| 研究生: |
劉亞涵 Liu, Ya-Han |
|---|---|
| 論文名稱: |
基於鋯鈦酸鉛薄膜之空氣耦壓電式微型超音波傳感器 Development of air-coupled piezoelectric micromachined ultrasonic transducer (pMUT) based on Lead zirconate titanate (PZT) thin film |
| 指導教授: |
王永和
Wang, Yeong-Her 黃致憲 Huang, Chih-Hsien |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 壓電式微型超音波傳感器 、壓電式微型超音波傳感器陣列 、空氣耦合 、超音波於空氣中的應用 、觸覺回饋 、微機電元件 、鋯鈦酸鉛 、有限元素分析模型 、k-Wave 、雷射杜普勒量測系統 |
| 外文關鍵詞: | pMUT, pMUT array, air-coupled, ultrasonic mid-air applications, haptic feedback, MEMs, PZT, FEM, k-Wave, LDV |
| 相關次數: | 點閱:63 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於半導體技術的蓬勃發展,大型元件陣列的控制和驅動電路,在製程上成本變得更加便宜且元件密度更高,這也使得空氣耦合超音波傳感器陣列能夠應用於超音波觸覺回饋和聲懸浮等領域。現階段市售的空氣耦合超音波傳感器體積相當龐大,這讓產品難以商業化的應用,因此壓電式微型超音波傳感器被提出(pMUT)用來取代傳統的超音波傳感器。目前鋯鈦酸鉛(PZT)薄膜是最穩定的壓電材料,也是 pMUT 最廣泛使用的壓電層,但現有的 PZT 製造方法過於昂貴或需要稀有金屬,為了解決這個問題,本研究提出了使用不同PZT薄膜的空氣耦合pMUT,可以將超音波傳輸到空氣中。
一開始本論文提出了一種體積小、功耗低的壓電微機械超音波換能器(pMUT)來取代傳統換能器,所提出pMUT 的諧振頻率為 40 kHz,元件半徑透過圓盤模型和有限元素模型設計。為了獲得更好的性能,選擇鋯鈦酸鉛作為壓電層並透過射頻濺鍍製造,而pMUT 的空腔是透過深度反應離子蝕刻(ICP)背蝕刻完成。 此pMUT 的實際諧振頻率為 32.9 kHz,與模擬結果接近。單一 pMUT 元件的聲壓在 70 Vpp 時為 0.227 Pa。這個研究成功展示了 pMUT製程的平台,包括優化的設計程序、元件特性量測和製備方式,並展示了 pMUT 陣列在超音波觸覺應用中的潛力。
接著,本論文提出了第一個使用溶膠-凝膠 PZT 薄膜的空氣耦合 pMUT,可以將超音波傳輸到空氣中應用。首先將PZT薄膜的沉積條件優化使其具備高Pr值,再來使用圓板模型設計了諧振頻率接近 40 kHz 的空氣耦合 pMUT,根據模擬結果製備了半徑為 600 μm 至 775 μm 的 pMUT,以評估聲音輸出壓力。其中半徑為725μm的pMUT在10Vpp驅動時,在高度三公分處實現了最大聲壓輸出4.42Pa,諧振頻率為40.48kHz。我們使用 k-Wave 工具箱計算了由半徑為 725 μm 的基於溶膠凝膠 PZT 的 pMUT 組成的陣列輸出壓力,當聚焦在其上方 3 cm 處時,11 × 11 pMUT 陣列的輸出壓力達到 365.62 Pa。這項結果顯示本研究所提出的 pMUT 陣列的輸出壓力可以滿足大多數空中超音波應用的要求。
最後,我們整合前述的兩種製備方式,提出了一種經濟高效且可靠的 PZT 薄膜製造方法。透過沉積商用溶膠-凝膠溶液作為種子層,然後進行射頻濺射,得到了 PZT 薄膜的殘餘極化強度為 113.35 μC/cm2,矯頑力場為 211.6 kV/cm。我們將所提出的 PZT 薄膜製成了高通量空氣耦合 pMUT 和 pMUT 陣列,並且透過有限元素法模擬來最佳化 40 kHz pMUT 的結構參數。為了評估元件的性能,使用標準麥克風測量 pMUT 和 pMUT 陣列上方三公分處的聲壓,而 pMUT 產生的聲壓為 0.764 Pa/V,諧振頻率為 52.2 kHz,pMUT 陣列的最大聲壓為 87.4 Pa。這是目前在100kHz以下,所有已知研究中的最高輸出聲壓,這也凸顯出本論文所提中的PZT 薄膜沉積方法,應用於超音波觸覺回饋和聲懸浮的潛力。
Due to the development of semiconductor technology, control, and driving circuits for large phased arrays have become cheaper and more compact, enabling air-coupled ultrasonic transducer arrays to be applied in areas such as ultrasonic haptic feedback and acoustic levitation. However, current air-coupled ultrasonic transducers are pretty bulky, which prevents the commercialization of these applications. Hence, some researchers proposed piezoelectric micromachining ultrasonic transducers (pMUT) to replace conventional ultrasound transducers. PZT, lead zirconate titanate, is the most reliable and efficient piezoelectric layer for pMUT. However, existing PZT fabrication methods are too expensive or require rare metals. Hence, this thesis proposed several reliable and cost effective PZT fabrication methods and demonstrated their capability on fabricating air-coupled pMUT.
