| 研究生: |
朱紹瑜 Chu, Shao-Yu |
|---|---|
| 論文名稱: |
氧化鎵基二氧化氮氣體感測器之特性研究 Investigated performance of Ga2O3-based NO2 gas sensors |
| 指導教授: |
李欣縈
Lee, Hsin-Ying |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 氧化鎵 、黑金奈米粒子 、水熱合成法 、二氧化氮氣體感測器 、奈米柱 、還原型氧化石墨烯 |
| 外文關鍵詞: | gallium oxide, gold black nanoparticle, hydrothermal synthesis method, NO2 gas sensor, nanorod, reduced graphene oxide |
| ORCID: | 0000-0001-5845-9322 |
| 相關次數: | 點閱:97 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Chapter 1.
[1] C.L. Wang, J.C. Zhang, S.R. Xu, C.F. Zhang, Q. Feng, Y.C. Zhang, J. Ning, S.L. Zhao, H. Zhou, Y. Hao, Progress in state-of-the-art technologies of Ga2O3 devices. J. Phys. D-Appl. Phys. 54 (2021) 243001.
[2] M.A. Mastro, A. Kuramata, J. Calkins, J. Kim, F. Ren, S.J. Peartong, Opportunities and future directions for Ga2O3, ECS J. Solid State Sci. Technol. 6 (2017) 356–359.
[3] S.J. Pearton, J.C. Yang, P.H. Cary, F. Ren, J. Kim, M.J. Tadjer, M.A. Mastro, A review of Ga2O3 materials, processing, and devices, Appl. Phys. Rev. 5 (2018) 011301.
[4] J.H. Zhang, S.J. Jiao, D.B. Wang, S.Y. Gao, J.Z. Wang, L.C. Zhao, Nano tree-like branched structure with α-Ga2O3 covered by gamma-Al2O3 for highly efficient detection of solar-blind ultraviolet light using self-powered photoelectrochemical method, Appl. Surf. Sci. 541 (2021) 148380.
[5] H.W. Xue, Q.M. He, G.Z. Jian, S.B. Long, T. Pang, M. Liu, An overview of the ultrawide bandgap Ga2O3 semiconductor-based schottky barrier diode for power electronics application, Nanoscale Res. Lett. 13 (2018) 290.
[6] N.S. Jamwal, A. Kiani, Gallium oxide nanostructures: a review of synthesis, properties and applications, Nanomaterials 12 (2022) 2061.
[7] T. Zhang, Y.F. Li, Q. Cheng, Z.G. Hu, J.B. Ma, Y.X. Yao, C.X. Cui, Y. Zuo, Q. Feng, Y.C. Zhang, H. Zhou, J. Ning, C.F. Zhang, J.C. Zhang, Y. Hao, Research on the crystal phase and orientation of Ga2O3 hetero-epitaxial film, 159 (2021) 107053.
[8] T. Zhang, Y.F. Li, Y.C. Zhang, Q. Feng, J. Ning, C.F. Zhang, J.C. Zhang, Y. Hao, Investigation of β-Ga2O3 thin films grown on epi-GaN/sapphire(0001) substrates by low pressure MOCVD, J. Alloy. Compd. 859 (2021) 157810.
[9] T. Hadamek, A.B. Posadas, F. Al-Quaiti, D.J. Smith, M.R. McCartney, A.A. Demkov, β-Ga2O3 on Si (001) grown by plasma-assisted MBE with gamma-Al2O3 (111) buffer layer: Structural characterization, AIP Adv. 11 (2021) 045209.
[10] C.X. Xu, L.Y. Shen, H. Liu, X.H. Pan, Z.Z. Ye, High-quality β-Ga2O3 films with influence of growth temperature by pulsed laser deposition for solar-blind photodetectors, J. Electron. Mater. 50 (2021) 2043–2048.
[11] E. Vega, S.B. Isukapati, T.N. Oder, Microstructure and optical properties of sputter-deposited Ga2O3 films, J. Vac. Sci. Technol. A 39 (2021) 033412.
[12] S.H. Lee, K.M. Lee, S.W. Lee, Influences of process temperature on a phase of Ga2O3 thin films grown by atomic layer deposition on sapphire, Bull. Korean Chem. Soc. 41 (2020) 1190–1193.
[13] H. Ryou, T.H. Yoo, Y. Yoon, I.G. Lee, M. Shin, J. Cho, B.J. Cho, W.S. Hwang, Hydrothermal synthesis and photocatalytic property of Sn-doped β-Ga2O3 nanostructure, ECS J. Solid State Sci. Technol. 9 (2020) 045009.
Chapter 2.
[1] S.S. Shendage, V.L. Patil, S.P. Patil, S.A.Vanalakar, J.L. Bhosale, J.H. Kim, P.S. Patil, NO2 sensing properties of porous fibrous reticulated WO3 thin films, J. Anal. Appl. Pyrolysis 125 (2017) 9–16.
[2] D.L. Kamble, N.S. Harale, V.L. Patil, P.S. Patil, L.D. Kadam, Characterization and NO2 gas sensing properties of spray pyrolyzed SnO2 thin films, J. Anal. Appl. Pyrolysis 127 (2017) 38–46.
