簡易檢索 / 詳目顯示

研究生: 朱紹瑜
Chu, Shao-Yu
論文名稱: 氧化鎵基二氧化氮氣體感測器之特性研究
Investigated performance of Ga2O3-based NO2 gas sensors
指導教授: 李欣縈
Lee, Hsin-Ying
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 118
中文關鍵詞: 氧化鎵黑金奈米粒子水熱合成法二氧化氮氣體感測器奈米柱還原型氧化石墨烯
外文關鍵詞: gallium oxide, gold black nanoparticle, hydrothermal synthesis method, NO2 gas sensor, nanorod, reduced graphene oxide
ORCID: 0000-0001-5845-9322
相關次數: 點閱:97下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Abstract (in Chinese) I Abstract (in English) IV 致謝 VIII Contacts X Table captions XIII Figure captions XIV Chapter 1 Introduction 1 1.1 Background and motivation 1 1.2 Overview of this dissertation 2 1.3 References 6 Chapter 2 Theory 10 2.1 Gas sensors 10 2.1.1 Gas adsorption mechanism 10 2.1.2 The principle of a Schottky junction in gas sensor 13 2.1.3 Homojunctions and heterojunctions for gas sensor 14 2.1.4 Activation energy 17 2.1.5 Responsivity of gas sensors 18 2.1.6 The response time and recovery time of gas sensors 18 2.2 References 20 Chapter 3 Investigation of high-sensitivity NO2 gas sensors with Ga2O3 nanorod sensing membrane grown by hydrothermal synthesis method. 28 3.1 Introduction 28 3.2 Experiment 30 3.3 Experimental results and discussion 32 3.4 Summary 40 3.5 References 43 Chapter 4 Sensing mechanism and characterization of NO2 gas sensors using gold-black nanoparticles-decorated Ga2O3 nanorod sensing membranes. 58 4.1 Introduction 58 4.2 Experiment 60 4.3 Experimental results and discussion 64 4.4 Summary 71 Chapter 5 Enhancing NO2 gas sensor performance of hydrothermally synthesized Ga2O3 nanorod sensing membrane with rGO decoration 87 5.1 Introduction 87 5.2 Experiment 88 5.3 Experimental results and discussion 90 5.4 Summary 98 5.5 References 100 Chapter 6 Conclusion and future work 110 Appendix A:Publications 114 Journal Publications 114 Conference Proceedings 116

    Chapter 1.
    [1] C.L. Wang, J.C. Zhang, S.R. Xu, C.F. Zhang, Q. Feng, Y.C. Zhang, J. Ning, S.L. Zhao, H. Zhou, Y. Hao, Progress in state-of-the-art technologies of Ga2O3 devices. J. Phys. D-Appl. Phys. 54 (2021) 243001.
    [2] M.A. Mastro, A. Kuramata, J. Calkins, J. Kim, F. Ren, S.J. Peartong, Opportunities and future directions for Ga2O3, ECS J. Solid State Sci. Technol. 6 (2017) 356–359.
    [3] S.J. Pearton, J.C. Yang, P.H. Cary, F. Ren, J. Kim, M.J. Tadjer, M.A. Mastro, A review of Ga2O3 materials, processing, and devices, Appl. Phys. Rev. 5 (2018) 011301.
    [4] J.H. Zhang, S.J. Jiao, D.B. Wang, S.Y. Gao, J.Z. Wang, L.C. Zhao, Nano tree-like branched structure with α-Ga2O3 covered by gamma-Al2O3 for highly efficient detection of solar-blind ultraviolet light using self-powered photoelectrochemical method, Appl. Surf. Sci. 541 (2021) 148380.
    [5] H.W. Xue, Q.M. He, G.Z. Jian, S.B. Long, T. Pang, M. Liu, An overview of the ultrawide bandgap Ga2O3 semiconductor-based schottky barrier diode for power electronics application, Nanoscale Res. Lett. 13 (2018) 290.
    [6] N.S. Jamwal, A. Kiani, Gallium oxide nanostructures: a review of synthesis, properties and applications, Nanomaterials 12 (2022) 2061.
    [7] T. Zhang, Y.F. Li, Q. Cheng, Z.G. Hu, J.B. Ma, Y.X. Yao, C.X. Cui, Y. Zuo, Q. Feng, Y.C. Zhang, H. Zhou, J. Ning, C.F. Zhang, J.C. Zhang, Y. Hao, Research on the crystal phase and orientation of Ga2O3 hetero-epitaxial film, 159 (2021) 107053.
    [8] T. Zhang, Y.F. Li, Y.C. Zhang, Q. Feng, J. Ning, C.F. Zhang, J.C. Zhang, Y. Hao, Investigation of β-Ga2O3 thin films grown on epi-GaN/sapphire(0001) substrates by low pressure MOCVD, J. Alloy. Compd. 859 (2021) 157810.
    [9] T. Hadamek, A.B. Posadas, F. Al-Quaiti, D.J. Smith, M.R. McCartney, A.A. Demkov, β-Ga2O3 on Si (001) grown by plasma-assisted MBE with gamma-Al2O3 (111) buffer layer: Structural characterization, AIP Adv. 11 (2021) 045209.
    [10] C.X. Xu, L.Y. Shen, H. Liu, X.H. Pan, Z.Z. Ye, High-quality β-Ga2O3 films with influence of growth temperature by pulsed laser deposition for solar-blind photodetectors, J. Electron. Mater. 50 (2021) 2043–2048.
    [11] E. Vega, S.B. Isukapati, T.N. Oder, Microstructure and optical properties of sputter-deposited Ga2O3 films, J. Vac. Sci. Technol. A 39 (2021) 033412.
    [12] S.H. Lee, K.M. Lee, S.W. Lee, Influences of process temperature on a phase of Ga2O3 thin films grown by atomic layer deposition on sapphire, Bull. Korean Chem. Soc. 41 (2020) 1190–1193.
    [13] H. Ryou, T.H. Yoo, Y. Yoon, I.G. Lee, M. Shin, J. Cho, B.J. Cho, W.S. Hwang, Hydrothermal synthesis and photocatalytic property of Sn-doped β-Ga2O3 nanostructure, ECS J. Solid State Sci. Technol. 9 (2020) 045009.

