| 研究生: |
陳映汝 Chen, Ying-Nu |
|---|---|
| 論文名稱: |
運用物質流分析探討台灣營建工程資源循環現況與策略 Using a Material Flow Analysis to Explore the Current Resource Circulation and Promotion Strategies in Taiwan's Construction Sector |
| 指導教授: |
陳必晟
Chen, Pi-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 物質流分析 、營建工程 、資源循環 、營建剩餘物 、循環經濟 |
| 外文關鍵詞: | Material flow analysis, Construction sector, Resource circulation, Circular economy, Construction residuals |
| 相關次數: | 點閱:24 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在都市發展、人口快速增加的帶動下,人們不斷建造、翻新、拆除建築物及各式基礎建設以滿足當代需求,造就營建工程成為資源開採後的主要流向以及廢棄物的主要貢獻者。然而過去的主流線性經濟模式也導致全球資源枯竭、廢棄物急劇增加,嚴重衝擊營建工程的發展,因此營建工程被許多國家列為實踐循環經濟轉型之重點領域。而台灣因天然資源稀缺、多數仰賴進口,因此過度開採、戰亂等因素造成的資源短缺勢必威脅我國營建工程;此外隨著台灣屋齡老化、都市更新案件日益增加及層出不窮的營建廢棄物非法棄置,意味著未來將有更多營建廢棄物釋出,並使非法棄置更加惡化。為了能有效地提出應對策略與規劃以實踐我國物質全循環零廢棄之願景,讓更多包含營建廢棄物和剩餘土石方的營建剩餘物資源化,保留或提高營建剩餘物之價值,徹底掌握營建工程中資源使用產出與流動分布是不可或缺的。儘管先前研究曾透過物質流分析探討台灣營建工程資源流動情形,卻僅涵蓋少數幾種營建資源,因此有必要對台灣營建工程資源使用及流動分布進行更詳細的盤點與追蹤。
為此,本研究結合由上而下及由下而上之物質流分析方法(Material Flow Analysis, MFA)分析台灣2021年營建工程中八種營建工程材料種類投入產出與流動情形。除了探討主要投入的營建工程材料種類回收料使用情形,本研究亦分析產出的營建工程材料種類再利用情形及循環利用品質,並進一步探討台灣營建工程達到物質全循環零廢棄之策略與建議。
研究結果顯示,針對本研究所考慮的材料種類,2021年台灣營建工程共計使用185百萬公噸,並以公共工程(43%)與住宅工程(37%)為使用熱點。就材料種類來看,以水泥與混凝土塊類(67%)為主要需求種類,其次為砂石類(27%),其餘材料種類皆低於5%,其中水泥與混凝土塊類中僅有10%來自回收料,並以事業廢棄物為主要來源。營建剩餘物產出部分,2021年台灣營建工程共計產出8,048萬公噸,其中99%皆為土石方類。就後端去化來看,整體上營建剩餘物再利用率雖高,卻以降級回收為主,顯示多數的營建剩餘物再利用上未能真正保留資源價值。為此,本研究以土石方類為例,提出透過再利用機構機具設備提升、建立相關施工規範及使用手冊及活絡再利用市場之方式,促進土石方類高價值再利用。此外,本研究亦提出借鏡其他國家之作法,優化建築設計、拆除階段盡可能延壽及改變既有拆除方法,最小化營建剩餘物產出。本研究結果預期可作為未來相關單位研擬策略及政策方針上的參考依據,加速我國營建工程達到物質全循環零廢棄之目標。
The construction sector has been regarded as a key area for implementing the circular economy transition by many countries, because it serves as a major consumer of resources and important contributor to waste. To formulate effective strategies, a thorough understanding of material flows in the construction sector is indispensable. Although previous studies have used Material Flow Analysis (MFA) to explore material flows in Taiwan’s construction sector, they only focused on a limited range of material categories. Therefore, this study will use MFA to thoroughly track the material flows in Taiwan’s construction sector and analyze the circulation and recycling quality of the construction residuals. Based on these findings, strategies are proposed to achieve full circular and zero waste of resources.
The results show that the total material use in Taiwan’s construction sector is about 185 million metric tons in 2021, with public construction as the largest demand sector, followed by residential building construction. Regarding the material categories considered, cement and concrete accounted for the largest proportion. Meanwhile, this sector generated about 80 million metric tons of construction residuals, of which over 99% were soil. Although the construction residuals showed a high recycling rate, the recycling is primarily in the form of downcycling. Thus, this study proposes three strategies to enhance the recycling quality and further recommends optimizing building design, extending the life of existing buildings, and modifying current demolition methods to minimize the generation of construction residuals.