[3] A.Z. Sadek, S. Choopun, W. Wlodarski, S.J. Ippolito, K. Kalantar-zadeh, Characterization of ZnO nanobelt-based gas sensor for H2, NO2, and hydrocarbon sensing, IEEE Sens. J. 7 (2007) 919–924.
[4] Z.U. Abideen, J.H. Kim, J.H. Lee, J.Y. Kim, A. Mirzaei, H.W. Kim, S.S. Kim, Electrospun metal oxide composite nanofibers gas sensors: a review, J. Korean Ceram. Soc. 54 (2017) 366–379.
[5] Q.M. He, W.X. Mu, H. Dong, S.B. Long, Z.T. Jia, H.B. Lv, Q. Liu, M.H. Tang, X.T. Tao, M. Liu, Schottky barrier diode based on β-Ga2O3 (100) single crystal substrate and its temperature-dependent electrical characteristics, Appl. Phys. Lett. 110 (2017) 093503.
[6] Y. Kim, S.K. Kang, N.C. Oh, H.D. Lee, S.M. Lee, J. Park, H. Kim, Improved sensitivity in Schottky contacted two-dimensional MoS2 gas sensor, ACS Appl. Mater. Interfaces 11 (2019) 38902−38909.
[7] T.Y. Wei, P.H. Yeh, S.Y. Lu, Z. Lin-Wang, Gigantic enhancement in sensitivity using Schottky contacted nanowire nanosensor, J. Am. Chem. Soc. 131 (2009) 17690−17695.
[8] N.M. Hung, C.M. Hung, N.V. Duy, N.D. Hoa, H.S. Hong, T.K. Dang, N.N. Viet, L.V. Thong, P.H. Phuoc, N.V. Hieu, Significantly enhanced NO2 gas-sensing performance of nanojunction-networked SnO2 nanowires by pulsed UV-radiation, Sens. Actuator A Phys. 327 (2021) 112759.
[9] J.H. Bang, M.S. Choi, A. Mirzaei, Y.J. Kwon, S.S. Kim, T.W. Kim, H.W. Kim, Selective NO2 sensor based on Bi2O3 branched SnO2 nanowires, Sens. Actuator B-Chem. 274 (2018) 356–369.
[10] S. Park, S. Kim, H. Kheel, C. Lee, Oxidizing gas sensing properties of the n-ZnO/p-Co3O4 composite nanoparticle network sensor, Sens. Actuator B-Chem. 222 (2016) 1193–1200.
[11] Y.Y. Zhao, X. Lai, P. Deng, Y.X. Nie, Y. Zhang, L.L. Xing, X.Y. Xue, Pt/ZnO nanoarray nanogenerator as self-powered active gas sensor with linear ethanol sensing at room temperature, Nanotechnology 25 (2014) 115502.
[12] S. Zeb, X.J. Peng, Y.S. Shi, J.H. Su, J.H. Sun, M.M. Zhang, G.X. Sun, Y. Nie, Y. Cui, X.C. Jiang, Bimetal Au-Pd decorated hierarchical WO3 nanowire bundles for gas sensing application, Sens. Actuator B-Chem. 334 (2021) 129584.
[13] D.V. Ponnuvelu, J. Dhakshinamoorthy, A.K. Prasad, S. Dhara, M. Kamruddin, B. Pullithadathil, Geometrically controlled Au decorated ZnO heterojunction nanostructures for NO2 detection, ACS Appl. Nano Mater. 3 (2020) 5898–5909.
[14] X.X. Chen, Y.B. Shen, X.X. Zhong, T.T. Li, S.K. Zhao, P.F. Zhou, C. Han, D.Z. Wei, Y.S. Shen, Synthesis of ZnO nanowires/Au nanoparticles hybrid by a facile one-pot method and their enhanced NO2 sensing properties, J. Alloy. Compd. 783 (2019) 503–512.
[15] D.K. Li, Y.W. Li, X.H. Wang, G. Sun, J.L. Cao, Y. Wang, Surface modification of In2O3 porous nanospheres with Au single atoms for ultrafast and highly sensitive detection of CO, Appl. Surf. Sci. 613 (2023) 155987.
[16] M.L. Zhang, T. Ning, S.Y. Zhang, Z.M. Li, Z.H. Yuan, Q.X. Cao, Response time and mechanism of Pd modified TiO2 gas sensor, Mater. Sci. Semicond. Process 17 (2014) 149–154.
[17] J.B.B. Rayappan, P. Srinivasan, Chemi-resistive sensing of methylamine species using twinned α-MoO3 nanorods: Role of grain features, activation energy and surface defects, Sens. Actuator B-Chem. 349 (2021) 130759.
[18] A.C. Nwanya, P.R. Deshmukh, R.U. Osuji, M. Maaza, C.D. Lokhande, F.I. Ezema, Synthesis, characterization and gas-sensing properties of SILAR deposited ZnO-CdO nano-composite thin film, Sens. Actuator B-Chem. 206 (2015) 671–678.
[19] A. Dey, Semiconductor metal oxide gas sensors: a review, Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 229 (2018) 206–217.
[20] B. W. Shen, F. Li, Y.Z. Xie, J.T. Luo, P. Fan, A.H. Zhong, High performance ammonia gas sensor based on GaN honeycomb nanonetwork, Sens. Actuator A-Phys. 312 (2020) 112172.
