簡易檢索 / 詳目顯示

研究生: 趙家樑
Chao, Chia-Liang
論文名稱: 以電漿化學氣相離子沉積法成長類鑽碳奈米複合薄膜
Deposition of Diamond-Like Carbon Nanocomposite films by Plasma Chemical Vapor ion Plating Method
指導教授: 洪昭南
Hong, Chau-Nan Franklin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 96
中文關鍵詞: 類鑽碳二氧化鈦複合材料
外文關鍵詞: nanocomposite, DLC, TiO2
相關次數: 點閱:70下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在類鑽碳奈米複合薄膜的研究方面,主要是針對傳統的類鑽碳薄膜在應用上具有的缺點來進行改良。由於類鑽碳膜具有極佳的物理與化學特性,因此可應用於模具、光學元件與生醫材料等方面。
      在本研究中將利用含有Ti-C-O等元素Tetraisoproxide
    titanium,TTIP 與O2為反應物進行薄膜的沉積。所使用的系統為RF ICP電漿系統。形成的薄膜以XRD進行奈米粒子的結構鑑定,以 XPS 光譜分析薄膜的鍵結型態,顯示內部具有TiC、TiO2 所組成的奈米粒子,再藉由高解析穿透分析式電子顯微鏡確定該奈米粒子的存在與大小,且利用接觸角量測來進行親水性的變化。
      藉由實驗參數的設定,我們可以沉積包含TiO2奈米粒子的類鑽碳奈米複合薄膜。奈米粒子的尺寸約5nm~20nm,且薄膜在紫外光照射下具有高親水性,薄膜的硬度約8Gpa,應力約3Gpa。且由拉曼光譜圖可知薄膜內有較多的sp2碳含量。
      TTIP與O2的比例、氣體的壓力及基板偏壓皆影響到膜中奈米粒子的晶形結構,以及奈米複合薄膜受紫外光照射所導致的親水性。在低工作壓力及高偏壓的情形下鍍膜時的奈米粒子具有較佳的晶形結構,在經過紫外光照射後也具有較佳的親水性。

      In studying the diamond-like nanocomposite films, the major efforts have been concentrated on overcoming the problems of conventionaldiamond-
    like carbon (a-C:H or DLC) films, such as high residual stresses, poor adhesion, etc. DLC films have attracted widespread attention due to their great potentials in high tech tribological industries, optical device and biological materials, etc.
      In this study, Ti-C-O organometallic precursor (TTIP) mixed with O2 was employed to deposit TiO2-containing the diamond-like carbon films. XRD and X-ray photoemission spectroscopy (XPS) analysis suggested that nanoparticles were formed embedded in the diamond-like carbon matrices. According to the analysis with high-resolution analytical electron microscopy (HRAEM), we observed crystalline TiC、TiO2 nanoparticles were formed in the diamond-like carbon films.
      By modualing the experimental conditions,we can deposite the diamond-like-carbon nanocomposite which has the TiO2 nanoparticles.The nanoparticle size is about 5nm,and the film is very hydrophilic under UV radiation. The hardness of the film is about 8 GPa,and the stress is about 3 GPa .By Raman spectroscopy the film show more sp2 carbon than sp3 carbon.
       The gas ratio of TTIP and O2 ,the gas pressure and the substrate bias affect the crystallographic structure and UV-light-induced hydrophilicity of the deposited nanocomposite films. The film deposited at low working pressure and high substrate bias has good UV -induced hydrophilicity.