Ajayi, S. O., & Oyedele, L. O. (2018). Critical design factors for minimising waste in construction projects: A structural equation modelling approach. Resources, Conservation and Recycling, 137, 302–313. https://doi.org/10.1016/j.resconrec.2018.06.005
Aldebei, F., & Dombi, M. (2021). Mining the Built Environment: Telling the Story of Urban Mining. Buildings, 11(9), Article 9. https://doi.org/10.3390/buildings11090388
Antunes, A., Martins, R., Silvestre, J. D., do Carmo, R., Costa, H., Júlio, E., & Pedroso, P. (2021). Environmental Impacts and Benefits of the End-of-Life of Building Materials: Database to Support Decision Making and Contribute to Circularity. Sustainability, 13(22), Article 22. https://doi.org/10.3390/su132212659
Augiseau, V., & Barles, S. (2017). Studying construction materials flows and stock: A review. Resources, Conservation and Recycling, 123, 153–164. https://doi.org/10.1016/j.resconrec.2016.09.002
Balasbaneh, A. T., Sher, W., Li, J., & Ashour, A. (2025). Systematic Review of Construction Waste Management Scenarios: Informing Life Cycle Sustainability Analysis. Circular Economy and Sustainability, 5(1), 529–553. https://doi.org/10.1007/s43615-024-00424-z
Benjamin Hague, Jana Kozáková, & Andrea Veselá. (2023). Closing the Loop on Wood. Circular Bioeconomy Opportunities in the Value Chain for Forest Products and Wood in Czechia. Institute of Circular Economy (INCIEN). https://circulareconomy.europa.eu/platform/en/knowledge/closing-loop-wood-circular-bioeconomy-opportunities-value-chain-forest-products-and-wood-czechia
Birat, J.-P., Daigo, I., & Matsuno, Y. (2014). Chapter 4.3—Methods to Evaluate Environmental Aspects of Materials. In S. Seetharaman (Ed.), Treatise on Process Metallurgy (pp. 1459–1505). Elsevier. https://doi.org/10.1016/B978-0-08-096988-6.00035-3
Brunner, P. H., & Rechberger, H. (2017). Handbook of material flow analysis: For environmental, resource, and waste engineers (Second edition). CRC Press, Taylor & Francis Group. https://doi.org/10.1201/9781315313450
Buyle, M., Braet, J., & Audenaert, A. (2013). Life cycle assessment in the construction sector: A review. Renewable and Sustainable Energy Reviews, 26, 379–388. https://doi.org/10.1016/j.rser.2013.05.001
Canadian Standards Association. (2006). Guideline for design for disassembly and adaptability in buildings. Canadian Standards Association.
Chen, C.-F., Wu, C.-T., & Lin, J.-Y. (2025). Challenges and Opportunities of Aging Houses and Construction and Demolition Waste in Taiwan. Buildings, 15(4), Article 4. https://doi.org/10.3390/buildings15040595
Circle Economy, Metabolic, & C-creators. (2022). The Circularity Gap Report: Built Environment, the Netherlands. Circle Economy. https://www.circularity-gap.world/sectors
Circle Economy, The Netherlands Organisation for Applied Scientific Research, & Fabrications. (2016). Circular Amsterdam: A vision and action agenda for the city and metropolitan area. Circle Economy. https://www.circle-economy.com/resources/developing-a-roadmap-for-the-first-circular-city-amsterdam
Cottafava, D., & Ritzen, M. (2021). Circularity indicator for residential buildings: Addressing the gap between embodied impacts and design aspects. Resources, Conservation and Recycling, 164, 105120. https://doi.org/10.1016/j.resconrec.2020.105120
de Klijn-Chevalerias, M., & Javed, S. (2017). The Dutch approach for assessing and reducing environmental impacts of building materials. Building and Environment, 111, 147–159. https://doi.org/10.1016/j.buildenv.2016.11.003
De Wit, M., Hoogzaad, J., Ramkumar, S., Friedl, H., & Douma, A. (2018). The Circularity Gap Report: An analysis of the circular state of the global economy. Circle Economy: Amsterdam, The Netherlands, 17. https://pacecircular.org/sites/default/files/2020-01/Circularity%20Gap%20Report%202018_0.pdf
Deutscher Abbruchverband e.V. (2023). Federal Building Ministry receives current report of the “Initiative Kreislaufwirtschaft Bau”: 90 percent of all mineral construction waste is recycled in an environmentally friendly manner. https://www.deutscher-abbruchverband.de/en/2023/02/federal-building-ministry-receives-current-report-of-the-initiative-kreislaufwirtschaft-bau-90-percent-of-all-mineral-construction-waste-is-recycled-in-an-environmentally-friendly-manner/