[21] Y.L. Wang, H.H. Pu, G.H. Lu, X.Y. Sui, J.H. Chen, Quantitative analysis of the synergistic effect of Au NPs on SnO2-rGO nanocomposites for room temperature hydrogen sensing, Phys. Chem. Chem. Phys. 23 (2021) 2377–2383.
Chapter 3.
[1] S.S. Shendage, V.L. Patil, S.P. Patil, S.A. Vanalakar, J.L. Bhosale, J.H. Kim, P.S. Patil, NO2 sensing properties of porous fibrous reticulated WO3 thin films, J. Anal. Appl. Pyrolysis 125 (2017) 9–16.
[2] D.L. Kamble, N.S. Harale, V.L. Patil, P.S. Patil, L.D. Kadam, Characterization and NO2 gas sensing properties of spray pyrolyzed SnO2 thin films, J. Anal. Appl. Pyrolysis 127 (2017) 38–46.
[3] J.B. Shankar, B.B. Rayappan, Gas sensing mechanism of metal oxides: the role of ambient atmosphere, type of semiconductor and gases-a review, Sci. Lett. J. 4 (2015) 126.
[4] Y. Nagarjuna, J.C. Lin, S.C. Wang, W.T. Hsiao, Y.J. Hsiao, AZO-based ZnO nanosheet MEMS sensor with different Al concentrations for enhanced H2S gas sensing, Nanomaterials 11 (2021) 3377.
[5] M.S. Wang, Y.C. Zhu, Q. Luo, C.X. Ge, G.W. Liu, G.J. Qiao, E.J. Kim, Below-room-temperature solution-grown ZnO porous nanosheet arrays with ppb-level NO2 sensitivity under intermittent UV irradiation, Appl. Surf. Sci. 566 (2021) 150750.
[6] J. Zhang, X.H. Liu, G. Neri, N. Pinna, Nanostructured materials for room-temperature gas sensors, Adv. Mater. 28 (2016) 795–831.
[7] H. Wu, Z. Ma, Z.X. Lin, H.Z. Song, S.C. Yan, Y. Shi, High-sensitive ammonia sensors based on tin monoxide nanoshells, Nanomaterials 9 (2019) 388.
[8] S. Cao, N. Sui, P. Zhang, T.T. Zhou, J.C. Tu, T. Zhang, TiO2 nanostructures with different crystal phases for sensitive acetone gas sensors, J. Colloid Interface Sci. 607 (2022) 357–366.
[9] W.H. Wang, L. Zhang, Y.L. Kang, F. Yu, Light-excited Ag-doped TiO2-CoFe2O4 heterojunction applied to toluene gas detection, Nanomaterials 11 (2021) 3261.
[10] L.Y. Jian, C.T. Lee, H.Y. Lee, Performance improvement of NO2 gas sensor using rod-patterned tantalum pentoxide-alloyed indium oxide sensing membranes, IEEE Sens. J. 21 (2021) 2134–2139.
[11] X. Liang, J. Zhang, L.Y. Du, M.Z. Zhang, Effect of resonant tunneling modulation on ZnO/In2O3 heterojunction nanocomposite in efficient detection of NO2 gas at room temperature, Sens. Actuators B Chem. 329 (2021) 129230.
[12] A.V. Almaev, V.I. Nikolaev, N.N. Yakovlev, P.N. Butenko, S.I. Stepanov, A.I. Pechnikov, M.P. Scheglov, E.V. Chernikov, Hydrogen sensors based on Pt/α-Ga2O3:Sn/Pt structures, Sens. Actuators B Chem. 364 (2022) 131904.
[13] A. Fzal, β-Ga2O3 nanowires and thin films for metal oxide semiconductor gas sensors: Sensing mechanisms and performance enhancement strategies, J. Mater. 5 (2019) 542–557.
[14] S.J. Pearton, J.C. Yang, P.H. Cary, F. Ren, J. Kim, M.J. Tadjer, M.A. Mastro, A review of Ga2O3 materials, processing, and devices, Appl. Phys. Rev. 5 (2018) 011301.
[15] J.H. Zhang, S.J. Jiao, D.B. Wang, S.Y. Gao, J.Z. Wang, L.C. Zhao, Nano tree-like branched structure with α-Ga2O3 covered by gamma-Al2O3 for highly efficient detection of solar-blind ultraviolet light using self-powered photoelectrochemical method, Appl. Surf. Sci. 541 (2021) 148380.
[16] N. Vorobyeva, M. Rumyantseva, V. Platonov, D. Filatova, A. Chizhov, A. Marikutsa, I. Bozhev, A. Gaskov, Ga2O3(Sn) oxides for high-temperature gas sensors, Nanomaterials 11 (2021) 2938.
[17] M. Bagheri, A.A. Khodadadi, A.R. Mahjoub, Y. Mortazavi, Strong effects of gallia on structure and selective responses of Ga2O3-In2O3 nanocomposite sensors to either ethanol, CO or CH4, Sens. Actuators B Chem. 220 (2015) 590–599.
[18] Y. Yao, M.L. Yin, J.Q. Yan, S.Z. Liu, P-type sub-tungsten-oxide based urchin-like nanostructure for superior room temperature alcohol sensor, Appl. Surf. Sci. 441 (2018) 277–284.