Initially, this work proposes a piezoelectric micromachined ultrasonic transducer (pMUT) with a small size and low power consumption to replace traditional transducers. The proposed pMUT has a resonance frequency of 40 kHz and a radius designed through the circular plate and finite element models. Lead zirconate titanate was selected as the piezoelectric layer and fabricated via RF sputtering for better performance. The cavity of the pMUT was formed by releasing a circular membrane with deep reactive ion etching. The resonance frequency of the pMUT was 32.9 kHz, which was close to the simulation result. The acoustic pressure of a single pMUT was 0.227 Pa at 70 Vpp. This work has successfully demonstrated a pMUT platform, including optimized design procedures, characterization techniques, and fabrication process, and it has also shown the potential of pMUT arrays for ultrasound haptics applications.
In addition, this work demonstrated the first air-coupled pMUT using sol-gel PZT thin film that could deliver ultrasonic waves to mid-air. First, this study optimized the deposition conditions for making PZT thin film with high remanent polarization. Then, air-coupled pMUTs with resonance frequencies close to 40 kHz were designed using the circular plate model. According to the design, pMUTs with radii measuring 600 μm to 775 μm were fabricated to evaluate the acoustic output pressure. Among these, the pMUT with the 725 μm radius achieved a maximum sound pressure output of 4.42 Pa at 3 cm above when driven with 10 Vpp, and the resonance frequency was 40.48 kHz. Finally, the output pressure of a phased array consisting of sol-gel PZT-based pMUTs with a 725 μm radius was calculated using the k-Wave toolbox. The output pressure of the 11 × 11 pMUT array reached 365.62 Pa when focused at 3 cm above it. This result revealed that the output pressure of the proposed pMUT array could fulfill the requirement for most mid-air ultrasound applications.
Finally, this work proposed a cost-effective and reliable PZT thin film fabrication method. By depositing a commercial sol-gel solution as a seed layer followed by radio frequency sputtering, a PZT thin film with remnant polarization of 113.35 μC/cm2 and a coercive field of 211.6 kV/cm was demonstrated. Moreover, this research made high-throughput air-coupled pMUTs and pMUT arrays based on the proposed PZT thin film. Finite element method simulations were conducted to optimize the structure parameters for the 40 kHz pMUT. The author used a standard microphone to measure the acoustic pressure 3 cm above the pMUT and the pMUT array. The pMUT generated an acoustic pressure of 0.764 Pa/V with a resonance frequency of 52.2 kHz, and the pMUT array’s maximum acoustic pressure was 87.4 Pa, which is the highest known acoustic output pressure among sub-100 kHz air-coupled pMUT arrays. It highlights the potential of using the proposed PZT thin film deposition method for high-pressure mid-air ultrasonic applications such as ultrasonic haptic feedback and acoustic levitation.
[1] R. Dixon, "MEMS Market and Industry Update - 2017," IHS Markit Technology, 2017.
[2] H. Lewis, " Three global trends changing the landscape of the medical imaging equipment market," IHS Markit Technology, 2017.
[3] https://ihsmarkit.com/Info/all/medical-imaging-reports.html.
[4] S. Nissilä, " MEMS & Sensors for Wearables Report - 2014," IHS Technology – Abstract.
[5] Y. Qiu, J. V. Gigliotti, M. Wallace, F. Griggio, C. E. M. Demore, S. Cochran, and S. Trolier-McKinstry, "Piezoelectric micromachined ultrasound transducer (PMUT) arrays for integrated sensing, actuation and imaging," Sensors, vol. 15, p. 8020-8041, 2015.
[6] G. Massimino, L. D' Alessandro, F. Procopi, R. Ardito, M. Ferrera, and A. Corigliano, "Air-coupled PMUT at 100kHz with PZT active layer and residual stresses: multiphysics model and experimental validation," 18th Intemational Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, 2017.