Ding, Z., Wang, Y., & Zou, P. X. W. (2016). An agent based environmental impact assessment of building demolition waste management: Conventional versus green management. Journal of Cleaner Production, 133, 1136–1153. https://doi.org/10.1016/j.jclepro.2016.06.054
Ditlev-Simonsen, C. D. (2022). Circular Economy: New Business Models. In A Guide to Sustainable Corporate Responsibility (pp. 129–148). Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-88203-7_6
Drewniok, M. P., Azevedo, J. M. C., Dunant, C. F., Allwood, J. M., Cullen, J. M., Ibell, T., & Hawkins, W. (2023). Mapping material use and embodied carbon in UK construction. Resources, Conservation and Recycling, 197, 107056. https://doi.org/10.1016/j.resconrec.2023.107056
Ekvall, T., Granström, L., Jansson, R., Moberg, E., & Rydberg, T. (2025). Comparing high-quality recycling and downcycling of plastics: Calculating carbon footprints using a basket of functions approach. IVL Svenska Miljöinstitutet. https://www.svenskplastatervinning.se/wp-content/uploads/Comparing-high-quality-recycling-and-downcycling-of-plastics.pdf
European Commission. (2015). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Closing the Loop – an EU Action Plan for the Circular Economy. COM(2015) 614 final. https://eur-lex.europa.eu/resource.html?uri=cellar:8a8ef5e8-99a0-11e5-b3b7-01aa75ed71a1.0012.02/DOC_1&format=PDF
European Commission. (2020). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A New Circular Economy Action Plan for a Cleaner and More Competitive Europe. COM/2020/98 final. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52020DC0098
Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety. (2016). Guideline for Sustainable Building. Future-proof Design, Construction and Operation of Buildings. https://www.nachhaltigesbauen.de/fileadmin/pdf/Systainable_Building/LFNB_E_160309.pdf
Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection. (2023). Waste Management in Germany 2023 – Facts, data, figures. Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection. https://www.bmuv.de/fileadmin/Daten_BMU/Pools/Broschueren/abfallwirtschaft_2023_en_bf.pdf
Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection. (2024). The National Circular Economy Strategy. https://www.bundesumweltministerium.de/en/download/the-national-circular-economy-strategy-summary
Ferronato, N., Moresco, L., Guisbert Lizarazu, G. E., Gorritty Portillo, M. A., Conti, F., & Torretta, V. (2023). Comparison of environmental impacts related to municipal solid waste and construction and demolition waste management and recycling in a Latin American developing city. Environmental Science and Pollution Research, 30(4), 8548–8562. https://doi.org/10.1007/s11356-021-16968-8
Firdaus, Z. F. (n.d.). THE USE OF SEEA FLOW ACCOUNTS FOR DERIVING CIRCULAR ECONOMY INDICATORS. Retrieved July 5,2025, from https://seea.un.org/sites/seea.un.org/files/lg28_d4_s7_3_firdaus.pdf
Flint, I. P., Cabrera Serrenho, A., Lupton, R. C., & Allwood, J. M. (2020). Material Flow Analysis with Multiple Material Characteristics to Assess the Potential for Flat Steel Prompt Scrap Prevention and Diversion without Remelting. Environmental Science & Technology, 54(4), 2459–2466. https://doi.org/10.1021/acs.est.9b03955
Greater London Authority. (2022). London Plan Guidance: Whole Life-Cycle Carbon Assessments. Greater London Authority. https://www.london.gov.uk/sites/default/files/lpg_-_wlca_guidance.pdf
Guy, B., Ciarimboli, N., & Hamer Center for Community Design. (2008). DfD: Design for Disassembly in the Built Environment: A Guide to Closed-loop Design and Building. Hamer Center. https://books.google.com.tw/books?id=uqMZnQEACAAJ
Hashimoto, S., Tanikawa, H., & Moriguchi, Y. (2007). Where will large amounts of materials accumulated within the economy go? – A material flow analysis of construction minerals for Japan. Waste Management, 27(12), 1725–1738. https://doi.org/10.1016/j.wasman.2006.10.009
Hoekman, P., & Bellstedt, C. (2020). Urban material flows and stocks accounting: A review of methods and their application-Deliverable 4.1 of the CityLoops project. https://cityloops.eu/fileadmin/user_upload/Materials/Deliverables/D4.1_CityLoops_Urban_Material_Flows_and_Stocks_accounting.pdf
Hu, M., Miranda-Xicotencat, B., Ita-Nagy, D., Prado, V., Guinée, J., van Roekel, E., Huismans, R., Rens, F., Lotfi, S., & Di Maio, F. (2017). Life cycle assessment and life cycle costing for demolition waste management: HISER International Conference. HISER International Conference, 270–273.
