19 (12), Article 1700016.
3. Ilievski, F.; Mazzeo, A. D.; Shepherd, R. F.; Chen, X.; Whitesides, G. M., Soft robotics for chemists. Angewandte Chemie International Edition 2011, 50 (8), 1890-1895.
4. Keong, B. A. W.; Hua, R. Y. C., A novel fold-based design approach toward printable soft robotics using flexible 3D printing materials. Advanced Materials Technologies 2018, 3 (2), 1700172.
5. Yuk, H.; Lin, S.; Ma, C.; Takaffoli, M.; Fang, N. X.; Zhao, X., Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nature Communications 2017, 8 (1), 14230.
6. Al-Ibadi, A.; Nefti-Meziani, S.; Davis, S., Design, kinematics and controlling a novel soft robot arm with parallel motion. Robotics 2018, 7 (2), Article 19.
7. Hubbard, J. D.; Acevedo, R.; Edwards, K. M.; Alsharhan, A. T.; Wen, Z.; Landry, J.; Wang, K.; Schaffer, S.; Sochol, R. D., Fully 3D-printed soft robots with integrated fluidic circuitry. Science Advances 2021, 7 (29), eabe5257.
8. Liu, X. M.; Song, M. Z.; Fang, Y. H.; Zhao, Y. W.; Cao, C. Y., Worm-inspired soft robots enable adaptable pipeline and tunnel inspection. Advanced Intelligent Systems 2022, 4 (1), Article 2100128.
9. Shintake, J.; Cacucciolo, V.; Shea, H.; Floreano, D., Soft biomimetic fish robot made of dielectric elastomer actuators. Soft Robotics 2018, 5 (4), 466-474.
10. Ohm, Y.; Pan, C. F.; Ford, M. J.; Huang, X. N.; Liao, J. H.; Majidi, C., An electrically conductive silver-polyacrylamide-alginate hydrogel composite for soft electronics. Nature Electronics 2021, 4 (3), 185-192.
11. Nawroth, J. C.; Lee, H.; Feinberg, A. W.; Ripplinger, C. M.; McCain, M. L.; Grosberg, A.; Dabiri, J. O.; Parker, K. K., A tissue-engineered jellyfish with biomimetic propulsion. Nature Biotechnology 2012, 30 (8), 792-797.
12. Ren, Z. Y.; Hu, W. Q.; Dong, X. G.; Sitti, M., Multi-functional soft-bodied jellyfish-like swimming. Nature Communications 2019, 10, Article 2703.
13. Marchese, A. D.; Katzschmann, R. K.; Rus, D., A recipe for soft fluidic elastomer robots. Soft Robotics 2015, 2 (1), 7-25.
14. Lee, Y.; Song, W. J.; Sun, J. Y., Hydrogel soft robotics. Materials Today Physics 2020, 15, 100258.
15. Liu, X. H.; He, B.; Wang, Z. P.; Tang, H. F.; Su, T.; Wang, Q. G., Tough nanocomposite ionogel-based actuator exhibits robust performance. Scientific Reports 2014, 4, Article 6673.
16. Tolley, M. T.; Shepherd, R. F.; Mosadegh, B.; Galloway, K. C.; Wehner, M.; Karpelson, M.; Wood, R. J.; Whitesides, G. M., A resilient, untethered soft robot. Soft Robotics 2014, 1 (3), 213-223.
17. Shin, B.; Ha, J.; Lee, M.; Park, K.; Park, G. H.; Choi, T. H.; Cho, K. J.; Kim, H. Y., Hygrobot: A self-locomotive ratcheted actuator powered by environmental humidity. Science Robotics 2018, 3 (14), eaar2629.
18. da Cunha, M. P.; Ambergen, S.; Debije, M. G.; Homburg, E.; den Toonder, J. M. J.; Schenning, A., A soft transporter robot fueled by light. Advanced Science 2020, 7 (5), Article 1902842.
19. Walker, J.; Zidek, T.; Harbel, C.; Yoon, S.; Strickland, F. S.; Kumar, S.; Shin, M., Soft robotics: a review of recent developments of pneumatic soft actuators. Actuators 2020, 9 (1), 3.
