| 研究生: |
蕭冠中 Hsiao, Kuan-Chung |
|---|---|
| 論文名稱: |
EB病毒造成噬血症侯群的血球吞噬機轉研究 Mechanism of Hemophagocytosis in Epstein-Barr Virus Associated Hemophagocytic Syndrome |
| 指導教授: |
蘇益仁
Su, Ih-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 45 |
| 中文關鍵詞: | 噬血症候群 、吞噬 |
| 外文關鍵詞: | hemophagocytosis, EBV |
| 相關次數: | 點閱:48 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
90%以上的成年人都曾經被EB病毒感染過,發病多以慢性潛伏性感染為主,但是在少數的病例中會因為急性感染而造成傳染性單核球增多症,進而併發噬血症候群(hemophagocytic syndrome, HS)。噬血症候群起因於病人體內免疫系統對病毒感染的過度活化,釋出細胞激素(cytokines),導致吞噬細胞活化。但吞噬細胞活化後如何吞噬血球,則一直是一個謎。吞噬細胞的吞噬作用必須經由表面上的受體來辨識外來的分子(ligand),其中一個可能的途徑是經由Fc受體。EB病毒感染後,是否會促使B細胞產生對抗血球的抗體進一步來引起吞噬作用,是本研究的主要目的。
在本研究中,我們進行三個實驗來澄清上述的假說。我們首先觀察活化的吞噬細胞株U937細胞對紅血球的吞噬作用。活化的U937細胞會吞噬被抗體標定的紅血球,而對於沒有抗體標定的紅血球則沒有任何吞噬現象。其次,我們利用臨床噬血症侯群病人血清檢體來檢查是否有對抗紅血球的抗體存在。我們經由疾病管制局收集了68個噬血症候群病人的血清,有18個血清抗紅血球抗體呈陽性反應。其中36個病人與EB病毒感染有關,11個呈抗體陽性反應。上述的體外及人體實驗中,皆顯示吞噬細胞的吞噬作用確與對紅血球的自體抗體的產生有關。接下來我們利用一個已建立的一個EB病毒感染誘發噬血症候群的動物模式來進一步證實這個假說。我們以Herpesvirus papio(HVP)感染紐西蘭白兔,在九隻HVP感染的兔子中,我們發現病毒感染13天後,紅血球表面開始出現抗體(1.8%),一直到感染後26天(92.8%)皆可測到抗紅血球抗體的存在;同時伴隨著抗體的出現,在淋巴結的切片中觀察到血球吞噬的現象。
因此,由上述三項實驗,我們認為當EB病毒急性感染時,會使T細胞過度活化,並激活吞噬細胞。同時,B細胞會產生抗紅血球抗體,並進一步造成噬血症候群。藉由此實驗,我們對於噬血症候群的血球吞噬現象提出了一個可能的機轉。
The pathogenic basis of hemophagocytic syndrome (HS) is the over activation of the immune system, in particular the lymphocytes and macrophage. Among the infection-associated HS, Epstein-Barr virus (EBV) infection is the causative agent in most cases. In EBV-associated HS, unregulated T-cell reaction may release high levels of cytokines�n which lead to activation of macrophage and induced hemophagocytic syndrome. However, the mechanism of hemophagocytosis in HS remains unknown. Since phagocytosis by macrophages depends on a receptor mediated mechanism, we hypothesize that the hemophagocytosis might occur through the Fc-Fc receptor pathway. The specific aim of this study is to identify the existence of anti-RBC Ab in EBV-associated HS.
In this experiment, we first studied whether the phagocytosis of red cells by activated U937 cell is antibody-dependent. We demonstrated that the phagocytosis by macrophage could be observed only in the presence of Ab-conjugated RBC and not in normal RBC. Second, we collected 68 serum samples of patients with HS from Taiwan CDC and detected the existence of autoantibodies to red cells. After Ab screening, serum samples from 18 of 68 HS patients were anti-RBC Ab positive. among them, 36 samples were EBV positive and 11()had detected autoantibodies to red cells. These two studies suggest that anti-RBC Ab may play a role in the development of HS. In order to further test the hypothesis, we established an EBV-infection animal model. We infected 9 rabbits with Herpesvirus papio(HVP) , and found that anti-RBC Ab was detectable on the surface of RBCs (1.8%) after 13 days infection of virus , and increased up to 92.8% on 26th day. Also, hemophagocytosis in lymph node can be observed after the appearance of anti-RBC Ab.