Huang, B., Zhao, F., Fishman, T., Chen, W.-Q., Heeren, N., & Hertwich, E. G. (2018). Building Material Use and Associated Environmental Impacts in China 2000–2015. Environmental Science & Technology, 52(23), 14006–14014. https://doi.org/10.1021/acs.est.8b04104
Hussien, A., Abdeen Saleem, A., Mushtaha, E., Jannat, N., Al-Shammaa, A., Bin Ali, S., Assi, S., & Al-Jumeily, D. (2023). A statistical analysis of life cycle assessment for buildings and buildings’ refurbishment research. Ain Shams Engineering Journal, 14(10), 102143. https://doi.org/10.1016/j.asej.2023.102143
Institute for Global Environmental Strategies. (n.d.). Circular Economy and Resource Efficiency. Retrieved June 30, 2025, from https://www.iges.or.jp/en/projects/circular-economy
Islam, R., Nazifa, T. H., Yuniarto, A., Shanawaz Uddin, A. S. M., Salmiati, S., & Shahid, S. (2019). An empirical study of construction and demolition waste generation and implication of recycling. Waste Management, 95, 10–21. https://doi.org/10.1016/j.wasman.2019.05.049
Japan Federation of Construction Contractors. (n.d.). 循環型社会. Retrieve August 5, 2025, from https://www.nikkenren.com/kankyou/recycle/
Jungclaus, M., Esau, R., Olgyay, V., & Rempher, A. (2021). Reducing embodied carbon in buildings: Low-cost, high-value opportunities. Rocky Mountain Institute. https://rmi.org/wp-content/uploads/dlm_uploads/2021/08/Embodied_Carbon_full_report.pdf
Kazmi, R., & Chakraborty, M. (2023). Identification of parameters and indicators for implementing circularity in the construction industry. Journal of Engineering and Applied Science, 70(1), 77. https://doi.org/10.1186/s44147-023-00251-3
Kelsea A. Schumacher & Martin L. Green. (2023). Circular Economy in a High-Tech World. Circular Economy and Sustainability, 3(2), 619–642. https://doi.org/10.1007/s43615-022-00220-7
Kempton, L., Boehme, T., & Amirghasemi, M. (2024). A material stock and flow analysis for Australian detached residential houses: Insights and challenges. Resources, Conservation and Recycling, 200, 107289. https://doi.org/10.1016/j.resconrec.2023.107289
Kofoworola, O. F., & Gheewala, S. H. (2008). Environmental life cycle assessment of a commercial office building in Thailand. The International Journal of Life Cycle Assessment, 13(6), 498–511. https://doi.org/10.1007/s11367-008-0012-1
Kullmann, F., Markewitz, P., Stolten, D., & Robinius, M. (2021). Combining the worlds of energy systems and material flow analysis: A review. Energy, Sustainability and Society, 11(1), 13. https://doi.org/10.1186/s13705-021-00289-2
Kuperus, R., de Koning, A., & Korevaar, G. (2023). Material Flows and Circular Options for Residential Buildings in the Netherlands. https://resolver.tudelft.nl/uuid:4ad35910-bd2f-416e-b665-9784cc9e7579
Lanau, M., Liu, G., Kral, U., Wiedenhofer, D., Keijzer, E., Yu, C., & Ehlert, C. (2019). Taking Stock of Built Environment Stock Studies: Progress and Prospects. Environmental Science & Technology, 53(15), 8499–8515. https://doi.org/10.1021/acs.est.8b06652
Linde, L., Nilsson Lewis, A., & Sanchez, F. (2022). Towards a sustainable global construction and buildings value chain. Leadership Group for Industry Transition: Stockholm. http://www.industrytransition.org/insights/towards-a-sustainable-global-construction-and-buildings-value-chain
Liu, L., Qu, J., Li, X., Liao, Q., & Niu, Y. (2024). Review of material flow analysis and its application under carbon neutralization target: A bibliometric perspective. Carbon Footprints, 3(3). https://doi.org/10.20517/cf.2024.16
Long, Y., Li, Z., Song, Q., Cai, K., Tan, Q., & Yang, G. (2022). The dynamic stock-flow and driving force analysis of the building metal and non-metal resources at a city scale: An empirical study in Macao. Circular Economy, 1(1), 100004. https://doi.org/10.1016/j.cec.2022.100004
Meshref, A. N., Elkasaby, El. A. F. A., & Abdel Kader Mohamed Farid, A. (2023). Reducing construction waste in the construction life cycle of industrial projects during design phase by using system dynamics. Journal of Building Engineering, 69, 106302. https://doi.org/10.1016/j.jobe.2023.106302