[19] D. Nunes, A. Pimentel, A. Goncalves, S. Pereira, R. Branquinho, P. Barquinha, E. Fortunato, R. Martins, Metal oxide nanostructures for sensor applications, Semicond. Sci. Technol. 34 (2019) 043001.
[20] J. Wang, R.S. Chen, L. Xiang, S. Komarneni, Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: A review, Ceram. Int. 44 (2018) 7357–7377.
[21] Y.P. Liu, L.Y. Zhu, P. Feng, C.C. Dang, M. Li, H.L. Lu, L.M. Gao, Bimetallic AuPt alloy nanoparticles decorated on ZnO nanowires towards efficient and selective H2S gas sensing, Sens. Actuators B Chem. 367 (2022) 132024.
[22] S. Pokai, P. Limnonthakul, M. Horprathum, P. Eiamchai, V. Pattantsetakul, S. Limwichean, N. Nuntawong, S. Porntheeraphat, C. Chitichotpanya, Influence of seed layer thickness on well-aligned ZnO nanorods via hydrothermal method, Mater. Today 4 (2017) 6336–6341.
[23] S.W. Hou, C.Y. Li, Aluminum-doped zinc oxide thin film as seeds layer effects on the alignment of zinc oxide nanorods synthesized in the chemical bath deposition, Thin Solid Films 605 (2016) 37–43.
[24] H. Ghayour, H.R. Rezaie, S. Mirdamadi, A.A. Nourbakhsh, The effect of seed layer thickness on alignment and morphology of ZnO nanorods, Vaccum 86 (2011) 101–105.
[25] B. Benhaoua, S. Abbas, A. Rahal, A. Benhaoua, M.S. Aida, Effect of film thickness on the structural, optical and electrical properties of SnO2: F thin films prepared by spray ultrasonic for solar cells applications, Superlattices Microstruct. 83 (2015) 78–88.
[26] W.G. Kim, Y.J. Tak, B.D. Ahn, T.S. Jung, K.B. Chung, H.J. Kim, High-pressure gas activation for amorphous indium-gallium-zinc-oxide thin-film transistors at 100 °C, Sci. Rep. 6 (2016) 23039.
[27] R. Pilliadugula, N.G. Krishnan, Gas sensing performance of GaOOH and β-Ga2O3 synthesized by hydrothermal method: A comparison, Mater. Res. Express 6 (2019) 025027.
[28] V. Anand, A. Sakthivelu, K.D.A. Kumar, S. Valanarasu, V. Ganesh, M. Shkir, S. AlFaify, H. Algarni, Rare earth Eu3+ co-doped AZO thin films prepared by nebulizer spray pyrolysis technique for optoelectronics, J. Sol Gel Sci. Technol. 86 (2018) 293–304.
[29] M. Kumar, T.N. Bhat, B. Roul, M.K. Rajpalke, A. Kalghatgi, S. Krupanidhi, Carrier concentration dependence of donor activation energy in n-type GaN epilayers grown on Si (111) by plasma-assisted MBE, Mater. Res. Bull. 47 (2012) 1306–1309.
[30] S.Y. Chu, T.H. Yeh, C.T. Lee, H.Y. Lee, Mg-doped β-Ga2O3 films deposited by plasma-enhanced atomic layer deposition system for metal-semiconductor-metal ultraviolet C photodetectors, Mater. Sci. Semicond. Process. 142 (2022) 106471.
[31] C.L. Zhu, Y.J. Chen, R.X. Wang, L.J. Wang, M.S. Cao, X.L. Shi, Synthesis and enhanced ethanol sensing properties of α-Fe2O3/ZnO heteronanostructures, Sens. Actuators B Chem. 140 (2009) 185–189.
[32] M. Kumar, V.S. Bhati, S. Ranwa, J. Singh, M. Kumar, Pd/ZnO nanorods based sensor for highly selective detection of extremely low concentration hydrogen, Sci. Rep. 7 (2017) 236.
[33] P.S. Zhang, G.F. Pan, B.Q. Zhang, J.L. Zhen, Y.C. Sun, High sensitivity ethanol gas sensor based on Sn-doped ZnO under visible light irradiation at low temperature, Mater. Res-ibero-am. J. 17 (2014) 817–822.
[34] M.R. Mohammadi, D.J. Fray, Semiconductor TiO2-Ga2O3 thin film gas sensors derived from particulate sol-gel route, Acta Mater. 55 (2007) 4455–4466.
[35] M.R. Wu, W.Z. Li, C.Y. Tung, C.Y. Huang, Y.H. Chiang, P.L. Liu, R.H. Horng, NO gas sensor based on ZnGa2O4 epilayer grown by metalorganic chemical vapor deposition, Sci. Rep. 9 (2019) 7459.
[36] M. Shafiei, F. Hoshyargar, N. Motta, A.P. O'Mullane, Utilizing p-type native oxide on liquid metal microdroplets for low temperature gas sensing, Mater. Des. 122 (2017) 288–295.
[37] Y. Mun, S. Park, H. Ko, C. Lee, S. Lee, NO2 gas sensing properties of ZnO/ZnS core-shell nanowires, J. Korean Phys. Soc. 63 (2013) 1595–1600.
[38] C. Li, L.M. Yu, X.H. Fan, M.L. Yin, N. Nan, L. Cui, S. Ma, Y. Li, B. Zhang, Nucleation density and pore size tunable growth of ZnO nanowalls by a facile solution approach: Growth mechanism and NO2 gas sensing properties, RSC Adv. 10 (2020) 3319–3328.
