| 研究生: |
珠陽財仁 Chau Duong Tai Nhan |
|---|---|
| 論文名稱: |
女性賀爾蒙調控纖維接合素(Fibronectin)在肺癌形成中的機制探討 The Role of Estrogen-mediated Fibronectin Expression during Women Lung Cancer Progression |
| 指導教授: |
洪建中
Hung, Jan-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技與產業科學系 Department of Biotechnology and Bioindustry Sciences |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 肺癌 、雌激素 、纖維蛋白 、癌症相關的纖維細胞 、癌症轉移 |
| 外文關鍵詞: | lung cancer, estrogen, fibronectin, cancer-associated fibroblast, metastasis |
| 相關次數: | 點閱:113 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肺癌是全世界死亡的主要原因。在過去的十年中,男性肺癌患者的生存率略有提高,
但女性肺癌患者的預後仍然很差。了解如何誘導女性肺癌患者預後不良的分子機制
對於製定治療策略很重要。我們初步結果表明,與雄性小鼠相比,雌性 EGFRL858R
誘導的肺癌小鼠的腫瘤負荷更高, 表明雌激素可能促進肺癌的進展。事實上,雌激
素處理的肺癌細胞改變了許多癌症相關基因的表達, 纖維蛋白 (FN) 為一種細胞外基
質糖蛋白,它與細胞粘附、遷移和生長有關。在這項研究中,我們首先發現 17β -雌
二醇 (E2) 處理抑制了 A549 細胞中纖維蛋白的表達。根據我們的初步結果, 假設 E2
抑制的纖維蛋白可能與肺癌女性的不良預後有關。 , 首先我們通過使用纖維蛋白的
過表達和敲低檢查纖連蛋白在體外肺癌進展中的作用。結果表明纖維蛋白的降低可
能會失去細胞間的相互作用並且促進癌細胞的脫離和遷移。相反地,轉染 E2 處理的
A549 的纖維蛋白會增加細胞遷移。 這些數據表明 E2-A549 細胞在缺失纖維蛋白作為
細胞粘附分子表達的情況下,降低了細胞生長但增加遷移活性。最近,我們已經完
成了雄性和雌性肺腫瘤和卵巢剝奪小鼠中纖維蛋白的數據。有趣的是,從肺癌組織
中提取的樣本顯示,在雌性小鼠中檢測到更高的纖維蛋白,但未在雄性小鼠中檢測
到,這與癌細胞中纖維蛋白的表現不ㄧ致。 纖維蛋白的免疫組織染色(IHC)顯示纖維
蛋白主要來自免疫微環境(TME)而不是癌細胞本身,這意味著 E2 可能負調節肺癌細
胞纖維蛋白表達,但正調節癌症相關的纖維細胞 (CAF)中的纖維蛋白。總之, E2 抑
制肺癌細胞中纖維蛋白的表達,但在肺癌惡化及抗藥情形下會促進纖維細胞中纖維
蛋白的表達,這可能與肺癌女性預後不良有關。了解女性肺癌患者預後不良的原因
將有助於未來的癌症治療。
Lung cancer is the leading cause of death worldwide. In the past decade, the survival rate in men lung cancer patients has been improved slightly, but still poor prognosis in women lung cancer patients. Understanding the molecular mechanism of how to induce poor prognosis in women lung cancer patients is important for developing therapeutic strategies. Our recent preliminary result indicated that a higher tumor burden was found in female EGFRL858R-induced lung cancer mice compared to that in male mice, suggesting that estrogen may promote lung cancer progression. Indeed, estrogen-treated lung cancer cells alter many cancer-related genes expression including fibronectin (FN) as an extracellular matrix glycoprotein, which is related to cellular adhesion, migration, and growth. In this study, at first, we found that 17β-estradiol (E2) treatment inhibited fibronectin expression in A549 cells. Based on our recent preliminary results, we hypothesize that E2-repressed fibronectin may be involved in the poor prognosis of women with lung cancer. In beginning, we examined the role of fibronectin in lung cancer progression in vitro by using overexpression and knockdown of fibronectin. The result indicated that knockdown of fibronectin might lose the interaction between cell to cell, and thereby promotes the detachment and migration of cancer cells. Conversely, FN transfected to E2-treated A549 (E2-A549) increases cell migration. Taken together, these data suggest that E2-A549 cells, with deleted the expression of FN as a cell-adhesion molecule, slightly reduce cell growth but increase migration activity. Recently, we already finished data on the protein level of FN in our male and female lung tumors and ovary-deprived mice. Interestingly, samples extracted from lung cancer tissues showed higher aggressive FN were detected in female mice but not in males, which is different compared to the level in cancer cells. IHC stained biomarkers regarded FN derived from TMEs or peripheral tumors primarily instead of individual carcinoma cells, implying that E2 may negatively regulate FN expression but positively regulate FN in cancer-associated fibroblasts (CAFs). In conclusion, E2 inhibits FN expression in lung cancer cells but promotes FN expression in activated fibroblast in drug-sensitive and even overexpression in resistant condition, which might be associated to poor prognosis of women with lung cancer. Understanding the reason(s) of why poor prognosis happens in women lung cancer patients will be beneficial for cancer therapy in the future.