Miljöministeriet. (2023). Rakentamislaki. https://finlex.fi/fi/lainsaadanto/saadoskokoelma/2023/751
Miljøministeriet. (2024). Bekendtgørelse om håndtering af affald og materialer fra bygge- og nedrivningsarbejde. https://www.lovguiden.dk/loven/bekendtg%C3%B8relse-om-h%C3%A5ndtering-af-affald-og-materialer-fra-bygge-og-nedrivningsarbejde
Miller, R. E., & Blair, P. D. (2022). Input-output analysis: Foundations and extensions (Third edition). Cambridge University Press. https://doi.org/10.1017/9781108676212
Ministry of Infrastructure and Water Management. (2023). National Circular Economy Programme 2023-2030. https://www.rijksoverheid.nl/onderwerpen/circulaire-economie/documenten/beleidsnotas/2023/02/03/nationaal-programma-circulaire-economie-2023-2030
OECD (Ed.). (2019). Global Material Resources Outlook to 2060: Economic Drivers and Environmental Consequences. OECD Publishing. https://doi.org/10.1787/9789264307452-en
Ortiz, O., Pasqualino, J. C., & Castells, F. (2010). Environmental performance of construction waste: Comparing three scenarios from a case study in Catalonia, Spain. Waste Management, 30(4), 646–654. https://doi.org/10.1016/j.wasman.2009.11.013
Pallewatta, S., Weerasooriyagedara, M., Bordoloi, S., Sarmah, A. K., & Vithanage, M. (2023). Reprocessed construction and demolition waste as an adsorbent: An appraisal. Science of The Total Environment, 882, 163340. https://doi.org/10.1016/j.scitotenv.2023.163340
Pivnenko, K., Laner, D., & Astrup, T. F. (2016). Material Cycles and Chemicals: Dynamic Material Flow Analysis of Contaminants in Paper Recycling. Environmental Science & Technology, 50(22), 12302–12311. https://doi.org/10.1021/acs.est.6b01791
Ragheb, A. F. (2011). Towards Environmental Profiling for Office Buildings Using Life Cycle Assessment (LCA). [Thesis]. http://deepblue.lib.umich.edu/handle/2027.42/86391
Rijksdienst voor Ondernemend Nederland. (2025). Handreiking Circulaire Gebouwen Milieulijst 2025. Rijksdienst voor Ondernemend Nederland. https://www.rvo.nl/sites/default/files/2025-01/Handreiking-circulaire-gebouwen-milieulijst-2025.pdf
Sandanayake, M., Zhang, G., Setunge, S., Luo, W., & Li, C.-Q. (2017). Estimation and comparison of environmental emissions and impacts at foundation and structure construction stages of a building – A case study. Journal of Cleaner Production, 151, 319–329. https://doi.org/10.1016/j.jclepro.2017.03.041
Schiller, G., Müller, F., & Ortlepp, R. (2017). Mapping the anthropogenic stock in Germany: Metabolic evidence for a circular economy. Resources, Conservation and Recycling, 123, 93–107. https://doi.org/10.1016/j.resconrec.2016.08.007
Senatsverwaltung für Umwelt, Verkehr und Klimaschutz. (2022). Handlungsleitfaden zur Verwaltungsvorschrift Beschaffung und Umwelt. https://www.berlin.de/nachhaltige-beschaffung/recht/
Sly, D. (2006). Techniques for the Evaluation, Reduction, and Elimination of Excess Material Flow within Industrial Facilities.
Statistics Netherlands. (n.d.). How much do we recycle? Retrieved July 13,2025, from https://longreads.cbs.nl/the-netherlands-in-numbers-2020/how-much-do-we-recycle/
The Ministry of Infrastructure and the Environment & The Ministry of Economic Affairs. (2016). A Circular Economy in the Netherlands by 2050. https://www.circonnect.org/en/kennisbijdrage/nederland-circulair-in-2050/
UN. (2008). International Standard Industrial Classification of All Economic Activities (ISIC), Rev.4. United Nations. https://doi.org/10.18356/8722852c-en
United Nations Environment Programme. (2022). Executive Summary—2022 Global Status Report for Buildings and Construction: Towards a Zero‑emission, Efficient and Resilient Buildings and Construction Sector. https://wedocs.unep.org/20.500.11822/41134
Wang, S., Wu, Q., & Yu, J. (2024). BIM-Based Assessment of the Environmental Effects of Various End-of-Life Scenarios for Buildings. Sustainability, 16(7), Article 7. https://doi.org/10.3390/su16072980