[7] G. Massimino, L. D' Alessandro, F. Procopi, R. Ardito, M. Ferrera, and A. Corigliano, " Multiphysics modelling and experimental validation of an air-coupled array of PMUTs with residual stresses," Journal of Micromechanics and Microengineering, vol. 28, 2018.
[8] D. R. Chou, " Piezoelectric Micromachined Ultrasound Transducers for Medical Imaging," PhD Thesis, Department of Biomedical Engineering Duke University, 2011.
[9] C.H. Huang, H. Gao, G.B. Torri, S. Mao, Y. Jeong, D. Cheyns, V. Rochus, and X. Rottenberg, " Design, Modelling, and Characterization of Display Compatible pMUT Device," 19th EuroSimE 2018.
[10] C.H. Huang, L. Demi, G.B. Torri, S. Mao, M. Billen, Y. Jeong, D. Cheyns, X. Rottenberg, and V. Rochus, " Display Compatible pMUT Device for Mid Air Ultrasound Gesture Recognition," TechConnect World 2018.
[11] S. P. Mao, X. Rottenberg, V. Rochus, P. Czarnecki, P. Helin, S. Severi, B. Nauwelaers, and H. A. C. Tilmans, " Modal analysis based equivalent circuit model and its verification for a single cMUT cell," Journal of Micromechanics and Microengineering, vol. 28, 2017.
[12] B.H. Kim, T.K. Song, Y. Yoo, J. H. Chang, S. Lee, Y. Kim, K. Cho, and J. Song, " Hybrid Volume Beamforming for 3-D Ultrasound Imaging using 2-D CMUT Arrays," IEEE International Ultrasonics Symposium, 2012.
[13] S. Shelton, A. Guedes, R. Przybyla, R. Krigel, B. Boser, and D. A. Horsley, “Aluminum nitride piezoelectric micromachined ultrasound transducer arrays,” Hilton Head Solid-State Sensors, Actuators, and Microsystems Workshop, 2012.
[14] T. Wang, T. Kobayashi, and C. Lee, " Highly sensitive piezoelectric micromachined ultrasonic transducer operated in air," Micro & Nano Letters, vol. 11, issue. 10, p. 558-562, 2016.
[15] R. J. Przybyla, H. Y. Tang, S. E. Shelton, D. A. Horsley, and B. E. Boser, " 3D Ultrasonic Gesture Recognition," IEEE International Solid-State Circuits Conference, 2014.
[16] X. Jiang, Y. Lu, H.Y. Tang, J.M. Tsai, E. J. Ng, M. J. Daneman, B. E. Boser, and D.A. Horsley, " Monolithic ultrasound fingerprint sensor," Microsystems & Nanoengineering, vol. 3, 2017.
[17] H. Bardaweel, O. Al Hattamleh, R Richards, D. Bahr, and C. Richards, " A Comparison of piezoelectric materials for MEMS power generation," The Sixth International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, 2006.
[18] J. Yongbin, C.H. Huang, D. Cheyns, G. B. Torri, P. Heremans, Paul, and X. Rottenberg, " pMUT device compatible with large-area display technology," 16th International Symposium on Electrets, 2017.
[19] Y. Kusano, Q. Wang, R. Q. Rudy, R. G. Polcawich, and D. A. Horsley, " Wideband air-coupled PZT piezoelectric micromachined ultrasonic transducer through DC bias tuning," IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), 2017.
[20] H. Bishara and S. Berger, "Piezoelectric ultra-sensitive aluminum nitride thin film on flexible aluminum substrate," Journal of Material Science, vol. 53, p. 1246-1255, 2018.
[21] X. Chen, X. Liu, T. Wang, X. Le, F. Ma, C. Lee, and J.Xie, " Piezoelectric micromachined ultrasonic transducers with low thermoelastic dissipation and high quality factor," Journal of Micromechanics and Microengineering, vol. 28, 2018.
[22] R. Abdolvand, B. Bahreyni, J. E. Y. Lee, and F. Nabki, "H Micromachined Resonators: A Review," Micromachines, vol. 7, 2016.
[23] B. Long, S.A. Seah, T. Carter, S. Subramanian, " Rendering Volumetric Haptic Shapes in Mid-Air using Ultrasound," Association for Computing Machinery, vol. 33, number 6, Article 181, 2014
[24] M. Obrist, S. A. Seah, S. Subramanian, " Talking about tactile experiences," ACM SIGCHI Conference on Human Factors in Computing Systems, 2013.
[25] M. Pandey, R. B. Reichenbach, A. T. Zehnder, A. Lal, and H. G. Craighead, " Reducing anchor loss in MEMS resonators using mesa isolation," Journal of Microelectromechanical Systems, vol. 18, no. 4, p. 836-844, 2009.