    總目錄 中文摘要 .....................................................I 英文摘要 .....................................................II 誌謝....................................................III 總目錄 .....................................................IV 表目錄 ...................................................VIII 圖目錄 .....................................................IX 第一章 緒論 ......................................................1 1-1 前言......................................................1 1-2 類鑽碳奈米複合薄膜之研究現況與瓶頸......................................................3 1-3 類鑽碳奈米複合薄膜之研究動機與方向 ......................................................4 第二章 理論基礎......................................................6 2-1 類鑽膜......................................................6 2-1 類鑽碳膜之組成......................................................6 2-1-2 類鑽碳膜之成長機構 .....................................................11 2-1-3類鑽碳改質膜.....................................................15 2-2 奈米複合薄膜之理論基礎 .....................................................17 2-3 電漿化學.....................................................21 2-4離子被覆(ion plating)技術 .....................................................28 2-4-1離子被覆(ion plating)的介紹.....................................................28 2-4-2離子轟擊效應.....................................................29 2-5 感應耦合式電漿輔助離子被覆系統.....................................................30 2-5-1 高密度電漿.....................................................30 2-5-2 ICP產生原理.....................................................31 2-6 TiO2光觸媒.....................................................33 2-6-1 光觸媒之氧化還原原理.....................................................34 2-6-2光觸媒文獻回顧.....................................................35 第三章 實驗參數與研究方法.....................................................38 3-1 實驗流程圖.....................................................38 3-2感應耦合式電漿系統.....................................................39 3-2-1 感應耦合式電漿輔助物理氣相沉積系統.....................................................39 3-2-2 電漿反應器之設計.....................................................40 3-2-3 ICP Coil 碳源的選擇.....................................................41 3-2-4 電源供應器.....................................................41 3-2-4~1 RF電源供應器.....................................................41 3-2-4~2基板偏壓電源供應器.....................................................41 3-2-5 基板座裝置.....................................................42 3-2-5~1 基板座之設計.....................................................42 3-2-5~2 基板溫度量測系統.....................................................42 3-2-6 抽氣與真空系統.....................................................42 3-2-6~1 抽氣系統.....................................................42 3-2-6~2 壓力檢測系統.....................................................43 3-2-7 反應氣體輸送裝置.....................................................43 3-3 實驗藥品材料.....................................................44 3-3-1 實驗材料.....................................................44 3-3-2 實驗藥品及氣體.....................................................44 3-4 實驗操作.....................................................45 3-4-1 基板前處理.....................................................45 3-4-2 實驗操作步驟.....................................................45 3-6 分析與鑑定.....................................................47 3-6-1 表面型態觀察.....................................................47 3-6-2 成長速率測定.....................................................47 3-6-3 薄膜結構分析.....................................................47 3-6-4 薄膜組成及鍵結型態分析.....................................................49 3-6-5 硬度值測定.....................................................49 3-6-6 微結構分析.....................................................50 3-6-7 接觸角分析.....................................................50 . 第四章 結果與討論.....................................................52 4-1前言.....................................................52 4-2 以感應耦合式電漿成長類鑽碳複合薄.....................................................53 4-2-1 實驗參數之設計.....................................................53 4-2-2 鍍膜速率之探討.....................................................53 4-2-3 殘留應力分析.....................................................54 4-2-4 硬度值量測.....................................................55 4-2-5 拉曼光譜分析.....................................................56 4-2-6 X-ray 光電子光譜分析.....................................................58 4-2-7 穿透式電子顯微鏡分析.....................................................59 4-2-6 XRD分析.....................................................61 4-2-7 照UV光後水接觸角之變化.....................................................62 第五章 結論.....................................................84 第六章 參考文獻.....................................................86 自述 .....................................................96

    1.翁文毅,成功大學化工所碩士論文,2002
    2.宋健民,鑽石合成,全華科技圖書股份有限公司,台北 台灣,2000
    3. E. G. Spence, P. H. Schmidt, D. H. Joy, and F. J. Sansalone, Appl.Phys. Lett. 29, 118 (1976).
    4. a) J. Robertson, J. Non-Cryst. Solid, 164-166, 1115 (1993); b) C. A.David, Thin Solid Films, 226, 30 (1993); Y. Lifshitz, S. R. Kasi, J.W. Rabalais, and W. Eckstein, Phys. Rev. B, 41(15), 10468 (1990).D. P. Monaghan, D. G. Teer and I. Efeoglu, Surf. coat. Technol., 59(1993)21
    5. S. S. Camargo Jr., R. A. Santos, W. Beyer, Diamond and Related Materials 9, 658 (2000).
    6. Myeong-Geun Kim, Kwang-Ryeol Lee, Kwang Yong Eun, Surf. & Coat. Technol., 112, 204 (1999).
    7. a) Q. F. Huang, S. F. Yoon, Rusli, K. Chew, and J. Ahn, J. Appl.Phys. 90(9), 4520 (2001); b) Ivan R. Videnović, Verena Thommen,and Peter Oelhafen, Daniel Mathys, Marcel Düggelin, abd Richard
    Guggenheim, Appl. Phys. Lett. 80(16), 2863 (2002); c) Da-Yung Wnag, Ko-Wei Weng, Shi-Yao Hwang, Diamond and Related Materials 9, 1762 (2000).
    8. M. P. Siegal, J. C. Barbour, P. N. Provencio, D. R. Tallant, and T. A. Friedmann, Appl. Phys. Lett. 73(6), 759 (1998).
