| 研究生: |
李智堯 Atiya, Arief Fath |
|---|---|
| 論文名稱: |
比較基於黏彈力學與化學動力之瀝青混凝土老化模型 Comparison between Viscoelastic Mechanical and Chemical Kinetic Aging Model of Asphalt Concrete |
| 指導教授: |
楊士賢
Yang, Shih-Hsien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 77 |
| 外文關鍵詞: | Oxidative Aging, Asphalt Concrete, Asphalt Binder, Linear Viscoelastic, Mechanistic Model, Kinetic Model |
| 相關次數: | 點閱:96 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The cause of the oxidative aging is due to the formation of carbonyl compound that transform the light molecular weight compound (naphthene aromatic and the polar aromatic) into large molecular weight (asphaltene) within the asphalt binder. Recent study proposed a mechanical based oxidative aging modelling by introducing oxidative aging variable which is conceptually model the carbonyl formation rate of asphalt materials during the long-term aging process. Thus, the objective of this study was to fully characterize and validate the mechanical-based aging model parameters and compared with the chemical kinetic model. To achieve the desired goal, the loose mix asphalt and the asphalt binder aged to five different level of aging (two temperatures and two periods of time) with the addition of two oxygen contents for the asphalt binder aging. Dynamic modulus test and linear frequency sweep test were used characterize the mechanical response of asphalt concrete and binder respectively. Fourier transform infrared spectroscopy (FTIR) test was employed to investigate the change of chemical compound in the asphalt binder. The results then used to characterize and validate the linear viscoelastic mechanical-based aging model parameters.
This study found that the aging variable value decreased with the aggregate involved. The aging model parameters of asphalt binder have evaluated, and the values were 0.0269, 8.570, 8.640, 1.598 for Γα, k1, k2, k3 respectively, where asphalt concrete were 0.0013, 8.570, 5.978, 0.780. The study also found that the aging history dependent (k2) discovered in this study allow the model to simulate the actual aging behavior as a polynomial curve. The Pearson correlation test showed that there is a strong relationship between the carbonyl content and the aging model variable.
Abdulshafi, A. A. (1983). Viscoelastic/plastic characterization, rutting and fatigue of flexible pavements (Doctoral dissertation, The Ohio State University).
Airey, G. D. (2003). State of the art report on ageing test methods for bituminous pavement materials. International Journal of Pavement Engineering, 4(3), 165-176.
Al-Rub, R. K. A., Darabi, M. K., Kim, S. M., Little, D. N., & Glover, C. J. (2013). Mechanistic-based constitutive modeling of oxidative aging in aging-susceptible materials and its effect on the damage potential of asphalt concrete. Construction and Building Materials, 41, 439-454.
Androjić, I. (2016). Ageing of hot mix asphalt. Građevinar, 68(06.), 477-483.
Asphalt Binder Testing: Technicians Manual for Specification Testing of Asphalt Binders, 2nd Ed. (2008). S.L.: The Institute
Babadopulos, L. F. A. L. (2013). Avaliação do modelo viscoelástico linear aplicado a misturas asfálticas utilizadas em revestimentos de pavimentos no Brasil. Projeto de Graduação. Curso de Engenharia Civil da Universidade Federal do Ceará. Fortaleza. In Portuguese.
Bell, C. A. (1989). Summary report on aging of asphalt-aggregate systems(No. SHRP-A-305).
Bell, C. A., AbWahab, Y., Cristi, M. E., & Sosnovske, D. (1994). Selection of laboratory aging procedures for asphalt-aggregate mixtures (No. SHRP-A-383). Strategic Highway Research Program.
Bowers, B. F., Huang, B., & Shu, X. (2014). Refining laboratory procedure for artificial RAP: A comparative study. Construction and Building Materials, 52, 385-390.
Bowers, B. F., Huang, B., Shu, X., & Miller, B. C. (2014). Investigation of reclaimed asphalt pavement blending efficiency through GPC and FTIR. Construction and building materials, 50, 517-523.
Buchler, S., Mollenhauer, K., Wistuba, M., & Renken, P. (2009). Ageing of stone mastic asphalt and evaluation of cracking resistance. In Bearing Capacity of Roads, Railways and Airfields. 8th International Conference (BCR2A'09).
Christensen, D. W., & Anderson, D. A. (1992). Interpretation of dynamic mechanical test data for paving grade asphalt cements (with discussion). Journal of the Association of Asphalt Paving Technologists, 61.
Claine Petersen, J. (1998). A dual, sequential mechanism for the oxidation of petroleum asphalts. Petroleum Science and Technology, 16(9-10), 1023-1059.
Cong, P., Chen, S., Yu, J., & Wu, S. (2010). Effects of aging on the properties of modified asphalt binder with flame retardants. Construction and Building Materials, 24(12), 2554-2558.
Corbett, L. W., & Merz, R. E. (1975). Asphalt binder hardening in the Michigan test road after 18 years of service. Transportation Research Record, (544).