[26] B. P. Harrington and R. Abdolvand, “In-plane acoustic reflectors for reducing effective anchor loss in lateral–extensional MEMS resonators,” Journal of Micromechanics and Microengineering, vol. 21, 2011.
[27] J. E-Y Lee, J. Yan, and A. A. Seshia, " Study of lateral mode SOI-MEMS resonators for reduced anchor loss," Journal of Micromechanics and Microengineering, vol. 21, 2011.
[28] M.W. Zhu, Z.J. Wang, Y.N. Chen, T. Kobayashi, and R. Maeda, " Effect of heating rate on microstructure and electrical properties of sol–gel derived lead zirconate titanate films crystallized by rapid thermal annealing," Thin Solid Films, vol. 540, p. 73–78, 2013.
[29] R. Laishramn, and O.P. Thakur, " Nano structured PZT/PT multilayered thin films prepared by sol–gel process," Materials Letters, vol. 137, p. 49–51, 2014.
[30] C.H. Huang, H. Gao, R. Haouari, B. Troia, S. Mao, R. Jansen, V. Rochus, and X. Rottenberg, " Frequency response and mode shape characterization for acoustic sensor in micro-opto-mechanical technology," IEEE International Ultrasonics Symposium, 2017
[31] S. M. Heinrich and I. Dufour, " Fundamental Theory of Resonant MEMS Devices," Resonant MEMS Fundamentals, Implementation and Application, First Edition, p. 3-28, 2015.
[32] T. Carter, S. A. Seah, B. Long, B. Drinkwater, and S. Subramanian, "UltraHaptics: Multi-point mid-air haptic feedback for touch surfaces", in 26th Annual ACM Symposium on User Interface Software and Technology, UIST 2013, October 8, 2013 - October 11, 2013, St. Andrews, United kingdom, 2013: Association for Computing Machinery, pp. 505-514.
[33] I. Rakkolainen, E. Freeman, A. Sand, R. Raisamo, and S. Brewster, "A Survey of Mid- Air Ultrasound Haptics and Its Applications", IEEE Trans Haptics, vol.14(1) pp. 2-19, Aug 24 2020.
[34] T. Iwamoto, M. Tatezono, and H. Shinoda, "Non-contact method for producing tactile sensation using airborne ultrasound," in 6th International Conference on Haptics: Perception, Devices and Scenarios, EuroHaptics 2008, June 10, 2008 - June 13, 2008, Madrid, Spain, 2008, vol. 5024 LNCS: Springer Verlag, pp. 504-513.
[35] A.S. Erguri, et al. "Capacitive micromachined ultrasonic transducers: fabrication technology", IEEE Transactions on Ultrasonics, 27 December (2005), pp. 2242 – 2258.
[36] J. Zahorian, et al."Monolithic CMUT-on-CMOS integration for intravascular ultrasound applications", IEEE Transactions on Ultrasonics, December (2011), pp. 2659–2667.
[37] X. Jiang, et al. " Monolithic ultrasound fingerprint sensor", Microsystems & Nanoengineering, vol. 3, 2017.
[38] Y. Qiu, et al. “Piezoelectric Micromachined Ultrasound Transducer (PMUT) Arrays for Integrated Sensing, Actuation and Imaging”, Sensors 2015, 15(4), pp. 8020-8041
[39] H. Wang, et al. “A Ceramic PZT-Based PMUT Array for Endoscopic Photoacoustic Imaging”, Journal of Microelectromechanical Systems, vol. 29(5), 2020, pp. 1038-1043
[40] R. Song, et al.” Multi-Channel Signal-Generator ASIC for Acoustic Holograms”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 67(1), 2020, pp.49-56
[41] C. Y. Cheng, et al.” Thin Film PZT-Based PMUT Arrays for Deterministic Particle Manipulation”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 66(10), 2019, pp. 1606-1615
[42] A. Halbach et al., "Display Compatible PMUT Array for Mid-Air Haptic Feedback" in 20th International Conference on Solid-State Sensors, Actuators and Microsystems and Eurosensors XXXIII, TRANSDUCERS 2019 and EUROSENSORS XXXIII, June 23, 2019 - June 27, 2019, Berlin, Germany, 2019: Institute of Electrical and Electronics Engineers Inc., pp. 158-161.
[43] B. W. Drinkwater and P. D. Wilcox, “Ultrasonic arrays for non-destructive evaluation: A review,” NDT & E International, vol. 39, no. 7, pp. 525-541, 2006/10/01/ 2006, doi: https://doi.org/10.1016/j.ndteint.2006.03.006.
[44] X. Jiang, K. Kim, S. Zhang, J. Johnson, and G. Salazar, “High-Temperature Piezoelectric Sensing,” Sensors, vol. 14, no. 1, pp. 144-169, 2014. [Online]. Available: https://www.mdpi.com/1424-8220/14/1/144.
