| 研究生: |
曹智翔 Tsao, Chih-Hsiang |
|---|---|
| 論文名稱: |
以同步輻射X光散射研究電紡順向纖維升溫時微結構演變 Microstructure evolution of electrospun aligned nanofibers during annealing probed by synchrotron X-ray scattering |
| 指導教授: |
王紀
Wang, Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 200 |
| 中文關鍵詞: | 同排聚苯乙烯 、同排聚丙烯 、順向纖維 、小角度X光散射 、廣角度X光繞射 |
| 外文關鍵詞: | isotactic polystyrene, isotactic polypropylene, aligned fibers, SAXS, WAXD |
| 相關次數: | 點閱:48 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以同步小角/廣角X光散射鑑定電紡所得同排聚苯乙烯(iPS)順向纖維在連續升溫過程中與同排聚丙烯(iPP)順向纖維在逐步升溫過程中,纖維內微結構隨溫度的演變。
電紡所得iPS順向纖維的結構為amorphous,在溫度高於Tg時,會因為冷結晶而產生晶體。隨著溫度上升,結晶度逐漸增加,但在160 oC以上,增加幅度趨緩。此外,在120 oC下形成的晶體具有高度順向性,隨後在高溫下晶體順向性降低。SAXS分析結果表明,纖維內lamellae的順向性在不同溫度下差異性不大,並且纖維形態在100 oC時有明顯變化,這部分由SEM觀察結果證實。
電紡所得iPP順向纖維的結構主要為amorphous與mesophase,並夾帶少量a型晶體。隨著溫度上升,原本存在於纖維內的mesophase與少量型晶體逐漸變為只有a型晶體,而amorphous含量並沒有因為mesophase含量減少而增加,顯示iPP順向纖維的冷結晶過程主要是由mesophase轉換為a型晶體所主導。此外,lamellar順向性分析結果顯示,amorphous在高溫下結晶形成的lamellae順向性較高。
The evolution of the microstructure in aligned isotactic polystyrene (iPS) electrospun fibers during continuous annealing, and aligned isotactic polypropylene (iPP) electrospun fibers during stepwise annealing is characterized by synchrotron small/wide-angle X-ray scattering.
The dominant structure of aligned iPS as-spun fibers is amorphous. When the annealing temperature (Ta) achieve the glass transition temperature (Tg), relaxation of chains and cold crystallization occur. As Ta increases, the crystallinity gradually increases, but the rate of increase slows down above 160 °C. Moreover, the crystals exhibit high orientation at 120 °C, which decreases at higher Ta. SAXS results indicate that lamellar orientation of remains unchanged at different Ta.
Aligned iPP as-spun fibers consists mainly of amorphous phase and mesophase components, with a small amount of α-form crystals. As Ta increases, the mesophase and the small amount of α-form crystals initially present in the fibers gradually transform predominantly into α-form crystals, while the amount of amorphous phase does not increase despite the decrease in that of mesophase. This suggests that the cold crystallization process of aligned iPP fibers is primarily dominated by the transformation of the mesophase into α-form. Additionally, lamellar orientation analysis results show that the lamellae formed from the crystallization of the amorphous phase at high Ta exhibit higher orientation.
[1] G. Natta, P. Corradint, I. W. Bassi, “Crystal structure of isotactic polystyrene”, Nuovo Cimento 15, 68 (1960).
[2] J. Brandup, E. H. Immergut, E. A. Grulke, A. Abe, D. R. Bloch, “Polymer handbook”, Wiley Interscience (1999).
[3] T. Liu, J Petermann, “Multiple melting behavior in isothermally cold-crystallization isotactic polystyrene”, Polymer 42, 6453 (2001).
[4] P. J. Lemstra, J. Postma, and G. Challa, "Molecular-weight dependence of spherulitic growth-rate of isotactic polystyrene", Polymer 15, 757 (1974)
[5] Y. Duan, J. Zang, D. Shen, S. Yan, “In situ FTIR studies on the cold-crystallization process and multiple melting behavior of isotactic polystyrene”, Macromolecules 36, 4874 (2003).
[6] J. Zhang, Y. Duan, D. Shen, S. Yan, I. Noda, Y. Ozaki, “Structure changes during the induction period of cold crystallization of isotactic polystyrene investigated by infrared and two-dimensional infrared correlation spectroscopy”, Macromolecules 37, 3292 (2004).
[7] H. Xu, B. S. Ince, P. Cebe, “Development of the crystallization and rigid amorphous fraction in cold-crystallized isotactic polystyrene” Journal of Polymer Science Part B: Polymer Physics 41, 3026 (2003).
[8] H. Xu, P. Cebe, “Transition from solid to liquid in isotactic polystyrene studied by thermal analysis and X-ray scattering” Polymer 46, 8734 (2005).