Our experiments demonstrate that acute infection of EBV would not only lead to the activation of T cell and macrophage, but also activate the B cell to induce the production of anti-RBC Ab. The presence of autoantibodies to red cells is essential for hemophagocytosis in EBV-associated HS. Our studies provide a potential mechanism of hemophagocytosis in EBV-associated HS.
Adams, D. O., and Hamilton, T. A. (1984). The cell biology of macrophage activation. Annu Rev Immunol 2, 283-318.
Aderem, A., and Underhill, D. M. (1999). Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17, 593-623.
Arndt, P. A., Leger, R. M., and Garratty, G. (1999). Serology of antibodies to second- and third-generation cephalosporins associated with immune hemolytic anemia and/or positive direct antiglobulin tests. Transfusion 39, 1239-1246.
Baer, R., Bankier, A. T., Biggin, M. D., Deininger, P. L., Farrell, P. J., Gibson, T. J., Hatfull, G., Hudson, G. S.,
Satchwell, S. C., Seguin, C., and et al. (1984). DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310, 207-211.
Boake, W. C., Card, W. H., and Kimmey, J. F. (1965). Histiocytic Medullary Reticulosis; Concurrence in Father and Son. Arch Intern Med 116, 245-252.
Brown, E. J. (1995). Phagocytosis. Bioessays 17, 109-117.
Burkitt, D. (1958). A sarcoma involving the jaws in African children. Br J Surg 46, 218-223.
Caballes, R. L., Caballes-Ponce, M. G., and Kim, D. U. (1997). Familial hemophagocytic lymphohistiocytosis (FHLH). Pathology 29, 92-95.
Cataldo, F., Varrica, D., Mele, A., Oddo, S., Varvara, M. G., and Albeggiani, A. (1994). [Autoimmune hemolytic anemia with cold antibodies and hemoglobinuria secondary to EBV infection]. Minerva Pediatr 46, 401-405.
Chapman, C. J., Spellerberg, M. B., Smith, G. A., Carter, S. J., Hamblin, T. J., and Stevenson, F. K. (1993). Autoanti-red cell antibodies synthesized by patients with infectious mononucleosis utilize the VH4-21 gene segment. J Immunol 151, 1051-1061.
Dambaugh, T., Beisel, C., Hummel, M., King, W., Fennewald, S., Cheung, A., Heller, M., Raab-Traub, N., and Kieff, E. (1980). Epstein-Barr virus (B95-8) DNA VII: molecular cloning and detailed mapping. Proc Natl Acad Sci U S A 77, 2999-3003.
Dolyniuk, M., Pritchett, R., and Kieff, E. (1976a). Proteins of Epstein-Barr virus. I. Analysis of the polypeptides of purified enveloped Epstein-Barr virus. J Virol 17, 935-949.
Dolyniuk, M., Wolff, E., and Kieff, E. (1976b). Proteins of Epstein-Barr Virus. II. Electrophoretic analysis of the polypeptides of the nucleocapsid and the glucosamine- and polysaccharide-containing components of enveloped virus. J Virol 18, 289-297.
Ellman, L., Carvalho, A., Jacobson, B. M., and Colman, R. W. (1973). Platelet autoantibody in a case of infectious mononucleosis presenting as thrombocytopenic purpura. Am J Med 55, 723-726.
Epstein, M. A., and Barr, Y. M. (1964). Cultivation in Vitro of Human Lymphoblasts from Burkitt's Malignant Lymphoma. Lancet 41, 252-253.
Farquhar, J. W., and Claireaux, A. E. (1952). Familial haemophagocytic reticulosis. Arch Dis Child 27, 519-525.
Feng, W. H., Hong, G., Delecluse, H. J., and Kenney, S. C. (2004). Lytic induction therapy for Epstein-Barr virus-positive B-cell lymphomas. J Virol 78, 1893-1902.