Aida-Yasuoka, K., Peoples, C., Yasuoka, H., Hershberger, P., Thiel, K., Cauley, J.A.,
Medsger, T.A., and Feghali-Bostwick, C.A. Estradiol promotes the development of a fibrotic phenotype and is increased in the serum of patients with systemic sclerosis. Arthritis Research and Therapy 15, 1-10, 2013.
Akamatsu, H., Ichihara-Tanaka, K., Ozono, K., Kamiike, W., Matsuda, H., and Sekiguchi, K. Suppression of transformed phenotypes of human fibrosarcoma cells by overexpression of recombinant fibronectin. Cancer Research 56, 4541-4546, 1996.
Aota, S.i., Nomizu, M., and Yamada, K.M. The short amino acid sequence Pro-His-Ser-ArgAsn in human fibronectin enhances cell-adhesive function. Journal of Biological Chemistry 269, 24756-24761, 1994.
Bae, Y.K., Kim, A., Kim, M.K., Choi, J.E., Kang, S.H., and Lee, S.J. Fibronectin expression
in carcinoma cells correlates with tumor aggressiveness and poor clinical outcome in patients with invasive breast cancer. Human Pathology 44, 2028-2037, 2013.
Beier, U.H., Holtmeier, C., Weise, J.B., and Görögh, T. Fibronectin suppression in head and neck cancers, inflammatory tissues and the molecular mechanisms potentially involved. International Journal of Oncology 30, 621-629, 2007.
Bolden, J.E., Peart, M.J., and Johnstone, R.W. Anticancer activities of histone deacetylase inhibitors. Nature reviews Drug Discovery 5, 769-784, 2006.
Bu, L., Baba, H., Yasuda, T., Uchihara, T., and Ishimoto, T. Functional diversity of cancer-associated fibroblasts in modulating drug resistance. Cancer Science 111, 3468, 2020.
Camerlingo, R., Miceli, R., Marra, L., Rea, G., D’Agnano, I., Nardella, M., Montella, R., Morabito, A., Normanno, N., and Tirino, V. Conditioned medium of primary lung cancer cells induces EMT in A549 lung cancer cell line by TGF-ß1 and miRNA21 cooperation. PloS One 14, e0219597, 2019.
Cho, C., Horzempa, C., Longo, C.M., Peters, D.M., Jones, D.M., and McKeown-Longo, P.J. Fibronectin in the tumor microenvironment activates a TLR4-dependent inflammatory response in lung cancer cells. Journal of Cancer 11, 3099, 2020.
Coppé, J.P., Desprez, P.Y., Krtolica, A., and Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annual Review of Pathology: Mechanisms of Disease 5, 99-118, 2010.
Darribère, T., and Schwarzbauer, J.E. Fibronectin matrix composition and organization can regulate cell migration during amphibian development. Mechanisms of Development 92, 239-250, 2000.
Delage-Mourroux, R., Martini, P.G., Choi, I., Kraichely, D.M., Hoeksema, J., and
Katzenellenbogen, B.S. Analysis of estrogen receptor interaction with a repressor of estrogen receptor activity (REA) and the regulation of estrogen receptor transcriptional activity by REA. Journal of Biological Chemistry 275, 35848-35856, 2000.
DeSantis, C.E., Miller, K.D., Goding Sauer, A., Jemal, A., and Siegel, R.L. Cancer statistics for African Americans, 2019. CA: A Cancer Journal for Clinicians 69, 211-233, 2019.
DeSimone, D.W., Norton, P.A., and Hynes, R.O. Identification and characterization of
alternatively spliced fibronectin mRNAs expressed in early Xenopus embryos. Developmental Biology 149, 357-369, 1992.