[39] V.S. Kamble, R.K. Zemase, R.H. Gupta, B.D. Aghav, S.A. Shaikh, J.M. Pawara, S.K. Patil, S.T. Salunkhe, Improved toxic NO2 gas sensing response of Cu-doped ZnO thin-film sensors derived by simple co-precipitation route, Opt. Mater. 131 (2022) 112706.
Chapter 4.
[1] D.Z. Zhang, Z.M. Yang, Z.L. Wu, G.K. Dong, Metal-organic frameworks-derived hollow zinc oxide/cobalt oxide nanoheterostructure for highly sensitive acetone sensing, Sens. Actuator B-Chem. 283 (2019) 42–51.
[2] Y. Hong, C.H. Kim, J. Shin, K.Y. Kim, J.S. Kim, C.S. Hwang, J.H. Lee, Highly selective ZnO gas sensor based on MOSFET having a horizontal floating-gate, Sens. Actuator B-Chem. 232 (2016) 653–659.
[3] A. Nasriddinov, T. Shatalova, S. Maksimov, X.G. Li, M. Rumyantseva, Humidity effect on low-temperature NH3 sensing behavior of In2O3/rGO composites under UV activation, Sensors 23 (2023) 1517.
[4] L.Y. Jian, C.T. Lee, H.Y. Lee, Performance improvement of NO2; gas sensor using rod-patterned tantalum pentoxide-alloyed indium oxide sensing membranes, IEEE Sens. J. 21 (2021) 2134–2139.
[5] M. Modak, S. Rane, S. Jagtap, WO3: a review of synthesis techniques, nanocomposite materials and their morphological effects for gas sensing application, Bull. Mat. Sci. 46 (2023) 28.
[6] B. Lei, H.W. Zhang, Q. Zhao, W.W. Liu, Y. Wei, Y.Y. Lu, T.T. Xiao, J.L. Kong, W.P. Cai, Facile synthesis of ZnO/WO3 nanocomposite porous films for high-performance gas sensing of multiple VOCs, Nanomaterials 13 (2023) 733.
[7] B. Zhang, H.J. Lin, H.Y. Gao, X.X. Lu, C.Y. Nam, P.X. Gao, Perovskite-sensitized β-Ga2O3 nanorod arrays for highly selective and sensitive NO2 detection at high temperature, J. Mater. Chem. A 8 (2020) 10845–10854.
[8] S. Jang, S. Jung, J. Kim, F. Ren, S.J. Pearton, K.H. Baik, Hydrogen sensing characteristics of Pt schottky diodes on ("2" ̅01) and (010) Ga2O3 single crystals, ECS J. Solid State Sci. Technol. 7 (2018) Q3180–Q3182.
[9] Q.T. Li, W. Zeng, Y.Q. Li, Metal oxide gas sensors for detecting NO2 in industrial exhaust gas: recent developments, Sens. Actuators B Chem. 359 (2022) 131579.
[10] T.T. Dai, Z.H. Deng, M. Li, S.M. Wang, M.X. Chen, G. Meng, Voltage driven chemiresistor with ultralow power consumption based on self-heating bridged WO3 nanowires, Nanoscale 15 (2023) 2162–2170.
[11] K.G. Krishna, S. Parne, N. Pothukanuri, V. Kathirvelu, S. Gandi, D. Joshi, Nanostructured metal oxide semiconductor-based gas sensors: a comprehensive review, Sens. Actuator A-Phys. 341 (2022) 113578.
[12] H.F. Chai, Z.C. Zheng, K.W. Liu, J.Y. Xu, K.D. Wu, Y.F. Luo, H.L. Liao, M. Debliquy, C. Zhang, Stability of metal oxide semiconductor gas sensors: A review, IEEE Sens. J. 22 (2022) 5470–5481.
[13] K.D. Wu, M. Debliquy, C. Zhang, Metal-oxide-semiconductor resistive gas sensors for fish freshness detection, Compr. Rev. Food. Sci. Food Saf. 22 (2023) 913–945.
[14] S.R. Sriram, S. Parne, V.S.C.S. Vaddadi, D. Edla, P. Nagaraju, R.R. Avala, V. Yelsani, U.B. Sontu, Nanostructured WO3 based gas sensors: a short review, Sens. Rev. 41 (2021) 406–424.
[15] X.L. Kang, S. Yip, Y. Meng, W. Wang, D.J. Li, C.T. Liu, J.C. Ho, High-performance electrically transduced hazardous gas sensors based on low-dimensional nanomaterials, Nanoscale Adv. 3 (2021) 6254–6270.
[16] T. Murugesan, R.R. Kumar, A.K. Anbalagan, C.H. Lee, H.N. Lin, Interlinked polyaniline/ZnO nanorod composite for selective NO2 gas sensing at room temperature, ACS Appl. Nano Mater. 5 (2022) 4921–4930.
[17] L.Z. Chen, Q.B. Gong, Z. Chen, Preparation and application of ultra-thin two dimensional MOF nanomaterials, Prog. Chem. 33 (2021) 1280–1292.