Fisman, D. N. (2000). Hemophagocytic syndromes and infection. Emerg Infect Dis 6, 601-608.
Fong, S., Vaughan, J. H., Tsoukas, C. D., and Carson, D. A. (1982). Selective induction of autoantibody secretion in human bone marrow by Epstein Barr virus. J Immunol 129, 1941-1945.
Fujiwara, F., Hibi, S., and Imashuku, S. (1993). Hypercytokinemia in hemophagocytic syndrome. Am J Pediatr Hematol Oncol 15, 92-98.
Gehrs, B. C., and Friedberg, R. C. (2002). Autoimmune hemolytic anemia. Am J Hematol 69, 258-271.
Given, D., and Kieff, E. (1978). DNA of Epstein-Barr virus. IV. Linkage map of restriction enzyme fragments of the B95-8 and W91 strains of Epstein-Barr Virus. J Virol 28, 524-542.
Grateau, G., Bachmeyer, C., Blanche, P., Jouanne, M., Tulliez, M., Galland, C., Sicard, D., and Sereni, D. (1997). Haemophagocytic syndrome in patients infected with the human immunodeficiency virus: nine cases and a review. J Infect 34, 219-225.
Hayashi, K., Koirala, T. R., Ino, H., Chen, H. L., Ohara, N., Teramoto, N., Yoshino, T., Takahashi, K., Yamada, M., Nii, S., and et al. (1995). Malignant lymphoma induction in rabbits by intravenous inoculation of Epstein-Barr-virus-related herpesvirus from HTLV-II-transformed cynomolgus leukocyte cell line (Si-IIA). Int J Cancer 63, 872-880.
Hayashi, K., Ohara, N., Teramoto, N., Onoda, S., Chen, H. L., Oka, T., Kondo, E., Yoshino, T., Takahashi, K., Yates, J., and Akagi, T. (2001). An animal model for human EBV-associated hemophagocytic syndrome: herpesvirus papio frequently induces fatal lymphoproliferative disorders with hemophagocytic syndrome in rabbits. Am J Pathol 158, 1533-1542.
Hayashi, K., Teramoto, N., and Akagi, T. (2002). Animal in vivo models of EBV-associated lymphoproliferative diseases: special references to rabbit models. Histol Histopathol 17, 1293-1310.
Henle, G., and Henle, W. (1966). Immunofluorescence in cells derived from Burkitt's lymphoma. J Bacteriol 91, 1248-1256.
Henle, G., Henle, W., and Diehl, V. (1968). Relation of Burkitt's tumor-associated herpes-ytpe virus to infectious mononucleosis. Proc Natl Acad Sci U S A 59, 94-101.
Henle, W., Diehl, V., Kohn, G., Zur Hausen, H., and Henle, G. (1967). Herpes-type virus and chromosome marker in normal leukocytes after growth with irradiated Burkitt cells. Science 157, 1064-1065.
Hesseling, P. B., Wessels, G., Egeler, R. M., and Rossouw, D. J. (1995). Simultaneous occurrence of viral-associated hemophagocytic syndrome and Langerhans cell histiocytosis: a case report. Pediatr Hematol Oncol 12, 135-141.
Huidbuchel, E., Blaschek, M., Seigneurin, J. M., Lamour,
A., Berthelot, J. M., and Youinou, P. (1991). Anti-organelle and anti-cytoskeletal autoantibodies in the serum of Epstein-Barr virus-infected patients. Ann Med Interne (Paris) 142, 343-346.
Imashuku, S. (2002). Clinical features and treatment strategies of Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis. Crit Rev Oncol Hematol 44, 259-272.
Imashuku, S., Hibi, S., Fujiwara, F., Ikushima, S., and
Todo, S. (1994). Haemophagocytic lymphohistiocytosis, interferon-gamma-naemia and Epstein-Barr virus involvement. Br J Haematol 88, 656-658.
Imashuku, S., Tabata, Y., Teramura, T., and Hibi, S. (2000). Treatment strategies for Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis (EBV-HLH). Leuk Lymphoma 39, 37-49.