Drzewiecka, H., Galecki, B., Jarmolowska-Jurczyszyn, D., Kluk, A., Dyszkiewicz, W., and Jagodzinski, P.P. Increased expression of 17-beta-hydroxysteroid dehydrogenase type 1 in non-small cell lung cancer. Lung Cancer 87, 107-116, 2015.
Dumont, N., and Arteaga, C.L. Transforming growth factor-beta and breast cancer: tumor promoting effects of transforming growth factor-β. Breast Cancer Research 2, 1-8, 2000.
Erickson, H.P., Carrell, N., and McDONAGH, J. Fibronectin molecule visualized in electron microscopy: a long, thin, flexible strand. The Journal of Cell Biology 91, 673-678, 1981.
Fernandez‐Garcia, B., Eiró, N., Marín, L., González‐Reyes, S., Gonzalez, L.O., Lamelas,
M.L., and Vizoso, F.J. Expression and prognostic significance of fibronectin and matrix metalloproteases in breast cancer metastasis. Histopathology 64, 512-522, 2014.
Fürstenberger, G., and Senn, H.-J. Insulin-like growth factors and cancer. The Lancet
Oncology 3, 298-302, 2002.
Gaggioli, C., Robert, G., Bertolotto, C., Bailet, O., Abbe, P., Spadafora, A., Bahadoran, P., Ortonne, J.P., Baron, V., and Ballotti, R. Tumor-derived fibronectin is involved in melanoma cell invasion and regulated by V600E B-Raf signaling pathway. Journal of Investigative Dermatology 127, 400-410, 2007.
Gallurt, P., Rodriguez, P., Lorenzo, A., Saez, J.L., Senra, A., and Millan, J. Plasmatic
fibronectin in malignancies. The International Journal of Biological Markers 7, 240-243, 1992.
Gao, W., Liu, Y., Qin, R., Liu, D., and Feng, Q. Silence of fibronectin 1 increases cisplatin sensitivity of non-small cell lung cancer cell line. Biochemical and Biophysical Research Communications 476, 35-41, 2016.
Han, S., Khuri, F.R., and Roman, J. Fibronectin stimulates non–small cell lung carcinoma cell growth through activation of Akt/mammalian target of rapamycin/S6 kinase and inactivation of LKB1/AMP-activated protein kinase signal pathways. Cancer Research 66, 315-323, 2006.
Han, S., and Roman, J. Fibronectin induces cell proliferation and inhibits apoptosis in human bronchial epithelial cells: pro-oncogenic effects mediated by PI3-kinase and NF-κ B. Oncogene 25, 4341-4349, 2006.
Hancock, L.A., Hennessy, C.E., Solomon, G.M., Dobrinskikh, E., Estrella, A., Hara, N., Hill, D.B., Kissner, W.J., Markovetz, M.R., and Villalon, D.E.G. Muc5b overexpression causes mucociliary dysfunction and enhances lung fibrosis in mice. Nature Communications 9, 1-10, 2018.
Hsu, L.H., Chu, N.M., and Kao, S.H. Estrogen, estrogen receptor and lung cancer.
International Journal of Molecular Sciences 18, 1713, 2017.
Hsu, L.H., Liu, K.J., Tsai, M.F., Wu, C.R., Feng, A.C., Chu, N.M., and Kao, S.H. Estrogen
adversely affects the prognosis of patients with lung adenocarcinoma. Cancer Science 106, 51-59, 2015.
Hsu, T.I., Wang, M., Chen, S., Yeh, Y., Su, W., Chang, W., and Hung, J. Sp1 expression
regulates lung tumor progression. Oncogene 31, 3973-3988, 2012.
Hurtado, A., Holmes, K.A., Ross-Innes, C.S., Schmidt, D., and Carroll, J.S. FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nature Genetics 43, 27-33, 2011.
Hynes, R. Molecular biology of fibronectin. Annual Review of Cell Biology 1, 67-90, 1985.
Jia, D., Entersz, I., Butler, C., and Foty, R.A. Fibronectin matrix-mediated cohesion
suppresses invasion of prostate cancer cells. Biomed Central Genomics Cancer 12, 1-12, 2012.
Johansson, S., Svineng, G., Wennerberg, K., Armulik, A., and Lohikangas, L. Fibronectinintegrin interactions. Frontiers in Bioscience 2, d126-d146, 1997.