[45] I. Donald, J. Macvicar, and T. G. Brown, “INVESTIGATION OF ABDOMINAL MASSES BY PULSED ULTRASOUND,” The Lancet, vol. 271, no. 7032, pp. 1188-1195, 1958/06/07/ 1958, doi: https://doi.org/10.1016/S0140-6736(58)91905-6.
[46] A. Fenster and D. B. Downey, “3-D ultrasound imaging: a review,” IEEE Engineering in Medicine and Biology Magazine, vol. 15, no. 6, pp. 41-51, 1996, doi: 10.1109/51.544511.
[47] Y. Qiu et al., “Piezoelectric Micromachined Ultrasound Transducer (PMUT) Arrays for Integrated Sensing, Actuation and Imaging,” Sensors, vol. 15, no. 4, pp. 8020-8041, 2015. [Online]. Available: https://www.mdpi.com/1424-8220/15/4/8020.
[48] G. R. Ter Haar, “High Intensity Focused Ultrasound for the Treatment of Tumors,” Echocardiography, vol. 18, no. 4, pp. 317-322, 2001, doi: https://doi.org/10.1046/j.1540-8175.2001.00317.x.
[49] T. Howard, G. Gallagher, A. Lécuyer, C. Pacchierotti, and M. Marchal, “Investigating the Recognition of Local Shapes Using Mid-air Ultrasound Haptics,” in 2019 IEEE World Haptics Conference (WHC), 9-12 July 2019 2019, pp. 503-508, doi: 10.1109/WHC.2019.8816127.
[50] A. Halbach et al., “Display Compatible PMUT Array for Mid-Air Haptic Feedback,” in 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), 23-27 June 2019 2019, pp. 158-161, doi: 10.1109/TRANSDUCERS.2019.8808775.
[51] A. Marzo, T. Corkett, and B. W. Drinkwater, “Ultraino: An open phased-array system for narrowband airborne ultrasound transmission,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 65, no. 1, pp. 102-111, 2017.
[52] R. J. Przybyla, H. Tang, A. Guedes, S. E. Shelton, D. A. Horsley, and B. E. Boser, “3D Ultrasonic Rangefinder on a Chip,” IEEE Journal of Solid-State Circuits, vol. 50, no. 1, pp. 320-334, 2015, doi: 10.1109/JSSC.2014.2364975.
[53] T. Wang, T. Kobayashi, and C. Lee, “Highly sensitive piezoelectric micromachined ultrasonic transducer operated in air,” Micro & Nano Letters, vol. 11, no. 10, pp. 558-562, 2016, doi: https://doi.org/10.1049/mnl.2016.0207.
[54] T. Wang, T. Kobayashi, B. Yang, H. Wang, and C. Lee, “Highly sensitive piezoelectric micromachined ultrasonic transducer (pMUT) operated in air,” in 2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), 17-20 April 2016 2016, pp. 294-299, doi: 10.1109/NEMS.2016.7758253.
[55] G. L. Luo, Y. Kusano, and D. A. Horsley, “Airborne Piezoelectric Micromachined Ultrasonic Transducers for Long-Range Detection,” Journal of Microelectromechanical Systems, vol. 30, no. 1, pp. 81-89, 2021, doi: 10.1109/JMEMS.2020.3037298.
[56] C. H. Huang et al., “Design, modelling, and characterization of display compatible pMUT device,” in 2018 19th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), 15-18 April 2018 2018, pp. 1-4, doi: 10.1109/EuroSimE.2018.8369931.
[57] T. J. Zhu, L. Lu, and M. O. Lai, “Pulsed laser deposition of lead-zirconate-titanate thin films and multilayered heterostructures,” Applied Physics A, vol. 81, no. 4, pp. 701-714, 2005/09/01 2005, doi: 10.1007/s00339-005-3227-z.
[58] D. Ambika, V. Kumar, H. Imai, and I. Kanno, “Sol-gel deposition and piezoelectric properties of {110}-oriented Pb(Zr0.52Ti0.48)O3 thin films,” Applied Physics Letters, vol. 96, no. 3, p. 031909, 2010, doi: 10.1063/1.3293446.
[59] G. Tan, S.-H. Kweon, and I. Kanno, “Piezoelectric properties of epitaxial Pb(Zr,Ti)O3 thin films grown on Si substrates by the sol–gel method,” Thin Solid Films, vol. 764, p. 139612, 2023/01/01/ 2023, doi: https://doi.org/10.1016/j.tsf.2022.139612.