[18] Q.J. Wang, X.Y. Kou, C. Liu, L.J. Zhao, T.T. Lin, F.M. Liu, X.L. Yang, J. Lin, G.Y. Lu, Hydrothermal synthesis of hierarchical CoO/SnO2 nanostructures for ethanol gas sensor, J. Colloid Interface Sci. 513 (2018) 760–766.
[19] J.H. Bang, M.S. Choi, A. Mirzaei, Y.J. Kwon, S.S. Kim, T.W. Kim, H.W. Kim, Selective NO2 sensor based on Bi2O3 branched SnO2 nanowires, Sens. Actuator B-Chem. 274 (2018) 356–369.
[20] A. Katoch, J.H. Kim, Y.J. Kwon, H.W. Kim, S.S. Kim, Bifunctional sensing mechanism of SnO2-ZnO composite nanofibers for drastically enhancing the sensing behavior in H2 gas, ACS Appl. Mater. Interfaces 7 (2015) 11351–11358.
[21] J.S. Kim, S.Y. Kwon, J.Y. Lee, S.D. Kim, D. Kim, H. Kim, N. Jang, J.J. Wang, D.G. Jung, J.Y. Lee, M.M. Han, S.H. Kong, ZnO/graphene heterostructure for electrical interaction and application for CO2 gas sensing, Jpn. J. Appl. Phys. 62 (2023) SG1015.
[22] D.L. Li, J.F. Lu, X.J. Zhang, D.F. Jin, H.X. Jin, Engineering of ZnO/rGO towards NO2 gas detection: ratio modulated sensing type and heterojunction determined response, Nanomaterials 13 (2023) 917.
[23] W. Ding, N. Ansari, Y.H. Yang, K. Bachagha, Superiorly sensitive and selective H2 sensor based on p-n heterojunction of WO3-CoO nanohybrids and its sensing mechanism, Int. J. Hydrog. Energy 46 (2021) 28823–28837.
[24] M. Chelu, P. Chesler, M. Anastasescu, C. Hornoiu, D. Mitrea, I. Atkinson, C. Brasoveanu, C. Moldovan, G. Craciun, M. Gheorghe, M. Gartner, ZnO/NiO heterostructure-based microsensors used in formaldehyde detection at room temperature: Influence of the sensor operating voltage, J. Mater. Sci.-Mater. Electron. 33 (2022) 19998–20011.
[25] Y.Y. Zhao, X. Lai, P. Deng, Y.X. Nie, Y. Zhang, L.L. Xing, X.Y. Xue, Pt/ZnO nanoarray nanogenerator as self-powered active gas sensor with linear ethanol sensing at room temperature, Nanotechnology 25 (2014) 115502.
[26] S. Zeb, X.J. Peng, Y.S. Shi, J.H. Su, J.H. Sun, M.M. Zhang, G.X. Sun, Y. Nie, Y. Cui, X.C. Jiang, Bimetal Au-Pd decorated hierarchical WO3 nanowire bundles for gas sensing application, Sens. Actuator B-Chem. 334 (2021) 129584.
[27] D.V. Ponnuvelu, J. Dhakshinamoorthy, A.K. Prasad, S. Dhara, M. Kamruddin, B. Pullithadathil, Geometrically controlled Au decorated ZnO heterojunction nanostructures for NO2 detection, ACS Appl. Nano Mater. 3 (2020) 5898–5909.
[28] X.X. Chen, Y.B. Shen, X.X. Zhong, T.T. Li, S.K. Zhao, P.F. Zhou, C. Han, D.Z. Wei, Y.S. Shen, Synthesis of ZnO nanowires/Au nanoparticles hybrid by a facile one-pot method and their enhanced NO2 sensing properties, J. Alloy. Compd. 783 (2019) 503–512.
[29] D.K. Li, Y.W. Li, X.H. Wang, G. Sun, J.L. Cao, Y. Wang, Surface modification of In2O3 porous nanospheres with Au single atoms for ultrafast and highly sensitive detection of CO, Appl. Surf. Sci. 613 (2023) 155987.
[30] T.H. Yeh, S.Y. Chu, H.Y. Lee, C.T. Lee, Performance improvement of nitrogen dioxide gas sensors based on novel p-n heterojunction gold black/VOx bi-sensing membranes, Mater. Sci. Semicond. Process 115 (2020) 105125.
[31] S.Y. Chu, M.J. Wu, T.H. Yeh, C.T. Lee, H.Y. Lee, Investigation of high-sensitivity NO2 gas sensors with Ga2O3 nanorod sensing membrane grown by hydrothermal synthesis method, Nanomaterials 13 (2023) 1064.
[32] A. Gurlo, N. Bârsan, M. Ivanovskaya, U. Weimar, W. Göpel, In2O3 and MoO3–In2O3 thin film semiconductor sensors: interaction with NO2 and O3, Sens. Actuator B-Chem. 47 (1998) 92–99.
[33] W.W. Wang, D.Y. Wang, X.X. Zhang, C.Q. Yang, D.Z. Zhang, Self-powered nitrogen dioxide sensor based on Pd decorated ZnO/MoSe2 nanocomposite driven by triboelectric nanogenerator, Nanomaterials 12 (2022) 4274.
[34] G. Mathankumar, P. Bharathi, M.K. Mohan, J. Archana, S. Harish, M. Navaneethan, Defect manipulation of WO3 nanostructures by yttrium for ultra-sensitive and highly selective NO2 detection, Sens. Actuator B-Chem. 353 (2022) 131057.