Wernick, I. K., & Ausubel, J. H. (1995). National Materials Flows and the Environment. Annual Review of Energy and the Environment, 20(1), 463–492. https://doi.org/10.1146/annurev.eg.20.110195.002335
Xu, J., Shi, Y., Xie, Y., & Zhao, S. (2019). A BIM-Based construction and demolition waste information management system for greenhouse gas quantification and reduction. Journal of Cleaner Production, 229, 308–324. https://doi.org/10.1016/j.jclepro.2019.04.158
Yan, H., Shen, Q., Fan, L. C. H., Wang, Y., & Zhang, L. (2010). Greenhouse gas emissions in building construction: A case study of One Peking in Hong Kong. Building and Environment, 45(4), 949–955. https://doi.org/10.1016/j.buildenv.2009.09.014
Yang, C.-K., Ma, H.-W., & Yuan, M.-H. (2023). Measuring circularity potential for medical waste management – a dynamic circularity performance analysis. Sustainable Environment Research, 33(1), 29. https://doi.org/10.1186/s42834-023-00188-5
Yu, Z., Nurdiawati, A., Kanwal, Q., Al-Humaiqani, M. M., & Al-Ghamdi, S. G. (2024). Assessing and mitigating environmental impacts of construction materials: Insights from environmental product declarations. Journal of Building Engineering, 98, 110929. https://doi.org/10.1016/j.jobe.2024.110929
Zhan, H., Hwang, B.-G., & Jovan, L. W. H. (2025). Barriers and Strategies in Implementing Design for Disassembly and Adaptability Principles in Singapore: A Pathway to Circular Economy in the Construction Industry. Sustainable Development, 33(3), 3858–3878. https://doi.org/10.1002/sd.3330
Zhang, C., Hu, M., Di Maio, F., Sprecher, B., Yang, X., & Tukker, A. (2022). An overview of the waste hierarchy framework for analyzing the circularity in construction and demolition waste management in Europe. Science of The Total Environment, 803, 149892. https://doi.org/10.1016/j.scitotenv.2021.149892
Zhang, S., Xu, W., Wang, K., Feng, W., Athienitis, A., Hua, G., Okumiya, M., Yoon, G., Cho, D. woo, Iyer-Raniga, U., Mazria, E., & Lyu, Y. (2020). Scenarios of energy reduction potential of zero energy building promotion in the Asia-Pacific region to year 2050. Energy (Oxford, England), 213, 118792. https://doi.org/10.1016/j.energy.2020.118792
Zhong, X., Hu, M., Deetman, S., Steubing, B., Lin, H. X., Hernandez, G. A., Harpprecht, C., Zhang, C., Tukker, A., & Behrens, P. (2021). Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060. Nature Communications, 12(1), 6126. https://doi.org/10.1038/s41467-021-26212-z
內政部建築研究所. (2023). 淨零建築路徑規劃及推動策略. https://ws.ndc.gov.tw/Download.ashx?u=LzAwMS9hZG1pbmlzdHJhdG9yLzEwL3JlbGZpbGUvMC8xNTI0NC9jZjE4Yjg3Ny03YzMyLTRjMmItYTQxOC04Zjc5OTY4ZmViN2YucGRm&n=MjAyM%2Be2k%2Ba%2Fn%2BirluihoV%2FmmKXlraPomZ9fMy0yLuWwiOmhjOWgseWwjl%2Fmt6jpm7blu7rnr4not6%2FlvpHopo%2FlioPlj4rmjqjli5XnrZbnlaUucGRm&icon=.pdf.
內政部營建署. (2022). 110 年度「營建工程剩餘土石方資源回收處理與資訊交流及總量管制計畫」. https://www.soilmove.tw/soilmove/downloads
內政部營建署. (2023). 111 年度「營建工程剩餘土石方資源回收處理與資訊交流及總量管制計畫」. https://www.soilmove.tw/soilmove/downloads
共通性事業廢棄物再利用管理辦法, 環部循字第1136108359號令 (2024). https://oaout.moenv.gov.tw/law/LawContent.aspx?id=GL007411&kw=%E5%85%B1%E9%80%9A%E6%80%A7%E4%BA%8B%E6%A5%AD%E5%BB%A2%E6%A3%84%E7%89%A9%E5%86%8D%E5%88%A9%E7%94%A8%E7%AE%A1%E7%90%86%E8%BE%A6%E6%B3%95
劉曜. (2011). 臺灣建築減廢設計原則與手法之初探. 中央大學營建管理研究所學位論文, 1–74.
劉毅弘 & 潘子欽. (2021). 台灣水泥業單位產品能源使用分析. 燃燒季刊, 114. https://doi.org/10.30041/CQ.202108_(114).0006
周耀鑾 & 黃依典. (1984). 土木材料學.
周芳汝. (2022). 印刷電路板製造成本診斷與降低策略—銅循環導向物質流成本會計工具開發與分析應用. https://hdl.handle.net/11296/83kkws
国土交通省. (n.d.-a). 建設リサイクルを取り巻く近年の 社会情勢の変化とこれまでの取組. https://www.mlit.go.jp/policy/shingikai/content/05shiryou2.pdf
国土交通省. (n.d.-b). 「建設リサイクル推進計画2020」(案)~「質」を重視するリサイクルへ~(参考資料). https://www.mlit.go.jp/policy/shingikai/content/001361657.pdf
國家發展委員會, 行政院環境保護署, 經濟部, 科技部, 交通部, 內政部, 行政院農業委員會, & 金融監督管理委員會. (2022). 臺灣2050淨零排放路徑及策略總說明. https://www.ndc.gov.tw/Content_List.aspx?n=4791F8EC8DF04D9F
宋佩瑄 & 黃馨. (2001). 土木工程材料學 (二版). 大中國.