Koyi, H., Hillerdal, G., and Brandén, E. Patient's and doctors’ delays in the diagnosis of chest tumors. Lung Cancer 35, 53-57, 2002.
Ksiazek, K., Mikula-Pietrasik, J., Korybalska, K., Dworacki, G., Jörres, A., and Witowski, J. Senescent peritoneal mesothelial cells promote ovarian cancer cell adhesion: the role of oxidative stress-induced fibronectin. The American Journal of Pathology 174, 1230-1240, 2009.
Kumazaki, T. Cellular aging and expression of fibronectin. Hiroshima Journal of Medical Sciences 41, 101, 1992.
Kumazaki, T., Kobayashi, M., and Mitsui, Y. Enhanced expression of fibronectin during in vivo cellular aging of human vascular endothelial cells and skin fibroblasts. Experimental Cell Research 205, 396-402, 1993.
Lemjabbar-Alaoui, H., Hassan, O.U., Yang, Y.-W., and Buchanan, P. Lung cancer: Biology and treatment options. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1856, 189-210, 2015.
Levi, N., Papismadov, N., Solomonov, I., Sagi, I., and Krizhanovsky, V. The ECM path of senescence in aging: components and modifiers. The Federation of European Biochemical Societies Journal 287, 2636-2646, 2020.
Li, S., Yang, J., Xia, Y., Fan, Q., and Yang, K.-p. Long noncoding RNA NEAT1 promotes
proliferation and invasion via targeting miR-181a-5p in non-small cell lung cancer.
Oncology Research 26, 289, 2018.
Libura, J., Bettens, F., Radkowski, A., Tiercy, J., and Piguet, P. Risk of chemotherapyinduced pulmonary fibrosis is associated with polymorphic tumour necrosis factor-a2 gene. European Respiratory Journal 19, 912-918, 2002.
Lin, T.-C., Yang, C.-H., Cheng, L.-H., Chang, W.-T., Lin, Y.-R., and Cheng, H.-C.
Fibronectin in Cancer: Friend or Foe. Cells 9, 27, 2020.
Magnani, L., Ballantyne, E.B., Zhang, X., and Lupien, M. PBX1 genomic pioneer function drives ERα signaling underlying progression in breast cancer. PLoS Genetics 7, e1002368, 2011.
Malik, G., Knowles, L.M., Dhir, R., Xu, S., Yang, S., Ruoslahti, E., and Pilch, J. Plasma
fibronectin promotes lung metastasis by contributions to fibrin clots and tumor cell invasion. Cancer Research 70, 4327-4334, 2010.
Marchion, D., and Münster, P. Development of histone deacetylase inhibitors for cancer treatment. Expert Review of Anticancer Therapy 7, 583-598, 2007.
Marx, M., Perlmutter, R.A., and Madri, J.A. Modulation of platelet-derived growth factor receptor expression in microvascular endothelial cells during in vitro angiogenesis. The Journal of Clinical Investigation 93, 131-139, 1994.
Matsuoka, K., Yamada, T., Matsuoka, T., Nagai, S., Ueda, M., and Miyamoto, Y. Videoassisted thoracoscopic surgery for lung cancer after induction therapy. Asian Cardiovascular and Thoracic Annals 26, 608-614, 2018.
McDonald, J.A., Kelley, D.G., and Broekelmann, T.J. Role of fibronectin in collagen
deposition: Fab' to the gelatin-binding domain of fibronectin inhibits both fibronectin and collagen organization in fibroblast extracellular matrix. Journal of Cell Biology 92, 485-492, 1982.
McDonald, J.A., Quade, B.J., Broekelmann, T.J., LaChance, R., Forsman, K., Hasegawa, E., and Akiyama, S. Fibronectin's cell-adhesive domain and an amino-terminal matrix assembly domain participate in its assembly into fibroblast pericellular matrix. Journal of Biological Chemistry 262, 2957-2967, 1987.
Meng, X., Jin, Y., Yu, Y., Bai, J., Liu, G., Zhu, J., Zhao, Y., Wang, Z., Chen, F., and Lee, K.
Characterisation of fibronectin-mediated FAK signalling pathways in lung cancer cell migration and invasion. British Journal of Cancer 101, 327-334, 2009.