Ishii, E., Ohga, S., Aoki, T., Yamada, S., Sako, M., Tasaka, H., Kuwano, A., Sasaki, M., Tsunematsu, Y., and Ueda, K. (1991). Prognosis of children with virus-associated hemophagocytic syndrome and malignant histiocytosis: correlation with levels of serum interleukin-1 and tumor necrosis factor. Acta Haematol 85, 93-99.
Johannessen, I., and Crawford, D. H. (1999). In vivo models for Epstein-Barr virus (EBV)-associated B cell lymphoproliferative disease (BLPD). Rev Med Virol 9, 263-277.
Jones, J. F., Shurin, S., Abramowsky, C., Tubbs, R. R., Sciotto, C. G., Wahl, R., Sands, J., Gottman, D., Katz, B. Z., and Sklar, J. (1988). T-cell lymphomas containing Epstein-Barr viral DNA in patients with chronic Epstein-Barr virus infections. N Engl J Med 318, 733-741.
Kerr, B. M., Lear, A. L., Rowe, M., Croom-Carter, D., Young, L. S., Rookes, S. M., Gallimore, P. H., and Rickinson, A. B. (1992). Three transcriptionally distinct forms of Epstein-Barr virus latency in somatic cell hybrids: cell phenotype dependence of virus promoter usage. Virology 187, 189-201.
Kikuta, H., Taguchi, Y., Tomizawa, K., Kojima, K., Kawamura, N., Ishizaka, A., Sakiyama, Y., Matsumoto, S., Imai, S., Kinoshita, T., and et al. (1988). Epstein-Barr virus genome-positive T lymphocytes in a boy with chronic active EBV infection associated with Kawasaki-like disease. Nature 333, 455-457.
Kruger, S., Schroers, R., Rooney, C. M., Gahn, B., and Chen, S. Y. (2003). Identification of a naturally processed HLA-DR-restricted T-helper epitope in Epstein-Barr virus nuclear antigen type 1. J Immunother 26, 212-221.
Lay, J. D., Chuang, S. E., Rowe, M., and Su, I. J. (2003). Epstein-barr virus latent membrane protein-1 mediates upregulation of tumor necrosis factor-alpha in EBV-infected T cells: implications for the pathogenesis of hemophagocytic syndrome. J Biomed Sci 10, 146-155.
Lay, J. D., Tsao, C. J., Chen, J. Y., Kadin, M. E., and Su, I. J. (1997). Upregulation of tumor necrosis factor-alpha gene by Epstein-Barr virus and activation of macrophages in Epstein-Barr virus-infected T cells in the pathogenesis of hemophagocytic syndrome. J Clin Invest 100, 1969-1979.
Li, Q., Spriggs, M. K., Kovats, S., Turk, S. M., Comeau, M. R., Nepom, B., and Hutt-Fletcher, L. M. (1997). Epstein-Barr virus uses HLA class II as a cofactor for infection of B lymphocytes. J Virol 71, 4657-4662.
Lieby, P., Soley, A., Knapp, A. M., Cerutti, M., Freyssinet, J. M., Pasquali, J. L., and Martin, T. (2003). Memory B cells producing somatically mutated antiphospholipid antibodies are present in healthy individuals. Blood 102, 2459-2465.
Macintyre, E. A., Linch, D. C., Macey, M. G., and Newland, A. C. (1985). Successful response to intravenous immunoglobulin in autoimmune haemolytic anaemia. Br J Haematol 60, 387-388.
Meyer, D., Schiller, C., Westermann, J., Izui, S., Hazenbos, W. L., Verbeek, J. S., Schmidt, R. E., and Gessner, J. E. (1998). FcgammaRIII (CD16)-deficient mice show IgG isotype-dependent protection to experimental autoimmune hemolytic anemia. Blood 92, 3997-4002.
Michl, J. (1980). Receptor mediated endocytosis. Am J Clin Nutr 33, 2462-2471.
Misra, R., Venables, P. J., Plater-Zyberk, C., Watkins, P. F., and Maini, R. N. (1989). Anti-cardiolipin antibodies in infectious mononucleosis react with the membrane of activated lymphocytes. Clin Exp Immunol 75, 35-40.