Daniel, J., Kim, Y., & Lee, H. J. (1998). Effects of aging on viscoelastic properties of asphalt-aggregate mixtures. Transportation Research Record: Journal of the Transportation Research Board, (1630), 21-27.
Darabi, M. K., Al‐Rub, R. K. A., Masad, E. A., & Little, D. N. (2012). Thermodynamic‐based model for coupling temperature‐dependent viscoelastic, viscoplastic, and viscodamage constitutive behavior of asphalt mixtures. International Journal for Numerical and Analytical Methods in Geomechanics, 36(7), 817-854.
Darabi, M. K., Al-Rub, R. K. A., Masad, E. A., Huang, C. W., & Little, D. N. (2011). A thermo-viscoelastic–viscoplastic–viscodamage constitutive model for asphaltic materials. International Journal of Solids and Structures, 48(1), 191-207.
Dave, E. V., Paulino, G. H., & Buttlar, W. G. (2012). Viscoelastic functionally graded finite element method with recursive time integration and applications to flexible pavements. International Journal for Numerical and Analytical Methods in Geomechanics, 36(9), 1194-1219.
Dave, E. V., Paulino, G. H., & Buttlar, W. G. (2010). Asphalt pavement aging and temperature dependent properties through a functionally graded viscoelastic model, Part-I: Development, implementation and verification. In Materials Science Forum (Vol. 631, pp. 47-52). Trans Tech Publications.
De la Roche, C., Van de Ven, M., Gabet, T., Dubois, V., Grenfell, J., & Porot, L. (2016). Development of a laboratory bituminous mixtures ageing protocol. Long and Deep Tunnels: Integrated Design and Construction Approach, 331.
Dessouky, S., Reyes, C., Ilias, M., Contreras, D., & Papagiannakis, A. T. (2011). Effect of pre-heating duration and temperature conditioning on the rheological properties of bitumen. Construction and Building Materials, 25(6), 2785-2792.
Farcas, F. (1996). Etude d'une methode de simulation du vieillissement sur route des bitumes (Doctoral dissertation).
Findley, W. N., Lai, J. S., Onaran, K., & Christensen, R. M. (1977). Creep and relaxation of nonlinear viscoelastic materials with an introduction to linear viscoelasticity. Journal of Applied Mechanics, 44, 364.
Garrick, N. W. (1995). Nonlinear differential equation for modeling asphalt aging. Journal of materials in civil engineering, 7(4), 265-268.
Hachiya, Y., Nomura, K., & Shen, J. (2003). Accelerated aging tests for asphalt concretes. In Sixth International RILEM Symposium on Performance Testing and Evaluation of Bituminous Materials (pp. 133-140). RILEM Publications SARL.
Herrington, P. R. (1998). Oxidation of bitumen in the presence of a constant concentration of oxygen. Petroleum science and technology, 16(7-8), 743-765.
Huang, C. W., Masad, E., Muliana, A. H., & Bahia, H. (2007). Nonlinearly viscoelastic analysis of asphalt mixes subjected to shear loading. Mechanics of time-dependent materials, 11(2), 91-110.Huang, C. W., Abu Al-Rub, R. K., Masad, E. A., Little, D. N., & Airey, G. D. (2011). Numerical implementation and validation of a nonlinear viscoelastic and viscoplastic model for asphalt mixes. International Journal of Pavement Engineering, 12(4), 433-447.
Jennings, P. W., Pribanic, J. A., Desando, M. A., Raub, M. F., Moats, R., Smith, J. A., ... & Manders, W. F. (1993). Binder characterization and evaluation by nuclear magnetic resonance spectroscopy (No. SHRP-A-335).
Jones IV, D. R., & Kennedy, T. W. (1991). The asphalt model: results of the SHRP asphalt research program. Transportation Research Board VTI Rapport A, 372, 83-90.
Lai, J. S., & Hufferd, W. L. (1976). PREDICTING PERMANENT DEFORMATION OF ASPHALT CONCRETE FROM CREEP TESTS (ABRIDGEMENT). Transportation Research Record, (616).
Lau, C. K., Lunsford, K. M., Glover, C. J., Davison, R. R., & Bullin, J. A. (1992). Reaction rates and hardening susceptibilities as determined from pressure oxygen vessel aging of asphalts. Transportation Research Record, (1342).
Lee, D. Y., & Huang, R. J. (1973). Weathering of asphalts as characterized by infrared multiple internal reflection spectra. Applied Spectroscopy, 27(6), 435-440.
Lesueur, D. (2009). The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Advances in colloid and interface science, 145(1), 42-82.
Liu, M., Ferry, M. A., Davison, R. R., Glover, C. J., & Bullin, J. A. (1998). Oxygen uptake as correlated to carbonyl growth in aged asphalts and asphalt Corbett fractions. Industrial & engineering chemistry research, 37(12), 4669-4674.
Liu, M., Lunsford, K. M., Davison, R. R., Glover, C. J., & Bullin, J. A. (1996). The kinetics of carbonyl formation in asphalt. AIChE Journal, 42(4), 1069-1076.