20. Roche, E. T.; Horvath, M. A.; Wamala, I.; Alazmani, A.; Song, S. E.; Whyte, W.; Machaidze, Z.; Payne, C. J.; Weaver, J. C.; Fishbein, G.; Kuebler, J.; Vasilyev, N. V.; Mooney, D. J.; Pigula, F. A.; Walsh, C. J., Soft robotic sleeve supports heart function. Science Translational Medicine 2017, 9 (373), eaaf3925.
21. Kevin C. Galloway, K. P. B., Brennan Phillips, Jordan Kirby, Stephen Licht, Dan Tchernov, Robert J. Wood, and David F. Gruber, Soft robotic grippers for biological sampling on deep reefs. Soft Robotics 2016, 3 (1), 23-33.
22. Sinatra, N. R.; Teeple, C. B.; Vogt, D. M.; Parker, K. K.; Gruber, D. F.; Wood, R. J., Ultragentle manipulation of delicate structures using a soft robotic gripper. Science Robotics 2019, 4 (33), eaax5425.
23. Charbel Tawk, M. i. h. P., Geoffrey M. Spinks, and Gursel Alici, Bioinspired 3D printable soft vacuum actuators for locomotion robots, grippers and artificial muscles. Soft Robotics 2018, 5 (6), 685-694.
24. Hawkes, E. W.; Blumenschein, L. H.; Greer, J. D.; Okamura, A. M., A soft robot that navigates its environment through growth. Science Robotics 2017, 2 (8), eaan3028.
25. Milana, E., Soft robotics for infrastructure protection. Front Robot AI 2022, 9, 1026891.
26. Rossi, S.; Puglisi, A.; Benaglia, M., Additive manufacturing technologies: 3D printing in organic synthesis. ChemCatChem 2018, 10 (7), 1512-1525.
27. Yadav, D. K.; Srivastava, R.; Dev, S., Design & fabrication of ABS part by FDM for automobile application. Materials Today: Proceedings 2020, 26, 2089-2093.
28. Keun-Young, L.; Jin-Woo, C.; Na-Young, C.; Jong-Moon, C.; Kyung-Hwa, K.; Sang-Cheol, K., Accuracy of three-dimensional printing for manufacturing replica teeth. Korean J Orthod 2015, 45 (5), 217-225.
29. Gratson, G. M.; Xu, M.; Lewis, J. A., Direct writing of three-dimensional webs. Nature 2004, 428 (6981), 386-386.
30. Solís Pinargote, N. W.; Smirnov, A.; Peretyagin, N.; Seleznev, A.; Peretyagin, P., Direct ink writing technology (3D printing) of graphene-based ceramic nanocomposites: a review. Nanomaterials 2020, 10 (7), 1300.
31. Waheed, S.; Cabot, J. M.; Macdonald, N. P.; Lewis, T.; Guijt, R. M.; Paull, B.; Breadmore, M. C., 3D printed microfluidic devices: enablers and barriers. Lab on a Chip 2016, 16 (11), 1993-2013.
32. Economidou, S. N.; Pere, C. P. P.; Reid, A.; Uddin, M. J.; Windmill, J. F. C.; Lamprou, D. A.; Douroumis, D., 3D printed microneedle patches using stereolithography (SLA) for intradermal insulin delivery. Materials Science and Engineering: C 2019, 102, 743-755.
33. Florence, J. M.; Yoder, L. A. In Display system architectures for digital micromirror device (DMD)-based projectors, Projection displays II, SPIE: 1996; pp 193-208.
34. Smith, E. L.; Abbott, A. P.; Ryder, K. S., Deep eutectic solvents (DESs) and their applications. Chemical Reviews 2014, 114 (21), 11060-11082.
35. Płotka-Wasylka, J.; de la Guardia, M.; Andruch, V.; Vilková, M., Deep eutectic solvents vs ionic liquids: Similarities and differences. Microchemical Journal 2020, 159, 105539.
36. Topa, M.; Ortyl, J., Moving towards a finer way of light-cured resin-based restorative dental materials: recent advances in photoinitiating systems based on iodonium salts. Materials (Basel) 2020, 13 (18), 4093.