Mosier, D. E., Gulizia, R. J., Baird, S. M., and Wilson, D. B. (1988). Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 335, 256-259.
Muir, K., Todd, W. T., Watson, W. H., and Fitzsimons, E. (1992). Viral-associated haemophagocytosis with parvovirus-B19-related pancytopenia. Lancet 339, 1139-1140.
Mullen, M. M., Haan, K. M., Longnecker, R., and Jardetzky, T. S. (2002). Structure of the Epstein-Barr virus gp42 protein bound to the MHC class II receptor HLA-DR1. Mol Cell 9, 375-385.
Murray, R. J., Young, L. S., Calender, A., Gregory, C. D., Rowe, M., Lenoir, G. M., and Rickinson, A. B. (1988). Different patterns of Epstein-Barr virus gene expression and of cytotoxic T-cell recognition in B-cell lines infected with transforming (B95.8) or nontransforming (P3HR1) virus strains. J Virol 62, 894-901.
Niedobitek, G., Agathanggelou, A., Finerty, S., Tierney, R., Watkins, P., Jones, E. L., Morgan, A., Young, L. S., and Rooney, N. (1994). Latent Epstein-Barr virus infection in cottontop tamarins. A possible model for Epstein-Barr virus infection in humans. Am J Pathol 145, 969-978.
Ohga, S., Matsuzaki, A., Nishizaki, M., Nagashima, T., Kai, T., Suda, M., and Ueda, K. (1993). Inflammatory cytokines in virus-associated hemophagocytic syndrome. Interferon-gamma as a sensitive indicator of disease activity. Am J Pediatr Hematol Oncol 15, 291-298.
Ohno, S., Akita, Y., Hata, A., Osada, S., Kubo, K., Konno, Y., Akimoto, K., Mizuno, K., Saido, T., Kuroki, T., and et al. (1991). Structural and functional diversities of a family of signal transducing protein kinases, protein kinase C family; two distinct classes of PKC, conventional cPKC and novel nPKC. Adv Enzyme Regul 31, 287-303.
Pender, M. P. (2003). Infection of autoreactive B lymphocytes with EBV, causing chronic autoimmune diseases. Trends Immunol 24, 584-588.
Raab-Traub, N., and Flynn, K. (1986). The structure of the termini of the Epstein-Barr virus as a marker of clonal cellular proliferation. Cell 47, 883-889.
Robinson, J. E., and Stevens, K. C. (1984). Production of autoantibodies to cellular antigens by human B cells transformed by Epstein-Barr virus. Clin Immunol Immunopathol 33, 339-350.
Shulman, I. A., Arndt, P. A., McGehee, W., and Garratty, G. (1990). Cefotaxime-induced immune hemolytic anemia due to antibodies reacting in vitro by more than one mechanism. Transfusion 30, 263-266.
Silverman, J. F., Singh, H. K., Joshi, V. V., Holbrook, C. T., Chauvenet, A. R., Harris, L. S., and Geisinger, K. R. (1993). Cytomorphology of familial hemophagocytic syndrome. Diagn Cytopathol 9, 404-410.
Sixbey, J. W., Vesterinen, E. H., Nedrud, J. G., Raab-Traub, N., Walton, L. A., and Pagano, J. S. (1983). Replication of Epstein-Barr virus in human epithelial cells infected in vitro. Nature 306, 480-483.
Smith, K. J., Skelton, H. G., 3rd, Giblin, W. L., and James, W. D. (1991). Cutaneous lesions of hemophagocytic syndrome in a patient with T-cell lymphoma and active Epstein-Barr infection. J Am Acad Dermatol 25, 919-924.
Su, I. J., and Chen, J. Y. (1997). The role of Epstein-Barr virus in lymphoid malignancies. Crit Rev Oncol Hematol 26, 25-41.