Liu, M. M., Lin, M. S., Chaffin, J. M., Davison, R. R., Glover, C. J., & Bullin, J. A. (1998). Oxidation kinetics of asphalt Corbett fractions and compositional dependence of asphalt oxidation. Petroleum Science and Technology, 16(7-8), 827-850.
Lu, X., & Isacsson, U. (2000). Artificial aging of polymer modified bitumens. Journal of applied polymer science, 76(12), 1811-1824.
Michalica, P., Kazatchkov, I. B., Stastna, J., & Zanzotto, L. (2008). Relationship between chemical and rheological properties of two asphalts of different origins. Fuel, 87(15), 3247-3253.
Mollenhauer, K., Pierard, N., Tusar, M., Mouillet, V., & Gabet, T. (2010). Development and validation of a laboratory aging method for the accelerated simulation of reclaimed asphalt. Journal of Wuhan University of Technology--Materials Science Edition, 25(4), 631-636.
Pellinen, T. K., & Witczak, M. W. (2002). Stress dependent master curve construction for dynamic (complex) modulus (with discussion). Journal of the Association of Asphalt Paving Technologists, 71.
Perl, M., Uzan, J., & Sides, A. (1983). Visco-elasto-plastic constitutive law for a bituminous mixture under repeated loading. Transportation Research Record, 911, 20-26.
Petersen, J. C. (1984). Chemical composition of asphalt as related to asphalt durability. Developments in Petroleum Science, 40, 363-399.
Piérard, N., & Vanelstraete, A. (2016). Developing a test method for the accelerated ageing of bituminous mixtures in the laboratory. Advanced Testing and Characterization of Bituminous Materials, 163-171.
Porot, L., & Bobrisow, L. (2008). Laboratory mixture ageing protocol for RAP production. In PROCEEDINGS OF THE 4TH EURASPHALT AND EUROBITUME CONGRESS HELD MAY 2008, COPENHAGEN, DENMARK.
Rana, A.Y., Ratnasamy, M., Salihudin, H., Fauzan, J., Eltaher, A.: An overview of quantification of fatigue resistance of asphalt mixture using pre-aged Binder, WALIA journal, 31 (20-15) S1, pp. 125-132
Read, J., & Whiteoak, D. (2003). The shell bitumen handbook. Thomas Telford.
Robert, F. L., Kandhal, P. S., Brown, E. R., Lee, D. Y., & Kennedy, T. W. (1996). Hot Mix Asphalt Materials. Mixture Design, and Construction, NAPA Education Foundation, Second Edition, Lanham, Maryland.
Schapery, R. A. (1969). On the characterization of nonlinear viscoelastic materials. Polymer Engineering & Science, 9(4), 295-310.
Sides, A., Uzan, J., & Perl, M. (1985). A comprehensive viscoelasto-plastic characterization of sand-asphalt compressive and tensile cyclic loading. Journal of Testing and Evaluation, 13(1), 49-59.
Silva, H. N. (2009). Caracterização viscoelástica linear de misturas asfálticas: Operacionalização Computacional e Análise pelo Método dos Elementos Finitos (Doctoral dissert).
Struik, L. C. E. (1977). Physical aging in plastics and other glassy materials. Polymer Engineering & Science, 17(3), 165-173.
Swiertz, D. (2010). Asphalt aging characteristics, rheological implications and laboratory techniques. University of Wisconsin-Madison.
Traxler, R. N. (1961). Relation between asphalt composition and hardening by volatilization and oxidation. In Assoc Asphalt Paving Technol Proc.
UZAN, J., Sides, A., & Perl, M. (1985). Viscoelastoplastic model for predicting performance of asphaltic mixtures. Transportation Research Record, (1043).
Williams, D. H., & Fleming, I. (1980). Spectroscopic methods in organic chemistry. McGraw-Hill.
Yang, S. H., & Lee, L. C. (2015). Chemical and Performance Based Rheological Properties of Rejuvenated Severe Aged Reclaimed Asphalt Binder with High Recyling Rate. In Transportation Research Board 94th Annual Meeting (No. 15-4081).
Yang, S. H., & Keita, A. (2013). Preliminary Evaluation of Field Aging Characteristic of Warm Mix Asphalt. In Advanced Materials Research (Vol. 723, pp. 149-156). Trans Tech Publications.
Yao, H., Dai, Q., & You, Z. (2015). Fourier Transform Infrared Spectroscopy characterization of aging-related properties of original and nano-modified asphalt binders. Construction and Building Materials, 101, 1078-1087.
Zhang, F., Yu, J., & Wu, S. (2010). Effect of ageing on rheological properties of storage-stable SBS/sulfur-modified asphalts. Journal of hazardous materials, 182(1), 507-517
Zhao, D. (2011). Evolution de l'adherence des chaussees: Influence des materiaux, du vieillissement et du trafic, variations saisonnieres. THESE DE L'ECOLE CENTRALE DE NANTES, SPECIALITE GENIE CIVIL.