[60] B. Belgacem, F. Calame, and P. Muralt, “Thick PZT sol-gel films for pMUT transducers performances improvement” 2006 IEEE Ultrasonics Symposium, 16 April 2007, doi: 10.1109/ULTSYM.2006.247
[61] Chen, Y. Q., Y. X. Li, Y. Chen, Z. Y. Ju, L. Q. Tao, Y. Pang, Y. Yang, and T. L. Ren. "Large-scale and high-density pMUT array based on isolated sol-gel PZT membranes for fingerprint imaging." Journal of The Electrochemical Society, vol. 164, no. 7 (2017): B377.
[62] C. Yan, Y. Minglei, Z. Qunying, C. Xiaolong, C. Jinkui, and G. Le, “Properties of RF-Sputtered PZT Thin Films with Ti/Pt Electrodes,” International Journal of Polymer Science, vol. 2014, p. 574684, 2014/02/27 2014, doi: 10.1155/2014/574684.
[63] L. P. Wang, R. Wolf, Q. Zhou, S. Trolier-McKinstry, and R. J. Davis, “Wet-Etch Patterning of Lead Zirconate Titanate (PZT) Thick Films for Microelectromechanical Systems (MEMS) Applications,” MRS Online Proceedings Library (OPL), vol. 657, p. EE5.39, 2000, Art no. Ee5.39, doi: 10.1557/PROC-657-EE5.39.
[64] D.-M. Chun, M. Sato, and I. Kanno, “Precise measurement of the transverse piezoelectric coefficient for thin films on anisotropic substrate,” Journal of Applied Physics, vol. 113, no. 4, p. 044111, 2013, doi: 10.1063/1.4789347.
[65] C. Fox, X. Chen, and S. McWilliam, “Analysis of the deflection of a circular plate with an annular piezoelectric actuator,” Sensors and Actuators A: Physical, vol. 133, no. 1, pp. 180-194, 2007.
[66] D. Horsley, Y. Lu, and O. Rozen, “Flexural Piezoelectric Resonators,” in Piezoelectric MEMS Resonators, H. Bhugra and G. Piazza Eds. Cham: Springer International Publishing, 2017, pp. 153-173.
[67] P. M. Mayrhofer, E. Wistrela, M. Schneider, A. Bittner, and U. Schmid, “Precise Determination of d 33 and d 31 from Piezoelectric Deflection Measurements and 2D FEM Simulations Applied to Sc x Al 1-x N,” Procedia Engineering, vol. 168, pp. 876-879, 2016, doi: 10.1016/j.proeng.2016.11.295.
[68] J. Tsaur, Z. J. Wang, L. Zhang, M. Ichiki, J. W. Wan, and R. Maeda, “Preparation and Application of Lead Zirconate Titanate (PZT) Films Deposited by Hybrid Process: Sol-Gel Method and Laser Ablation,” Japanese Journal of Applied Physics, vol. 41, no. 11S, p. 6664, 2002/11/01 2002, doi: 10.1143/JJAP.41.6664.
[69] A. Schroth, C. Lee, S. Matsumoto, M. Tanaka, and R. Maeda, “Application of sol-gel deposited thin PZT film for actuation of 1D and 2D scanners,” in Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No.98CH36176, 25-29 Jan. 1998 1998, pp. 402-407, doi: 10.1109/MEMSYS.1998.659790.
[70] I. O. Wygant, M. Kupnik, and B. T. Khuri-Yakub, “An Analytical Model for Capacitive Pressure Transducers With Circular Geometry,” Journal of Microelectromechanical Systems, vol. 27, no. 3, pp. 448-456, 2018, doi: 10.1109/JMEMS.2018.2823200.
[71] J.-H. Mo, A. Robinson, D. Fitting, F. Terry, and P. Carson, “A micromachined diaphragm structure for integrated ultrasound transducers,” in Proceedings., IEEE Ultrasonics Symposium, 1989: IEEE, pp. 801-804.
[72] Y. Birjis et al., “Piezoelectric Micromachined Ultrasonic Transducers (PMUTs): Performance Metrics, Advancements, and Applications,” Sensors, vol. 22, no. 23, p. 9151, 2022.
[73] B. W. Drinkwater and P. D. Wilcox, “Ultrasonic arrays for non-destructive evaluation: A review,” NDT & e International, vol. 39, no. 7, pp. 525-541, 2006.
[74] X. Jiang et al., “Ultrasonic fingerprint sensor with transmit beamforming based on a PMUT array bonded to CMOS circuitry,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 64, no. 9, pp. 1401-1408, 2017.
[75] D. E. Dausch, K. H. Gilchrist, J. B. Carlson, S. D. Hall, J. B. Castellucci, and O. T. Von Ramm, “In vivo real-time 3-D intracardiac echo using PMUT arrays,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 61, no. 10, pp. 1754-1764, 2014.