37. Nie, J.; Andrzejewska, E.; Rabek, J. F.; Lindén, L. Å.; Fouassier, J. P.; Paczkowski, J.; Scigalski, F.; Wrzyszczynski, A., Effect of peroxides and hydroperoxides on the camphorquinone-initiated photopolymerization. Macromolecular Chemistry and Physics 1999, 200 (7), 1692-1701.
38. Decker, C.; Jenkins, A. D., Kinetic approach of oxygen inhibition in ultraviolet- and laser-induced polymerizations. Macromolecules 1985, 18 (6), 1241-1244.
39. Xu, F.; Li, X.; Shi, Y.; Li, L.; Wang, W.; He, L.; Liu, R., Recent developments for flexible pressure sensors: a review. Micromachines 2018, 9 (11), 580.
40. Boutry, C. M.; Kaizawa, Y.; Schroeder, B. C.; Chortos, A.; Legrand, A.; Wang, Z.; Chang, J.; Fox, P.; Bao, Z., A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nature Electronics 2018, 1 (5), 314-321.
41. Wang, H.; Li, Z.; Liu, Z.; Fu, J.; Shan, T.; Yang, X.; Lei, Q.; Yang, Y.; Li, D., Flexible capacitive pressure sensors for wearable electronics. Journal of Materials Chemistry C 2022, 10 (5), 1594-1605.
42. Habib, M.; Lantgios, I.; Hornbostel, K., A review of ceramic, polymer and composite piezoelectric materials. Journal of Physics D: Applied Physics 2022, 55 (42), 423002.
43. Yang, Y.; Pan, H.; Xie, G.; Jiang, Y.; Chen, C.; Su, Y.; Wang, Y.; Tai, H., Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring. Sensors and Actuators A: Physical 2020, 301, 111789.
44. Shi, J.; Wang, L.; Dai, Z.; Zhao, L.; Du, M.; Li, H.; Fang, Y., Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range. Small 2018, 14 (27), 1800819.
45. Puers, R., Capacitive sensors: when and how to use them. Sensors and Actuators A: Physical 1993, 37-38, 93-105.
46. Luo, Y.; Shao, J.; Chen, S.; Chen, X.; Tian, H.; Li, X.; Wang, L.; Wang, D.; Lu, B., Flexible capacitive pressure sensor enhanced by tilted micropillar arrays. ACS Applied Materials & Interfaces 2019, 11 (19), 17796-17803.
47. Terryn, S.; Brancart, J.; Lefeber, D.; Van Assche, G.; Vanderborght, B., Self-healing soft pneumatic robots. Science Robotics 2017, 2 (9), eaan4268.
48. Gomez, E. F.; Wanasinghe, S. V.; Flynn, A. E.; Dodo, O. J.; Sparks, J. L.; Baldwin, L. A.; Tabor, C. E.; Durstock, M. F.; Konkolewicz, D.; Thrasher, C. J., 3D-printed self-healing elastomers for modular soft robotics. ACS Applied Materials & Interfaces 2021, 13 (24), 28870-28877.
49. Zhang, B.; Digby, Z. A.; Flum, J. A.; Chakma, P.; Saul, J. M.; Sparks, J. L.; Konkolewicz, D., Dynamic thiol–Michael chemistry for thermoresponsive rehealable and malleable networks. Macromolecules 2016, 49 (18), 6871-6878.
50. Chakma, P.; Rodrigues Possarle, L. H.; Digby, Z. A.; Zhang, B.; Sparks, J. L.; Konkolewicz, D., Dual stimuli responsive self-healing and malleable materials based on dynamic thiol-Michael chemistry. Polymer Chemistry 2017, 8 (42), 6534-6543.
51. Truby, R. L.; Wehner, M.; Grosskopf, A. K.; Vogt, D. M.; Uzel, S. G. M.; Wood, R. J.; Lewis, J. A., Soft somatosensitive actuators via embedded 3D printing. Advanced Materials 2018, 30 (15), 1706383.
52. Belhadj, H.; Hakki, A.; Robertson, P. K. J.; Bahnemann, D. W., In situ ATR-FTIR study of H2O and D2O adsorption on TiO2 under UV irradiation. Physical Chemistry Chemical Physics 2015, 17 (35), 22940-22946.