[35] C. Sivakumar, G.H. Tsai, P.F. Chung, B. Balraj, Y.F. Lin, M.S. Ho, High-quality single-crystalline β-Ga2O3 nanowires: synthesis to nonvolatile memory applications, Nanomaterials 11 (2021) 2013.
[36] S. Peters, S. Peredkov, M. Neeb, W. Eberhardt, M. Al-Hada, Size-dependent XPS spectra of small supported Au-clusters, Surf. Sci. 608 (2013) 129–134.
[37] N.M. Figueiredo, N.J.M. Carvalho, A. Cavaleiro, An XPS study of Au alloyed Al–O sputtered coatings, Appl. Surf. Sci. 257 (2011) 5793–5798.
[38] M. Bonyani, S.M. Zebarjad, K. Janghorban, J.Y. Kim, H.W. Kim, S.S. Kim, Au sputter-deposited ZnO nanofibers with enhanced NO2 gas response, Sens. Actuator B-Chem. 372 (2022) 132636.
[39] H.Y. Lin, J.H. Wang, S.Q. Xu, Q. Zhang, Y.Q. Cheng, D. Han, H.T. Wang, K. Zhuo, Au-WO3 nanowire-based electrodes for NO2 sensing, ACS Appl. Nano Mater. 5 (2022) 14311–14319.
[40] M.Y. Kim, J.Y. Hwang, A. Mirzaei, S.W. Choi, S.I. Kim, H.S. Kim, S.J. Kim, J.W. Roh, M.S. Choi, K.H. Lee, S.Y. Lee, C. Jin, NO2 gas sensing properties of Ag-functionalized porous ZnO sheets, Adsorpt. Sci. Technol. 2023 (2023) 9021169.
[41] Z.P. Yin, X.M. Wang, F.Z. Sun, X.H. Tong, C. Zhu, Q.Y. Lv, D. Ye, S. Wang, W. Luo, Y.A. Huang, Aligned hierarchical Ag/ZnO nano-heterostructure arrays via electrohydrodynamic nanowire template for enhanced gas-sensing properties, Sci Rep 7 (2017) 12206.
[42] W.J. Zhao, R.T. Yan, H. Li, K.L. Ding, Y.S. Chen, D. Xu, Highly sensitive NO2 gas sensor with a low detection limit based on Pt-modified MoS2 flakes, Mater. Lett. 330 (2023) 133386.
[43] S.F. Zhao, G.J. Wang, J.C. Liao, S.S. Lv, Z.N. Zhu, Z.C. Li, Vertically aligned MoS2/ZnO nanowires nanostructures with highly enhanced NO2 sensing activities, Appl. Surf. Sci. 456 (2018) 808–816.
Chapter 5.
[1] L.Y. Zhu, L.X Ou, L.W Mao, X.Y. Wu, Y.P. Liu, H.L. Lu, Advances in noble metal-decorated metal oxide nanomaterials for chemiresistive gas sensors: overview, Nano-Micro Lett. 15 (2023) 89.
[2] K.L. Hu, Y.P. Yang, Y.J. Hu, W. Zeng, Y. Zhang, M.W. Wang, CuO surface doped In2O3/CeO2 nanofibers for ppb-ppm level carbon monoxide gas detection in low-temperature, Sens. Actuator B-Chem. 376 (2023) 132984.
[3] X.S. Cui, Z.R. Lu, Z.C. Wang, W. Zeng, Q. Zhou, Highly sensitive SF6 decomposition byproducts sensing platform based on CuO/ZnO heterojunction nanofibers, Chemosensors 11 (2023) 58.
[4] W.W. Meng, M. Tian, L. Dai, L. Wang, Y.G. Liu, H.Z. Zhou, Z.X. He, Y.H. Li, Impedimetric-type NO2 sensor based on the p-NiO/n-NiNb2O6 heterojunction sensing electrode, Sens. Actuator B-Chem. 371 (2022) 132604.
[5] M. Chelu, P. Chesler, M. Anastasescu, C. Hornoiu, D. Mitrea, I. Atkinson, C. Brasoveanu, C. Moldovan, G. Craciun, M. Gheorghe, M. Gartner, ZnO/NiO heterostructure-based microsensors used in formaldehyde detection at room temperature: Influence of the sensor operating voltage, J. Mater. Sci.-Mater. Electron. 33 (2022) 19998–20011.
[6] W. Ding, N. Ansari, Y.H. Yang, K. Bachagha, Superiorly sensitive and selective H2 sensor based on p-n heterojunction of WO3-CoO nanohybrids and its sensing mechanism, Int. J. Hydrog. Energy 46 (2021) 28823–28837.
[7] Q.J. Wang, X.Y. Kou, C. Liu, L.J. Zhao, T.T. Lin, F.M. Liu, X.L. Yang, J. Lin, G.Y. Lu, Hydrothermal synthesis of hierarchical CoO/SnO2 nanostructures for ethanol gas sensor, J. Colloid Interface Sci. 513 (2018) 760–766.