[9] V. Causin, C. Marega, A. Marigo, “The morphology, structure and melting behavior of cold crystallized isotactic polystyrene”, Macromolecular Research 14, 588 (2006).
[10] Y. Miyamoto, K. Fukao, H. Miyaji, “Small-angle x-ray scattering of isotactic polystyrene”, Colloid Polymer Science 273, 66 (1995).
[11] F. P. Warner, W. J. Macknight, R. S. Stein, “A small-angle x-ray scattering study of blends of isotactic and atactic polystyrene”, Journal of Polymer Science 15, 2113 (1977).
[12] B. Natesan, H. Xu, B. S. Ince, P. Cebe, “Molecular relaxation of isotactic polystyrene: real-time dielectric spectroscopy and x-ray scattering studies”, Journal of Polymer Science Part B 42, 777 (2004).
[13] H. Chen, H. Xu, P. Cebe, “Thermal and structural properties of blends of isotactic with atactic polystyrene”, Polymer 48, 6404 (2007).
[14] M. Al-Hussein, G. Strobl, “The melting line, the crystallization line, and the equilibrium melting temperature of isotactic polystyrene”, Macromolecules 35, 1672 (2002).
[15] K. Taguchi, H. Miyaji, K. Izumi, A. Hoshino, Y. Miyamoto, R. Kokawa, “Growth shape of isotactic polystyrene crystal in thin films”, Polymer 42, 7443 (2001).
[16] M. Tosaka, K.Yamaguchi, M. Tsuji, “Latent orientation in the skin layer of electrospun isotactic polystyrene ultrafine fibers”, Polymer 51, 547 (2010).
[17] C. Wang, Y. L. Chu, Y. j. Wu, “Electronspun isotactic polystyrene nanofibers as a novel β-nucleating agent for isotactic polypropylene”, Polymer 53, 5404 (2012).
[18] S. Brűckner, S. V. Meille, V. Petraccone, B. Pirozzi, “Polymorphism in isotactic polypropylene”, Progress in Polymer Science 16, 361 (1991).
[19] B. Lotz, A. J. hLovinger, J. C. Wittmann, “Structure and morphology of poly(propylenes): a molecular analysis”, Polymer 37, 4979 (1996).
[20] B. Lotz, K. Nakamura, N. Okui, S. Shimizu, A. Thierry, S. Umemoto, “Temperature dependence of crystal growth rate for and forms of isotactic polypropylene”, Polymer Journal 40, 915 (2008).
[21] H. Bai, H. Deng, Q. Fu, F. Luo, K. Wang, T. Zhou “New insight on the annealing induced microstructural changes and their roles in the toughening of -form polypropylene”, Polymer 52, 2351 (2011).
[22] J. Varga, “ -Modification of isotactic polystyrene: preparation, structure, processing, properties, and application”, Journal of Macromolecular Science Part B 41,1121 (2002).
[23] T. Labour, L. Ferry, C. Gauthier, P. Hajji, G. Vigier, “a- and b-crystalline forms of isotactic polypropylene investigated by nanoindentation”, Journal of Applied Polymer Science 74,195 (1999).
[24] K. Nishida, T. Konishi, T. Kanaya, “Crystallization of isotactic polypropylene from prequenched mesomorphic phase”, Macromolecules 39, 8035 (2006).
[25] K. Nishida, K. Okada, H. Asakawa, G. Matsuba, T. Kanaya, K. Kaji, “In situ observations of the mesophase formation of isotactic polypropylene – a fast time-resolved X-ray diffraction study”, Polymer Journal 44, 95 (2012).
[26] K. H. Nitta, K. Odaka, “Influence of structural organization on tensile properties in mesomorphic isotactic polystyrene”, Polymer 50, 4080 (2009).
[27] J. Qiu, Z. Wang, L. Yang, j. Zhao, Y. Niu, B. S. Hsiao, “Deformation-induced highly oriented and stable mesomorphic phase in quenched isotactic polypropylene”, Polymer 48, 6934 (2007).
[28] S. Ran, X. Zong, D. Fang, B. S. Hsiao, B. Chu, P. M. Cunniff, R. A. Phillips, “Studies of the mesophase development in polymeric fibers during deformation by synchrotron SAXS/WAXD”, Journal of Materials Science 36, 3071 (2001).
[29] S. A. Arvidson, S. A. Khan, R. E. Gorga, “Mesomorphic--monoclinic phase transition in isotactic polypropylene: A study of processing effects on structure and mechanical properties”, Macromolecules 43, 2916 (2010).
[30] O. Jiang, Y. Zhao, C. Zhang, J. Yang, Y. Xu, D. Wang, “In-situ investigation on the structural evolution of mesomorphic isotactic polypropylene in a continuous heating process”, Polymer 105, 133 (2016).