    9 Jianjun Dong and David A. Drabold, Phys. Rev. B 57(24), 15591 (1998).
    10.F. Cellier, J. F. Nowak, Diamond and Related Materials, 3, 1112 1994).
    11. Throu Hara, Kouichi Yani, Ken Inoue, Shigeaki Nakamura, and Takwshi Murai, Appl. Phys. Lett. 57(16), 1662 (1990).
    12. J. Sasaki, K. Hayyashi, K. Sugiyama, O. Ichiko, and Y. HaShiquchi, Surf. & Coat. Technol., 65, 160.(1994).
    13. X. Wang, H. Harris, F.Temkin, and S. Gangopadhyay, M. D. Strathman and M. West, Appl. Phys. Lett. 78(20), 3079 (2001).
    14. E. Tomasella, C. Meunier, S. Mikhailov, Surf. Coat. Technol. 141,286 (2001).
    15. M. Gioti, D. Papadimitriou, S. Logotheridis, Diamond and Related Materials, 9, 741 (2000).
    16. S. Logothetidis, Appl. Phys. Lett. 69, 158 (1996).
    17.a) Katsuyuki Okada, Shojiro Komatsu, Takamasa Ishigaki, and Seiichiro Matsumoto, Mat. Res. Soc. Symp. Proc. 363, 157 (1995);
    b) Hosun Lee and In-Young Kim, S.-S. Han, and B.-S. Bae, M. K. Choi, and In-Sang Yang, J. Appl. Phys. 90(2), 813, (2001)
    18. Liang-Yih Chen and Franklin Chau-nan hong, Appl. Phys. Lett. 82(20), 3526 (2003).
    19. T. A. Friedmann, K. F. McCarty, J. C. Barbour and M. P. Siegal, Dean C. Dibble, Appl. Phys. Lett. 68(12), 1643 (1996).
    20. T. W. Mercer, M. J. Dinardo, J. B. Rothman, M. P. Siegal and T. A.Friedmann, L. J.
    Martinez-Miranda, Appl. Phys. Lett. 72(18), 2244
    (1998).
    21. M. Chhowalla, C. A. Davis, M. Weiler, B. Kleinsorge, and G. A. J.Amaratunga, J. Appl. Phys. 79, 2237 (1996).
    22. D. R. McKenzie, D. Muller, and B. A. Pailthorpe, Phys. Rev. Lett.67(6), 773 (1991
    23.T. Hioki, K. Okumura, Y. Ltoh, S. Hibi and S. Noda, Surf. Coat.Technol. 65, 106 (1994).
    24. N. Takada, K. Shibagaki, K. Sasaki, and K. Kadota, K.-I. Oyama, J.Vac. Sci. Technol. A 19(2), 689 (2001).
    25. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, Chapter 2, John Wiley & Sons, Canada, 1991林原誌,奈米壓痕儀之原理及操作簡介,2000,4月。
    26. 余樹貞,晶體之結構與性質,第十二章,渤海堂文化公司,台北台灣,1993張瑞發, 化工資訊, 4 (1993) 68。
    27.J. C. Angus, and C. C. Hayman, Science 241, 913 (1998)
    28.J.Robertson, Surf. Coat. Technol. 50, 185 (1992)
    29.張瑞發, 化工資訊, 4, 68 (1993)
    30.C. D. Martino, F. Demichelis, and A.Tagliaferro, Diamond Relat. Mater. 4, 1210 (1995)
    31.D.R. McKenzie, D. Muller, and B.A. Pailthorpe, Phys. Rev. Lett., 67 (1991) 773
    32.C. D. Martino, F.Demichelis and A.Tagliaferro,“Determination of the sp3/sp2 Ratio in a-C:H Films by Infrared Spectrometry Analysis,” Diamond Relat. Mater.4.1210-1215(1995).
    33.I. Garnev and V. Orlinov,“Evaluation and Parametric Modeling of Abrasive Wear Resistance of Ion-Plated Thin DLC films,” Diamond Relat.Mater.4. 1041-1045(1995).
    34. J. J. Cuomo, D. L. Pappas, J. Bruley, J. P. Doyle and K. L. Saenger, “Vapor Deposition
    Processes for Amorphous Carbon Films with sp3 Fractions Approaching Diamond,” J. Appl. Phys., 70 [3] 1706-1711 (1991).
    35. P. C. Kelires, C. H. Lee and W. R. Lambrecht, “Structural Studies and Electronic Properties of Diamond-Like Amorphous Carbon,” J. Non-Cryst. Solids, 164/166 1131-1134 (1993).