宜蘭縣餘土處理申請辦法, 府秘法字第0960045382B號 (2017). https://glrslaw.e-land.gov.tw/LawContent.aspx?id=FL042853
廢棄物清理法, 華總一義字第10600072531號令 (2017). https://oaout.moenv.gov.tw/law/LawContent.aspx?id=FL015604
張寬勇, 陳國星, 楊尚樺, 黃海斌, 鍾佩林, 游能君, & 陳宏亮. (2006). 建築物拆除施工安全管理制度及施工規範研究. 內政部建築研究所. https://www.abri.gov.tw/News_Content_Table.aspx?n=807&s=38379
張文綺. (2022). 以循環經濟策略建構營建廢棄物管理轉型之評估架構. 臺灣大學環境工程學研究所學位論文, 2022, 1–88. https://doi.org/10.6342/NTU202200206
張芷瑀. (2015). 水泥與砂石的都市代謝分析. 臺灣大學環境工程學研究所學位論文, 2015, 1–127. https://doi.org/10.6342/NTU.2015.02253
彭小芹. (2002). 土木工程材料. 重慶大學出版社.
循環台灣基金會. (n.d.-a). 日本. Retrieved August 5, 2025, from https://circular-taiwan.org/city/japan/
循環台灣基金會. (n.d.-b). 歐盟・循環台灣基金會. Retrieved June 27, 2025, from https://circular-taiwan.org/city/eu
應檢具事業廢棄物清理計畫書之事業, 環署廢字第1070095427號公告 (2018). https://oaout.moenv.gov.tw/law/LawContent.aspx?id=GL005434
李盈嬌. (2017). 歐盟循環經濟進程及啟示. 經濟前瞻, 171, 116–120.
李育明. (2006). 淺談物質流在產業環境會計之應用. 臺灣經濟研究月刊, 29(11). https://doi.org/10.29656/TERM.200611.0012
林大鈞, 葉禮旭, 林桑羽, 黃仁志, 潘昱伶, 陳緯豪, 王偉仲, 邱謙忠, 李南慧, 賴靖霖, & 楊馥瑜. (2024). 113年營建廢棄物管理及資源循環專案工作計畫. 環境部資源循環署. 計畫案號:113CA034
林大鈞, 黃榮堯, 林桑羽, 詹立成, 郭斯傑, 李佳龍, 曾亘婉, 彭晟祐, 羅文澤, 簡宏杰, 潘昱伶, & 楊馥瑜. (2023). 營建廢棄物管理及資源循環計畫成果報告. 環境部資源循環署. 計畫案號:112AA010
林憲德, 杜怡萱, 楊詩弘, & 蔡耀賢. (2023). 低碳(低蘊含碳)建築評估手冊 (第一版). 內政部建築研究所.
林韋辰. (2012). 營建混合物再利用機構資源化產品流向管理之研究. 中央大學土木工程學系學位論文, 1–154.
梁芳綺. (2022). 整合臺灣廢棄物數據估算建築都市礦及預測二次建材資源產量-以臺北市與高雄市為例. https://hdl.handle.net/11296/f9235h
楊智凱. (2023). 建構循環度績效指數分析廢棄物管理循環現況及潛力. 國立台灣大學學位論文.
營建事業廢棄物再利用種類及管理方式, 台內國字第1130815314號 令 (2025). https://glrs.moi.gov.tw/LawContent.aspx?id=GL001676
營建剩餘土石方處理方案, 台內國字第1130804415號函 (2024). https://glrs.moi.gov.tw/LawContent.aspx?id=FL003875
營建剩餘土石方資訊服務中心. (n.d.). 營建剩餘土石方管理機制介紹. Retrieved July 13, 2025, from https://www-ws.gov.taipei/001/Upload/342/relfile/36967/8456984/6e88ba9d-f51a-4e9b-b6a4-6cd897ba8498.pdf
營建廢棄物處理方案, 九十府環三字第0407號 (2001). https://www.ilepb.gov.tw/Laws/LawsContent.aspx?id=170
王婉芝, 黃榮堯, 陳怡安, & 李力德. (2023). 可逆式建築設計與應用之調查研究. 內政部建築研究所. https://www.abri.gov.tw/News_Content_Table.aspx?n=807&s=315658
王迺卉. (2025). 歐盟循環經濟新趨勢. 行政院環境保護署環境保護人員訓練所. Retrieved July 13, 2025, from https://record.moenv.gov.tw/Epaper/109162/index.html
環境省. (2024a). The 5th Fundamental Plan for Establishing a Sound Material-Cycle Society -Making the Realization of a Circular Economy a National Strategy-. https://www.env.go.jp/content/000264244.pdf
環境省. (2024b). 循環型社会形成推進基本計画~循環経済を国家戦略に~. https://www.cas.go.jp/jp/seisaku/economiccirculation/dai1/siryou2.pdf
環境省. (2024c). 環境白書・循環型社会白書・生物多様性白書. https://www.env.go.jp/policy/hakusyo/r06/pdf.html
環境部事業廢棄物再利用管理辦法, 環部循字第1136127216號令 (2025). https://oaout.moenv.gov.tw/Law/LawContent.aspx?id=FL064024
環境部資源循環署. (2023). 111年資源循環再利用年報. https://www.reca.gov.tw/RecycleReportYear
環境部資源循環署. (2024). 營造業、建築拆除業廢棄物清理計畫書填報及審查參考手冊. https://waste.moenv.gov.tw/prog/NewsZone/vocExample.asp
環境部資源循環署. (2025). 廢棄物及再生資源代碼表. https://waste.moenv.gov.tw/RWD/PDL/?page=D20_WasteCode
葉禮旭. (2011). 營建廢棄物總量推估與源頭管理之研究. 中央大學土木工程學系學位論文, 2011, 1–228.