Mercier, I., Colombo, F., Mader, S., and Calderone, A. Ovarian hormones induce TGF-β3 and fibronectin mRNAs but exhibit a disparate action on cardiac fibroblast proliferation. Cardiovascular Research 53, 728-739, 2002.
Mollerup, S., Jørgensen, K., Berge, G., and Haugen, A. Expression of estrogen receptors α and β in human lung tissue and cell lines. Lung Cancer 37, 153-159, 2002.
Nagai, H., Isemura, M., Arai, H., Abe, T., Shimoda, S., Motomiya, M., Sato, H., Hashimoto, K., Takusagawa, K., and Konno, K. Pattern of fibronectin distribution in human lung cancer. Journal of Cancer Research and Clinical Oncology 112, 1-5, 1986.
Osborne, C.K., Hamilton, B., Titus, G., and Livingston, R.B. Epidermal growth factor
stimulation of human breast cancer cells in culture. Cancer Research 40, 2361-2366, 1980.
Parkin, D.M., Pisani, P., and Ferlay, J. Global cancer statistics. CA: A Cancer Journal for
Clinicians 49, 33-64, 1999.
Paul, J.I., and Hynes, R. Multiple fibronectin subunits and their post-translational
modifications. Journal of Biological Chemistry 259, 13477-13487, 1984.
Peng, J., Xu, X., Mace, B.E., Vanderveer, L.A., Workman, L.R., Slifker, M.J., Sullivan, P.M., Veenstra, T.D., and Clapper, M.L. Estrogen metabolism within the lung and its modulation by tobacco smoke. Carcinogenesis 34, 909-915, 2013.
Phan, S.H. Biology of fibroblasts and myofibroblasts. Proceedings of the American Thoracic Society 5, 334-337, 2008.
Proctor, R.A. Fibronectin: a brief overview of its structure, function, and physiology.
Reviews of Infectious Diseases 9, S317-S321, 1987.
Quinn, J.A., Graeber, C.T., Frackelton Jr, A.R., Kim, M., Schwarzbauer, J.E., and Filardo,
E.J. Coordinate regulation of estrogen-mediated fibronectin matrix assembly and epidermal growth factor receptor transactivation by the G protein-coupled receptor, GPR30. Molecular Endocrinology 23, 1052-1064, 2009.
Rick, J.W., Chandra, A., Dalle Ore, C., Nguyen, A.T., Yagnik, G., and Aghi, M.K.
Fibronectin in malignancy: Cancer-specific alterations, protumoral effects, and therapeutic implications. Seminars in Oncology 46, 284-290, 2019.
Roman, J. Fibronectin and fibronectin receptors in lung development. Experimental Lung Research 23, 147-159, 1997.
Romberger, D.J. Fibronectin. The International Journal of Biochemistry and Cell Biology 29, 939-943, 1997.
Rothenberger, N.J., Somasundaram, A., and Stabile, L.P. The role of the estrogen pathway in the tumor microenvironment. International Journal of Molecular Sciences 19, 611, 2018.
Safe, S. Transcriptional activation of genes by 17β-estradiol through estrogen receptor-Sp1 interactions. Vitam Horm 62, 231-252, 2001.
Sampayo, R.G., Toscani, A.M., Rubashkin, M.G., Thi, K., Masullo, L.A., Violi, I.L., Lakins,
J.N., Cáceres, A., Hines, W.C., and Coluccio Leskow, F. Fibronectin rescues estrogen
receptor α from lysosomal degradation in breast cancer cells. Journal of Cell Biology 217, 2777-2798, 2018.
Sandbo, N., and Dulin, N. Actin cytoskeleton in myofibroblast differentiation: ultrastructure defining form and driving function. Translational Research 158, 181-196, 2011.
Schiller, J.H., Harrington, D., Belani, C.P., Langer, C., Sandler, A., Krook, J., Zhu, J., and
Johnson, D.H. Comparison of four chemotherapy regimens for advanced non–small-cell lung cancer. New England Journal of Medicine 346, 92-98, 2002.
Schwarzbauer, J.E. Fibronectin: from gene to protein. Current Opinion in Cell Biology 3, 786-791, 1991.
Sechler, J.L., Takada, Y., and Schwarzbauer, J.E. Altered rate of fibronectin matrix assembly by deletion of the first type III repeats. Journal of Cell Biology 134, 573-583, 1996.
Shiga, K., Hara, M., Nagasaki, T., Sato, T., Takahashi, H., and Takeyama, H. Cancer-associated fibroblasts: their characteristics and their roles in tumor growth. Cancers 7, 2443-2458, 2015.