    36. J. Robertson, “Deposition Mechanism of Cubic Boron Nitride,” Diamond Relat. Mater., 5 519-524 (1996).
    37. J. Robertson, “The Deposition Mechanism of Diamond-Like a-C and a-C:H,” Diamond Relat. Mater., 3 361-368 (1994).
    38. J. Robertson, “Deposition Mechanism of a-C and a-C:H,” J. Non-Cryst. Solids, 164/166 1115-1118 (1993).
    39. C. Venkatraman, D.Kester, A. Goel, D. Bray, ASM Materials Week,October, 1995.
    40. C. Z. Wang and K. M. Ho, “Structure, Dynamics, and Electronic Properties of Diamondlike Amorphous Carbon,” Phys. Re v. Lett., 71 [8] 1184-1187 (1993).
    41. D. Neerinck, P. Persoone, A. Goel, C. Venkatraman, D.Kester,C. Halter, D. Bray, in:Proc. Trends Applications Thin Films ’96,
    Apil,1996,Colmar,France, p. 67.
    42. Xing-zhao Din*, Fu-min Zhang, Xiang-Huai Liu et al, Thin Solid Films, 346(1992) 82-85.
    43. D. Neerinck, P. Persoone, M. Sercu, A. Goel, C. Venkatraman, D. Kester, C. Halter, P. Swab, D. Bray, Thin Solid Films, 317(1998) 402-404.
    44. C. -T. Lin, F. Li, and T. D. Mantel, J. Vac. Sci. Technol. A 17(3), May/Jun 1999,735-740.
    45. V.F. Dorfman, B.N. Pypkin, Surf. Coatings Technol. 48 (1991) 193.
    46. M.Grischke, A.Hieke, F. Morgenweck, H.Dimigen, Diamond and Related Materials 7 (1998) 454-458.
    47. T. Hioki, K. Okumura, Y. Itoh, S.Hibi and S. Noda, Surf. Coatings Technol. 65 (1994) 106-111.
    48. 陳力俊,材料電子顯微鏡學,第十一章,行政院國家科學委員會精密儀器發展中心,新竹台灣,1984。
    49. Chalker, P.R., Bull, S.J. and Rickerby, D.S., “A review of the methods for the evaluation of coatings-substrate adhesion,” Material Science Engineering A,Vol.140, 1991,pp583-592.
    50. Chiang, S.S., Marshall, D.B. and Evans, A.G., pask and A.G.Evans(ed.),Surface and Interfaces in Ceramic-metal System,Plenum,N.Y.1981, p.603.
    51. Jindal, P.C., Quinto, D.T. and Wolfe, G.J., “Adhesion measurements of chemically vapor deposited hard coatings on WC-Co substrate,”Thin Solid Films, Vol.154,1987,pp.361-375.
    52. V. F. Dorfman, Thin Solid Films, 212, 267 (1992).
    53. B. Dorfman, M. Abraizov, Fred H. Pollak, D. Yan, M. Strongin, X.-Q.Yang and Z.-Y. Rong, Mat. Res. Soc. Symp. Proc. 349, 547 (1994).
    54. V. F. Dorfman, A. Bozhko, B. N. Pypkin, R. T. Borra, A. R. Srivatsa,H. Zhang, T. A. Skotheim, J. Khan, D. Rodichev, and G. Kirpilenko,Thin Solid Films, 212, 274 (1992).
    55. B. Dorfman, M. Abraizov, B. Prpkin, M. Strongin, X.-Q. Yang, D.Yan, Fred H. Pollak, J. Grow and R. Levy, Mat. Res. Soc. Symp.Proc. 351, 43 (1994).
    56. Xing-Zhao Ding, Fu-Min Zhang, Xiang-Huai Liu, P. W. Wnag, W. G.Durrer, W. Y. Cheung, S. P. Wong, I. H. Wilson, Thin Solid Films,346, 82 (1999).
    57. Ling-Yih Chen and Franklin Chau-Nan Hong, Diamond and RelatedMaterials, 10, 1058 (2000).
    58. V. V. Voevodin, S. V. Peasas, and J. S. Zabinski, J. Appl. Phys.82(2), 855 (1997).
    59. V. V. Voevodin, M. A. Capano, A. J. Safriet, M. S. Donley, and J. S.Zabinski, Appl. Phys. Lett. 69(2), 188 (1996).
    60. V. V. Voevodin, J. P. O’Neill, J. S. Zabinski, Surf. & Coat. Technol.116-119, 36 (1999).
    61. G. A. J. Amaratunga, M. Chhowalla, C. J. Kiely, I. Alexandrou, R.Aharonov, and R. M. Devenish, Nature, 383, 321 (1996).