蘇昱丞. (2019). 施工機具作業時空氣污染物動態排放特性之研究—以營建用挖土機為例. 國立臺北科技大學環境工程與管理研究所碩士論文; https://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dnclcdr&s=id=%22107TIT00087033%22.&searchmode=basic.
行政院. (2024). 推動淨零建築轉型—邁向2050淨零排放目標. https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/ef772381-df54-4563-9628-19c779ad69cf
行政院主計總處. (2021). 行業統計分類(第11次修正). https://www.stat.gov.tw/News_Content.aspx?n=3144&s=90015
行政院主計總處. (2025). 產業關聯統計編製報告-民國110年. https://www.stat.gov.tw/News.aspx?n=3104&sms=11078
行政院環境保護署. (2014). 營建廢棄物管理策略 (含營建剩餘土石方管制措施建議). https://waste.moenv.gov.tw/RWD/PDL/?page=M10_Handbook
行政院環境保護署. (2018). 推動循環經濟–廢棄物資源化 (No. 行政院第3587次院會). https://www.ey.gov.tw/File/41D348BFCD97B0FF?A=C
行政院環境保護署. (2019). 物質流指標計算操作手冊. https://smmdb.moenv.gov.tw/smm/images/EPA-107-H103-02-A059_17%E7%89%A9%E8%B3%AA%E6%B5%81%E6%8C%87%E6%A8%99%E8%A8%88%E7%AE%97%E6%93%8D%E4%BD%9C%E6%89%8B%E5%86%8Av2.pdf
行政院環境保護署. (2023). 臺灣2050淨零轉型「資源循環零廢棄」 關鍵戰略行動計畫(核定本). https://ncsd.ndc.gov.tw/Fore/nsdn/about0/Work8
財團法人工業技術研究院. (2010). 98 年度營建工程剩餘土石方資源回收處理與資訊交流及總量管制計畫成果報告. 內政部營建署. https://www.nlma.gov.tw/uploads/files/e3b99daf5dfeecef2e65bdbeecf25ef3.pdf
財團法人工業技術研究院. (2011). 100 年度「營建工程剩餘土石方資源回收處理與資訊交流及總量管制計畫」. https://www.nlma.gov.tw/uploads/files/6447e157ed9a7c91ecc4c32cf8fc1f27.pdf
財政部. (2023). 水泥及其製品業原物料耗用通常水準. https://www.ntbsa.gov.tw/singlehtml/090f42aebcdc4785a6227b012db9951a?cntId=cb7cf9f083a343eba1622433265e27b6
鄭光利. (2020). 混合型物質流分析量化多空間尺度都市礦. 臺灣大學環境工程學研究所學位論文. https://doi.org/10.6342/NTU202003134
陳世政. (2021). 臺灣砂石市場供需分析與探討. 營建知訊, 461, 25–34.
陳介豪. (2024). 國內營造業營建剩餘土石方分包作業與成本組成分析之研究. 國立中央大學智慧營建研究中心. https://rcsc.ncu.edu.tw/download
馬鴻文, 溫麗琪, 林俊旭, 李金惠, & 張添晉. (2011). 循環經濟與節能減碳. 2011. 財團法人中技社.
馬鴻文, 鄒倫, & 張祖恩. (2018). 循環經濟系列叢書 (初版). 中技社.
黃梓恩. (2023). 台灣通用塑膠物質流分析. 臺灣大學環境工程學研究所學位論文, 1–113. https://doi.org/10.6342/NTU202301659
黃韋堯. (2023). 我國廢木材燃料化之策略探討. 臺灣大學環境工程學研究所學位論文. https://hdl.handle.net/11296/wh2q7g