[76] R. J. Przybyla et al., “In-air rangefinding with an AlN piezoelectric micromachined ultrasound transducer,” IEEE Sensors Journal, vol. 11, no. 11, pp. 2690-2697, 2011.
[77] A. Halbach et al., “Display compatible PMUT array for mid-air haptic feedback,” in 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), 2019: IEEE, pp. 158-161.
[78] R. Atif et al., “Solution blow spinning of polyvinylidene fluoride based fibers for energy harvesting applications: A review,” Polymers, vol. 12, no. 6, p. 1304, 2020.
[79] M. A. Fraga, H. Furlan, R. Pessoa, and M. Massi, “Wide bandgap semiconductor thin films for piezoelectric and piezoresistive MEMS sensors applied at high temperatures: an overview,” Microsystem technologies, vol. 20, pp. 9-21, 2014.
[80] M. Vacca et al., “Electric clock for NanoMagnet logic circuits,” Field-Coupled Nanocomputing: Paradigms, Progress, and Perspectives, pp. 73-110, 2014.
[81] G. Velu and D. Remiens, “Electrical properties of sputtered PZT films on stabilized platinum electrode,” Journal of the European Ceramic Society, vol. 19, no. 11, pp. 2005-2013, 1999.
[82] H. Hu, C. Peng, and S. Krupanidhi, “Effect of heating rate on the crystallization behavior of amorphous PZT thin films,” Thin Solid Films, vol. 223, no. 2, pp. 327-333, 1993.
[83] T. Oikawa, M. Aratani, H. Funakubo, K. Saito, and M. Mizuhira, “Composition and orientation dependence of electrical properties of epitaxial Pb (Zr x Ti 1− x) O 3 thin films grown using metalorganic chemical vapor deposition,” Journal of applied physics, vol. 95, no. 6, pp. 3111-3115, 2004.
[84] C.-L. Dai, F.-Y. Xiao, C.-Y. Lee, Y.-C. Cheng, P.-Z. Chang, and S.-H. Chang, “Thermal effects in PZT: diffusion of titanium and recrystallization of platinum,” Materials Science and Engineering: A, vol. 384, no. 1-2, pp. 57-63, 2004.
[85] X. Di and P. Muralt, “Highly (100)-oriented metallic LaNiO 3 grown by RF magnetron sputtering,” in 2017 Joint IEEE International Symposium on the Applications of Ferroelectric (ISAF)/International Workshop on Acoustic Transduction Materials and Devices (IWATMD)/Piezoresponse Force Microscopy (PFM), 2017: IEEE, pp. 33-36.
[86] H. Morioka, G. Asano, T. Oikawa, H. Funakubo, and K. Saito, “Large remanent polarization of 100% polar-axis-oriented epitaxial tetragonal Pb (Zr 0.35 Ti 0.65) O 3 thin films,” Applied Physics Letters, vol. 82, no. 26, pp. 4761-4763, 2003.
[87] K. Abe, H. Tomita, H. Toyoda, M. I. M. Imai, and Y. Y. Y. Yokote, “PZT thin film preparation on Pt-Ti electrode by RF sputtering,” Japanese journal of applied physics, vol. 30, no. 9S, p. 2152, 1991.
[88] M. D. Nguyen et al., “Highly oriented growth of piezoelectric thin films on silicon using two-dimensional nanosheets as growth template layer,” ACS applied materials & interfaces, vol. 8, no. 45, pp. 31120-31127, 2016.
[89] S.-Y. Chu, T.-Y. Chen, I.-T. Tsai, and W. Water, “Doping effects of Nb additives on the piezoelectric and dielectric properties of PZT ceramics and its application on SAW device,” Sensors and Actuators A: Physical, vol. 113, no. 2, pp. 198-203, 2004.
[90] Q. Zhang and R. Whatmore, “Improved ferroelectric and pyroelectric properties in Mn-doped lead zirconate titanate thin films,” Journal of Applied Physics, vol. 94, no. 8, pp. 5228-5233, 2003.
[91] Ø. Nordseth, T. Tybell, and J. Grepstad, “Epitaxial (Pb, La)(Zr, Ti) O3 thin films on buffered Si (100) by on-axis radio frequency magnetron sputtering,” Thin Solid Films, vol. 517, no. 8, pp. 2623-2626, 2009.
[92] L. M. Sanchez et al., “Optimization of PbTiO3 seed layers and Pt metallization for PZT-based piezoMEMS actuators,” Journal of Materials Research, vol. 28, no. 14, pp. 1920-1931, 2013.