    62. M. P. Siegal, P. N. Provencio, D. R. Tallant, and R. L. Simpson, B. Kleinsorge and W. I. Milne, Appl. Phys. Lett. 76(15), 2047 (2000).
    63. T. A. Friedmann, J. P. Sullivan, J. A. Knapp, D. R. Tallant, and D. M. Follstaedt, D. L. Medlin, and P. B. Mirkarimi, Appl. Phys. Lett.
    71(26), 3820 (1997).
    64 M. P. Siegal, J. C. Barbour, P. N. Provencio, D. R. Tallant, and T. A. friedmann, Appl. Phys. Lett. 73(6), 759 (1998).
    65. L. J. Martinez-Miranda, M. P. Siegal, amd P. P. Provencio, Appl.Phys. Lett. 79(4), 542 (2001).
    66. a) M. P. Siegal and D. R. Tallant, L. J. Martinez-Miranda, J. C.Barbour, R. L. Simpson, and D. L .Overmyer, Phys. Rev. B 61(15),10451 (2000); b) M. P. Siegal, D. R. Tallant, P. N. Provencio, D. L.Overmyer, and R. L. Simpson, L. J.
    Martinez-Miranda, Appl. Phys.Lett. 76(21), 3052 (2000).
    67. J. Musil, J. Vlček, Thin Solid Films, 343-344, 47 (1999)
    68. C. Mitterer, P. H. Mayrhofer, M. Beschkiesser, P. Losbichler, P.
    Warbichler, F. Hofer, P. N. Gibson, W. Gissler, H. Hruby, J. Musil,
    J. Vl ček, Surface & Coat. Technol., 120-121, 405 (1999).
    69. J. Musil, Surface & Coat. Technol., 125, 322 (2000).
    70. 曾煥華,電漿的世界,第一章,銀禾文化事業有限公司,台北台灣,1987
    71. Brian Chapman, Glow Discharge Processes, John Wiley & Sons, Inc, United State of America, 1980, Chapter 5
    72. 洪昭南,電漿反應器,化工技術,第三卷,第三期,124,1995
    73. J. R. Roth, Industrial Plasma Engineering-Volume 1: Principles, Institute of Physics Publishing, London, 1995
    74. T.Tagkagi, J.Vac. Sci. Technol., A2 (1984) 382
    75. K. Morikawa, Heat Treatment (Japanese), 31 (1987) 3.
    76.艾啟峰,真空科技
    77. Oleg A. Popov, High Density Plasma sources Design, Physics and performance, Noyes Publication, New Jersey, U.S.A.
    78.陳熹,高週波基礎理論與應用,第三篇,全華科技股份有限公司,台北台灣,1995。
    79. A. Sclafani, J. H. Herrmann, J. Phys. Chem. , 100 , 13655-13661
    (1996)
    80. A. Sclafani, L. Palmisano, M. Schiavello, J. Phys. Chem. , 94 ,
    829 (1990)
    81. A. Fujishima, T. N. Rao, and D. A. Tryk, J. Phochem. Potobiol. C:
    Photochem review 1 (2000) 1-21.

    82. A. Heller, Acc. Chem. Res. 14 (1981) 154-162.
    83. R. W. Mattews, J. Phys. Chem. 91 (1987) 3328-3333.

    84. M. A. Fox, and M.Y. Dulay, Chem. Rev. 93(1) (1993) 341-357
    85. J. Willetts, L. C. Chen, J. F. Graefe, and R.W. Wood, Life Science
    Including Pharmacology Letters 57 (15) (1995) 225-230.
    86. A. Fernandez, G. Lassaletta, V. M. Jimenez, A. Justo, A. R. Gonzalez-Elipe, J-M. Herrmann, H, Tahri, and Y. Ait-Ichou, Applied Catalysis B: Environmental 7 (1995) 49-63.
    87.Merta I. Litter, Applied Catalysis B: Environmental 23 (1999) 89-114.
    88.Merta I. Litter, Applied Catalysis B: Environmental 23 (1999) 89-114.
    89.D. Dumitriu, A.R. Bally, C. Ballif, P. Hones, P. E Schmid, R. Sanjinés, and F. Lévy, Applied Catalysis B: Environmental 25 2-3 (2000) 83-92.