[31] H. Asakawa, K. Nishida, G. Matsuba, T. Kanaya, H. Ogawa, “Crystallization of isotactic polypropylene from mesomorphic phase: a constant heating rate study”, Journal of Physics 272, 12 (2011).
[32] M. Naiki, T. Kikkawa, Y. Endo, K. Nozaki, T. Yamamoto, T. Hara, “Crystal ordering of phase isotactic polypropylene”, Polymer 42, 5471 (2000).
[33] D. Cho, H. Zhou, Y. Cho, D. Audus, Y. L. Joo, “Structural properties and superhydrophobicity of electrospun polypropylene fibers from solution and melt”, Polymer 51, 6005 (2010).
[34] S. Liu, Y. Liang, Y. Quan, K. Dai, G. Zheng, C. Liu, J. Chen, C. Shen, “Electrospun isotactic polypropylene fibers: Self-similar morphology and microstructure”, Polymer 54, 3117 (2013).
[35] C. Wang, T. C. Hsieh, Y. W. Cheng, “Solution-electrospun isotactic polypropylene fibers: Processing and microstructure development during stepwise annealing”, Macromolecules 43, 9022 (2010).
[36] B. Chu, B. S. Hsiao, S. Ran, X. Zong, D. Fang, “Structural and morphological studies of isotactic polypropylene fibers during heat/draw deformation by in-situ synchrotron SAXS/WAXD”, Macromolecules 34, 2569 (2001).
[37] Y. A. Kang, K. H. Kim, S. Ikehata, Y. Ohkoshi, Y. Gotoh, M. Nagura, H. Urakawa, “In-situ analysis of fiber structure development for isotactic polyprolene”, Polymer 52, 2044 (2011).
[38] T. Miyazaki, Y. Takeda, A. Hoshiko, K. Shimokita, D. Ogomi, “Evaluation of oriented amorphous regions in polymer films during uniaxial deformation; structural characterization of a poly(vinyl alcohol) film during stretching in boric acid aqueous solutions”, Polymer Engineering and Science 55, 513 (2015).
[39] L. Alexander, “X-ray diffraction methods in polymer science”, Journal of Materials Science 6, 93 (1971).
[40] B. Chu, S. Ran, D. Fang, X. Zong, B. S. Hsiao, P. M. Cunniff, “Structural changes during deformation of Kevlar fibers via on-line synchrotron SAXS/WAXD techniques”, Polymer 42, 1601 (2001).
[41] W. Ruland, “Small-angle scattering studies on carbonized cellulose Fibers”, Journal of Polymer Science Part C 28, 143 (1969).
[42] A. Neels, A. Sadeghpour, A. K. Maurya, L. Weidenbacher, F. Spano, G. Fortunato, R. M. Rossi, M. Frenz, A. Dommann, “Structual insights into semicrystalline states of electrospun nanofibers: a multiscale analytical approach”, Nanoscale 11, 7176 (2019).
[43] C. Wang, C. W. Tsai, T. Hashimoto, “Poly(vinyl alcohol) fibrils with highly oriented amorphous chains developed in electrospun nanofibers”, Macromolecules 57, 2191 (2024).
[44] G. Vancso, D. Snetivy, I. Tomka, “Structural changes during polystyrene orientation: a study of optical birefringence and wide angle X-ray scattering”, Journal of Applied Polymer Science 42, 1351 (1991).
[45] 朱有玲, “電紡同排聚苯乙烯及其複合纖維製程與纖維性質分析”, 國立成功大學碩士論文 (2012).
[46] F. J. Balta-Calleja, C. G. Vonk, “X-ray scattering of synthetic polymers”, Elsevier: New York (1989).
[47] A. Nogales, B. S. Hsiao, R. H. Somani, S. Srinivas, A. H. Tsou, F. J. Balta-Calleja, T. A. Ezquerra, “Shear-induced crystallization of isotactic polypropylene with different molecular weight distributions: in situ small- and wide-angle X-ray scattering studies”, Polymer 42, 5247 (2001).
[48] 鄭淇元, “以電紡絲法製備含石墨烯亂排聚苯乙烯及對排聚苯乙烯纖維”, 國立成功大學碩士論文 (2014).
[49] U. S. Jeng, C. H. Su, C. J. Su, K. F. Liao, W. T. Chuang, Y. H. Lai, J. W. Chang, Y. J. Chen, Y. J. Chen, Y. S. Huang, M. T. Lee, et al., “A small/wide-angle X-ray scattering instrument for structural characterization of air-liquid interfaces, thin films and bulk specimens”, Journal of Applied Crystallography 43, 110 (2009).
[50] G. Kalay, Z. Zhong, P. Allan, M. J. Bevis, “The occurrence of the -phase in injection moulded polypropylene in relation to the processing conditions”, Polymer 37, 2077 (1996).
校內:2029-08-22公開