Su, I. J., Hsieh, H. C., Lin, K. H., Uen, W. C., Kao, C. L., Chen, C. J., Cheng, A. L., Kadin, M. E., and Chen, J. Y. (1991). Aggressive peripheral T-cell lymphomas containing Epstein-Barr viral DNA: a clinicopathologic and molecular analysis. Blood 77, 799-808.
Su, I. J., Wang, C. H., Cheng, A. L., and Chen, R. L. (1995). Hemophagocytic syndrome in Epstein-Barr virus-associated T-lymphoproliferative disorders: disease spectrum, pathogenesis, and management. Leuk Lymphoma 19, 401-406.
Sutton, R. N., Emond, R. T., Thomas, D. B., and Doniach, D. (1974). The occurrence of autoantibodies in infectious mononucleosis. Clin Exp Immunol 17, 427-436.
Takada, H., Ohga, S., Mizuno, Y., Suminoe, A., Matsuzaki, A., Ihara, K., Kinukawa, N., Ohshima, K., Kohno, K.,
Kurimoto, M., and Hara, T. (1999). Oversecretion of IL-18 in haemophagocytic lymphohistiocytosis: a novel marker of disease activity. Br J Haematol 106, 182-189.
Takada, K. (1984). Cross-linking of cell surface immunoglobulins induces Epstein-Barr virus in Burkitt lymphoma lines. Int J Cancer 33, 27-32.
Tanaka, M., Kamijo, T., Koike, K., Ueno, I., Nakazawa, Y., Kurokawa, Y., Sakashita, K., Komiyama, A., and Fujisawa, K. (2003). Specific autoantibodies to platelet glycoproteins in Epstein-Barr virus-associated immune thrombocytopenia. Int J Hematol 78, 168-170.
Tauber, A. I. (2003). Metchnikoff and the phagocytosis theory. Nat Rev Mol Cell Biol 4, 897-901.
Tsuda, H., and Shirono, K. (1996). Successful treatment of virus-associated haemophagocytic syndrome in adults by cyclosporin A supported by granulocyte colony-stimulating factor. Br J Haematol 93, 572-575.
Turcanova, V., and Hollsberg, P. (2004). Sustained CD8+ T-cell immune response to a novel immunodominant HLA-B*0702-associated epitope derived from an Epstein-Barr virus helicase-primase-associated protein. J Med Virol 72, 635-645.
Tynell, E., Aurelius, E., Brandell, A., Julander, I., Wood, M., Yao, Q. Y., Rickinson, A., Akerlund, B., and Andersson, J. (1996). Acyclovir and prednisolone treatment of acute infectious mononucleosis: a multicenter, double-blind, placebo-controlled study. J Infect Dis 174, 324-331.
Vaughan, J. H., Valbracht, J. R., Nguyen, M. D., Handley, H. H., Smith, R. S., Patrick, K., and Rhodes, G. H. (1995). Epstein-Barr virus-induced autoimmune responses. I. Immunoglobulin M autoantibodies to proteins mimicking and not mimicking Epstein-Barr virus nuclear antigen-1. J Clin Invest 95, 1306-1315.
Wang, X. B., Giscombe, R., Yan, Z., Heiden, T., Xu, D., and Lefvert, A. K. (2002). Expression of CTLA-4 by human monocytes. Scand J Immunol 55, 53-60.
Watanabe, M., Shimamoto, Y., Yamaguchi, M., Inada, S., Miyazaki, S., and Sato, H. (1994). Viral-associated haemophagocytosis and elevated serum TNF-alpha with parvovirus-B19-related pancytopenia in patients with hereditary spherocytosis. Clin Lab Haematol 16, 179-182.
Winiarski, J. (1989). Antibodies to platelet membrane glycoprotein antigens in three cases of infectious mononucleosis-induced thrombocytopenic purpura. Eur J Haematol 43, 29-34.
Zaharopoulos, P. (2001). Serous fluid cytology as a means of detecting hemophagocytosis in Epstein-Barr virus-induced autoimmune hemolytic anemia. Diagn Cytopathol 25, 248-252.
zur Hausen, H., O'Neill, F. J., Freese, U. K., and Hecker, E. (1978). Persisting oncogenic herpesvirus induced by the tumour promotor TPA. Nature 272, 373-375.