    90. I. Watanabe, T. Matsushita and K. Sasahara, Jpn. J. Appl., Phys. 31, 1428 (1992)
    91. R. Nonogaki, S. Yamada, T. Araki, and T. Wada, J. Vac. Sci. Technol. A 17(3), 731 (1999)
    92. F.Tuinstra and J.L. Koenig, J. Chem. Phys. 53(3), 1126 (1970)
    93. S.A. Solin, Physica B 99, 443 (1980)
    94. M. A. Capano, N. T. McDeutt, R. K. Singh, and F. Qian, J. Vac. Sci. Technol. A, 14(2), 431 (1996)
    95. M. A. Tamor and W. C. Vassel, J. Appl. Phys., 76(6), 3823 (1994)
    96. H. C. Tasi, D. B. Bogy, M. K. Kundmann, D. K. Veirs, M. R. Hilton and S. T. Mayer, J. Vac. Sci. Technol. A 6(4), 307 (1998)
    97. 何主亮,常挽瀾,陳育智,真空科技,第9卷,第二期,34,1996
    98. S. Prawer, K. W. Nugent, Y. Lifshitz, G. D. Lempert, E. Grossman, J. Kulik, I. Avigal, and R. Kalish, Diamond Relat. Mater. 5, 433 (2996)
    99. F. Tuinstra and J. L. Koening, J. Chem. Phys. 53, 1126 (1970)
    100. C. Mapelli, C. Casiglioni, C. Zerbi, and K. Mullen, Phys. Rev. B 60, 12710 (1999)]
    101. R. O. Dillon, J. A. Woollam, and V. Katkanant, Phys. Rev. B 29, 3482 (1984)
    102. R. J. Nemanich, J. T. Glass, G. Lucovsky, and R. E. Shroder, J. Vac. Sci. Technol. A 6, 1783
    (1988)
    103. J. R. Shi, X. Shi, Z. Sun, E. Liu, B. K. Tay, S. P. Lau, Thin Solid Films 366, 169 (2000)
    104. L. K. Cheeh, X. Shi, E. Liu, B. K. Tay, J. R. Shi, and Z. Sun, Phil. Mag. B 79, 1647 (1999)
    105. B. Kleinsorge, S. E. Rodil, G. Adamopoulos, J. Robertson, D. Grambole, and W. Fukarek, Diamond Relat. Mater. 10,965 (2001)
    106. Stan Veprek,J. Vac. Sci. Technol. A 17(5), 2401 (1999)
    107. 林原誌,奈米壓痕儀之原理及操作簡介,交通大學材料系郭正次老師研究室講義,台灣,2000
    108..A.A. Voevodin, M.A. Capano, S.J.P.Laube,M.S.Donley,J.S.S.Zabinski“Design of a Ti/TiC/DLC functionally gradient coating based on studies of structural transitions in Ti-C thin films”Thin solid films 298(1997)107-115
    109.Anouk Schroeder, Gilbert Francz, Arend Bruinink, Roland Hauert, Joerg Mayer,Erich Wintermantel“ Titauium containing amorohous hydrogenated carbon films (a-C:H/Ti):surface analysis and evaluation of cellular reactions using bone marrow cell culture in vitro”Biomaterials 21(2000)449-456 110.Moulder JF,Stickle WF Sobol PE,Bomben KD,Handbook of X-ray photoelectron spectroscopy, Eden Prarie, Minnesota(USA), Perkinp-Elmer Corporation,Physical Electronics Division 1992.p213-248
    111.Schier V,Michel HJ,Halbritter J,Fresenius J.ARXPS-analysis of Sputter TiC,SiC and Ti0.5Si0.5C layers,J Anal Chem 1993;346:227-32
    112.Ramqvist L,Hamrin K,Johansson G ,Fahlman A,Nordling C.Charge transfer in transition metal cabides and related Compounds studies by ESCA. J Phys Chem Solid 1969;30:1835-47
    113.Wagner CD,Zatko DA,Raymond RH. Use of the oxygen KLL auger lines in identification of surface chemical states by electron spectroscopy for chemical analysis.Anal Chem 1980;52:1445-51
    114.Masatoshi Nakamura,Toru Aoki,Yoshinori Hatanaka,Dariusz Korzec,Jurgen Engemann“Comparsion of hydrophilic properties of amorphous TiOX films obtained by radio frequency sputtering and plasma-enhanced chemical vapor deposition.”

    下載圖示 校內:立即公開
    校外:2004-08-25公開
    QR CODE