Singh, P., Carraher, C., and Schwarzbauer, J.E. Assembly of fibronectin extracellular matrix. Annual Review of Cell and Developmental Biology 26, 397-419, 2010.
Słowikowski, B.K., Lianeri, M., and Jagodziński, P.P. Exploring estrogenic activity in lung cancer. Molecular Biology Reports 44, 35-50, 2017.
Smith, H.S., Riggs, J.L., and Mosesson, M.W. Production of fibronectin by human epithelial cells in culture. Cancer Research 39, 4138-4144, 1979.
Sottile, J., and Hocking, D.C. Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions. Molecular Biology of the Cell 13, 3546-3559, 2002.
Stathakis, N., Fountas, A., and Tsianos, E. Plasma fibronectin in normal subjects and in various disease states. Journal of Clinical Pathology 34, 504-508, 1981.
Stenman, S., and Vaheri, A. Fibronectin in human solid tumors. International Journal of Cancer 27, 427-435, 1981.
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., and Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 71, 209-249, 2021.
Tao, L., Huang, G., Song, H., Chen, Y., and Chen, L. Cancer-associated fibroblasts: An
essential role in the tumor microenvironment. Oncology Letters 14, 2611-2620, 2017.
Taylor, G.A., Jeffers, M., Webb, C.P., Koo, H.-m., Anver, M., Sekiguchi, K., and Woude,
G.F.V. Decreased fibronectin expression in Met/HGF-mediated tumorigenesis. Oncogene 17, 1179-1183, 1998.
To, W.S., and Midwood, K.S. Plasma and cellular fibronectin: distinct and independent functions during tissue repair. Fibrogenesis and Tissue Repair 4, 1-17, 2011.
Urtreger, A.J., Werbajh, S.E., Verrecchia, F., Mauviel, A., Puricelli, L.I., Kornblihtt, A.R.,
and Bal De Kier Joffé, E.D. Fibronectin is distinctly downregulated in murine mammary adenocarcinoma cells with high metastatic potential. Oncology Reports 16, 1403-1410, 2006.
Valque, H., Gouyer, V., Gottrand, F., and Desseyn, J.-L. MUC5B leads to aggressive
behavior of breast cancer MCF7 cells. PLoS One 7, e46699, 2012.
Wang, J.P., and Hielscher, A. Fibronectin: how its aberrant expression in tumors may
improve therapeutic targeting. Journal of Cancer 8, 674, 2017.
Wang, Y.-J., Lin, J.-F., Cheng, L.-H., Chang, W.-T., Kao, Y.-H., Chang, M.-M., Wang, B.-J., and Cheng, H.-C. Pterostilbene prevents AKT-ERK axis-mediated polymerization of surface fibronectin on suspended lung cancer cells independently of apoptosis and suppresses metastasis. Journal of Hematology and Oncology 10, 1-14, 2017.
Weinberg, O.K., Marquez-Garban, D.C., Fishbein, M.C., Goodglick, L., Garban, H.J.,
Dubinett, S.M., and Pietras, R.J. Aromatase inhibitors in human lung cancer therapy. Cancer Research 65, 11287-11291, 2005.
Werbajh, S.E., Urtreger, A.J., Puricelli, L.I., de Lustig, E.S., de Kier Joffé, E.B., and
Kornblihtt, A.R. Downregulation of fibronectin transcription in highly metastatic
adenocarcinoma cells. Federation of European Biochemical Societies Letters 440, 277-281, 1998.
Wierzbicka-Patynowski, I., and Schwarzbauer, J.E. The ins and outs of fibronectin matrix assembly. Journal of Cell Science 116, 3269-3276, 2003.
Xu, J., and Mosher, D. Fibronectin and Other Adhesive Glycoproteins. In The Extracellular Matrix: an Overview, pp. 41-75. 2011.
Zheng, Y., Ritzenthaler, J.D., Roman, J., and Han, S. Nicotine stimulates human lung cancer cell growth by inducing fibronectin expression. American Journal of Respiratory Cell and Molecular Biology 37, 681-690, 2007.
Zhou, Q., Atadja, P., and Davidson, N.E. Histone deacetylase inhibitor LBH589 reactivates silenced estrogen receptor alpha (ER) gene expression without loss of DNA hypermethylation. Cancer Biology and Therapy 6, 64-69, 2007.