[8] J.Y. Han, D.H. Kong, W.R.; Zhou, Y.B. Gao, Y. Gao, G.N. Liu, F.M. Liu, C.G. Wang, P. Sun, G.Y. Lu, Variable dimensional structure and interface design of In2O3/rGO nanocomposites with oxygen vacancy for enhancing NO2 sensing performance, Sens. Actuator B-Chem. 371 (2022) 132596.
[9] M.N. Norizan, N. Abdullah, N.A. Halim, S.Z.N. Demon, I.S. Mohamad, Heterojunctions of rGO/metal oxide nanocomposites as promising gas-sensing materials-a review, Nanomaterials 12 (2022) 2278.
[10] Q.A. Drmosh, A.H. Hendi, M.K. Hossain, Z.H. Yamani, R.A. Moqbel, A. Hezam, M. Gondal, UV-activated gold decorated rGO/ZnO heterostructured nanocomposite sensor for efficient room temperature H2 detection, Sens. Actuator B-Chem. 290 (2019) 666–675.
[11] Q. Sun, K. Wu, J. Zhang, J.W. Sheng, Construction of ZnFe2O4/rGO composites as selective magnetically recyclable photocatalysts under visible light irradiation, Nanotechnology 30 (2019) 315706.
[12] W.G. Kim, Y.J. Tak, B.D. Ahn, T.S. Jung, K.B. Chung, H.J. Kim, High-pressure gas activation for amorphous indium-gallium-zinc-oxide thin-film transistors at 100 °C, Sci. Rep. 6 (2016) 23039.
[13] P. Koscielniak, A. Grzeszczak, J. Szuber, XPS and AFM studies of surface chemistry and morphology of In2O3 ultrathin films deposited by rheotaxial growth and vacuum oxidation after air exposure, Cryst. Res. Technol. 50 (2015) 884–890.
[14] X. Geng, P.F. Lu, C. Zhang, D. Lahem, M.G. Olivier, M. Debliquy, Room-temperature NO2 gas sensors based on rGO@ZnO(1-x) composites: Experiments and molecular dynamics simulation, Sens. Actuator B-Chem. 282 (2019) 609–702.
[15] C. Rodwihok, D. Wongratanaphisan, Y.L.T. Ngo, M. Khandelwal, S.H. Hur, J.S. Chung, Effect of GO additive in ZnO/rGO nanocomposites with enhanced photosensitivity and photocatalytic activity, Nanomaterials 9 (2019) 1441.
[16] V.V. Sysoev, I. Kiselev, M. Frietsch, J. Goschnick, Temperature gradient effect on gas discrimination power of a metal-oxide thin-film sensor microarray, Sensors 4 (2004) 37–46.
[17] J.J. Ding, H.F. Dai, H.X. Chen, Y.X. Jin, H.W. Fu, B. Xiao, Highly sensitive ethylene glycol gas sensor based on ZnO/rGO nanosheets, Sens. Actuator B-Chem. 372 (2022) 132655.
[18] T. Salehi, A. Taherizadeh, A. Bahrami, A. Allafchian, V. Ghafarinia, Toward a highly functional hybrid ZnO Nanofiber-rGO gas sensor, Adv. Eng. Mater. 22 (2020) 2000005.
[19] V. Anand, A. Sakthivelu, K.D.A. Kumar, S. Valanarasu, V. Ganesh, M. Shkir, S. AlFaify, H. Algarni, Rare earth Eu3+ co-doped AZO thin films prepared by nebulizer spray pyrolysis technique for optoelectronics, J. Sol Gel Sci. Technol. 86 (2018) 293–304.
[20] F.B. Gu, R. Nie, D.M. Han, Z.H. Wang, In2O3-graphene nanocomposite based gas sensor for selective detection of NO2 at room temperature, Sens. Actuator B-Chem. 219 (2015) 94–99.
[21] Jyoti, G.D. Varma, Enhanced room temperature sensitivity of Ag-CuO nanobrick/reduced graphene oxide composite for NO2, J. Alloy. Compd. 806 (2019) 1469–1480.
[22] X.Q. Jie, D.W. Zeng, J. Zhang, K. Xu, J.J. Wu, B.K. Zhu, C.S. Xie, Graphene-wrapped WO3 nanospheres with room-temperature NO2 sensing induced by interface charge transfer, Sens. Actuator B-Chem. 220 (2015) 201–209.
[23] Z.W. Chen, H.J. Guo, F.S. Zhang, X.W. Li, J.B. Yu, X.P. Chen, Porous ZnO/rGO nanosheet-based NO2 gas sensor with high sensitivity and ppb-level detection limit at room temperature, Adv. Mater. Interfaces 8 (2021) 2101511.
[24] P.J. Cao, Y.Z. Cai, D. Pawar, S. Han, W.Y. Xu, M. Fang, X.K. Liu, Y.X. Zeng, W.J. Liu, Y.M. Lu, D.L. Zhu, Au@ZnO/rGO nanocomposite-based ultra-low detection limit highly sensitive and selective NO2 gas sensor, J. Mater. Chem. C 10 (2022) 4295–4305.
[25] S.L. Bai, X. Sun, N. Han, X. Shu, J.L. Pan, H.P. Guo, S.H. Liu, Y.J. Feng, R.X. Luo, D.Q. Li, A.F. Chen, rGO modified nanoplate-assembled ZnO/CdO junction for detection of NO2, J. Hazard. Mater. 394 (2020) 121832.
校內:2028-07-24公開