[93] D.-M. Chun, M. Sato, and I. Kanno, “Precise measurement of the transverse piezoelectric coefficient for thin films on anisotropic substrate,” Journal of Applied Physics, vol. 113, no. 4, 2013.
[94] G. Le Rhun et al., “Transparent PZT MIM capacitors on glass for piezoelectric transducer applications,” in 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), 2019: IEEE, pp. 1800-1802.
[95] K. Udayakumar et al., “Ferroelectric thin film ultrasonic micromotors,” in [1991] Proceedings. IEEE Micro Electro Mechanical Systems, 1991: IEEE, pp. 109-113.
[96] Y. Jeong, J. Genoe, P. Gijsenbergh, J. Segers, P. L. Heremans, and D. Cheyns, “Fully flexible PMUT based on polymer materials and stress compensation by adaptive frequency driving,” Journal of Microelectromechanical Systems, vol. 30, no. 1, pp. 137-143, 2020.
[97] T. Hoshi, T. Iwamoto, and H. Shinoda, “Non-contact tactile sensation synthesized by ultrasound transducers,” in World Haptics 2009-Third Joint EuroHaptics conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2009: IEEE, pp. 256-260.
[98] H. Wang, M. Godara, Z. Chen, and H. Xie, “A one-step residue-free wet etching process of ceramic PZT for piezoelectric transducers,” Sensors and Actuators A: Physical, vol. 290, pp. 130-136, 2019.
[99] M. Cueff et al., “Influence of the crystallographic orientation of Pb (Zr, Ti) O 3 films on the transverse piezoelectric coefficient d 31,” in 2011 IEEE International Ultrasonics Symposium, 2011: IEEE, pp. 1948-1951.
[100] D. Ambika, V. Kumar, H. Imai, and I. Kanno, “Sol-gel deposition and piezoelectric properties of {110}-oriented Pb (Zr0. 52Ti0. 48) O3 thin films,” Applied Physics Letters, vol. 96, no. 3, 2010.
[101] J.-F. Li, Z.-X. Zhu, and F.-P. Lai, “Thickness-dependent phase transition and piezoelectric response in textured Nb-doped Pb (Zr0. 52Ti0. 48) O3 thin films,” The Journal of Physical Chemistry C, vol. 114, no. 41, pp. 17796-17801, 2010.
[102] S. Shannigrahi and H. M. Jang, “Fatigue-free lead zirconate titanate-based capacitors for nonvolatile memories,” Applied Physics Letters, vol. 79, no. 7, pp. 1051-1053, 2001.
[103] Z. Bi, Z. Zhang, and P. Fan, “Characterization of PZT ferroelectric thin films by RF-magnetron sputtering,” in Journal of Physics: Conference Series, 2007, vol. 61, no. 1: IOP Publishing, p. 120.
[104] R. H. Wilke et al., “Sputter deposition of PZT piezoelectric films on thin glass substrates for adjustable x-ray optics,” Applied optics, vol. 52, no. 14, pp. 3412-3419, 2013.
[105] S. Pandey, A. James, C. Prakash, T. Goel, and K. Zimik, “Electrical properties of PZT thin films grown by sol–gel and PLD using a seed layer,” Materials Science and Engineering: B, vol. 112, no. 1, pp. 96-100, 2004.
[106] S. Akhbari, F. Sammoura, C. Yang, A. Heidari, D. Horsley, and L. Lin, “Self-curved diaphragms by stress engineering for highly responsive pMUT,” in 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2015: IEEE, pp. 837-840.
[107] G.-L. Luo, Y. Kusano, and D. A. Horsley, “Airborne piezoelectric micromachined ultrasonic transducers for long-range detection,” journal of microelectromechanical systems, vol. 30, no. 1, pp. 81-89, 2020.
[108] S. Pala, Z. Shao, Y. Peng, and L. Lin, “Ultrasond-induced haptic sensations via PMUTS,” in 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS), 2021: IEEE, pp. 911-914.
[109] S. Sun, J. Wang, Y. Ning, and M. Zhang, “Air-coupled piezoelectric micromachined ultrasonic transducers for surface stain detection and imaging,” Nanotechnology and Precision Engineering (NPE), vol. 5, no. 1, 2022.
[110] M. Billen, P. Gijsenbergh, E. M. Ferrer, M. S. Pandian, X. Rottenberg, and V. Rochus, “PMUT Array Design for mid-air Haptic feedback,” in 2022 23rd International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), 2022: IEEE, pp. 1-6.
[111] R. Kapoor, S. Ramasamy, A. Gardi, R. V. Schyndel, and R. Sabatini, “Acoustic sensors for air and surface navigation applications,” Sensors, vol. 18, no. 2, p. 499, 2018.
校內:2029-08-07公開