    Chapter 2.
    [1] S.S. Shendage, V.L. Patil, S.P. Patil, S.A.Vanalakar, J.L. Bhosale, J.H. Kim, P.S. Patil, NO2 sensing properties of porous fibrous reticulated WO3 thin films, J. Anal. Appl. Pyrolysis 125 (2017) 9–16.
    [2] D.L. Kamble, N.S. Harale, V.L. Patil, P.S. Patil, L.D. Kadam, Characterization and NO2 gas sensing properties of spray pyrolyzed SnO2 thin films, J. Anal. Appl. Pyrolysis 127 (2017) 38–46.
    [3] A.Z. Sadek, S. Choopun, W. Wlodarski, S.J. Ippolito, K. Kalantar-zadeh, Characterization of ZnO nanobelt-based gas sensor for H2, NO2, and hydrocarbon sensing, IEEE Sens. J. 7 (2007) 919–924.
    [4] Z.U. Abideen, J.H. Kim, J.H. Lee, J.Y. Kim, A. Mirzaei, H.W. Kim, S.S. Kim, Electrospun metal oxide composite nanofibers gas sensors: a review, J. Korean Ceram. Soc. 54 (2017) 366–379.
    [5] Q.M. He, W.X. Mu, H. Dong, S.B. Long, Z.T. Jia, H.B. Lv, Q. Liu, M.H. Tang, X.T. Tao, M. Liu, Schottky barrier diode based on β-Ga2O3 (100) single crystal substrate and its temperature-dependent electrical characteristics, Appl. Phys. Lett. 110 (2017) 093503.
    [6] Y. Kim, S.K. Kang, N.C. Oh, H.D. Lee, S.M. Lee, J. Park, H. Kim, Improved sensitivity in Schottky contacted two-dimensional MoS2 gas sensor, ACS Appl. Mater. Interfaces 11 (2019) 38902−38909.
    [7] T.Y. Wei, P.H. Yeh, S.Y. Lu, Z. Lin-Wang, Gigantic enhancement in sensitivity using Schottky contacted nanowire nanosensor, J. Am. Chem. Soc. 131 (2009) 17690−17695.
    [8] N.M. Hung, C.M. Hung, N.V. Duy, N.D. Hoa, H.S. Hong, T.K. Dang, N.N. Viet, L.V. Thong, P.H. Phuoc, N.V. Hieu, Significantly enhanced NO2 gas-sensing performance of nanojunction-networked SnO2 nanowires by pulsed UV-radiation, Sens. Actuator A Phys. 327 (2021) 112759.
    [9] J.H. Bang, M.S. Choi, A. Mirzaei, Y.J. Kwon, S.S. Kim, T.W. Kim, H.W. Kim, Selective NO2 sensor based on Bi2O3 branched SnO2 nanowires, Sens. Actuator B-Chem. 274 (2018) 356–369.
    [10] S. Park, S. Kim, H. Kheel, C. Lee, Oxidizing gas sensing properties of the n-ZnO/p-Co3O4 composite nanoparticle network sensor, Sens. Actuator B-Chem. 222 (2016) 1193–1200.
    [11] Y.Y. Zhao, X. Lai, P. Deng, Y.X. Nie, Y. Zhang, L.L. Xing, X.Y. Xue, Pt/ZnO nanoarray nanogenerator as self-powered active gas sensor with linear ethanol sensing at room temperature, Nanotechnology 25 (2014) 115502.
    [12] S. Zeb, X.J. Peng, Y.S. Shi, J.H. Su, J.H. Sun, M.M. Zhang, G.X. Sun, Y. Nie, Y. Cui, X.C. Jiang, Bimetal Au-Pd decorated hierarchical WO3 nanowire bundles for gas sensing application, Sens. Actuator B-Chem. 334 (2021) 129584.
    [13] D.V. Ponnuvelu, J. Dhakshinamoorthy, A.K. Prasad, S. Dhara, M. Kamruddin, B. Pullithadathil, Geometrically controlled Au decorated ZnO heterojunction nanostructures for NO2 detection, ACS Appl. Nano Mater. 3 (2020) 5898–5909.
    [14] X.X. Chen, Y.B. Shen, X.X. Zhong, T.T. Li, S.K. Zhao, P.F. Zhou, C. Han, D.Z. Wei, Y.S. Shen, Synthesis of ZnO nanowires/Au nanoparticles hybrid by a facile one-pot method and their enhanced NO2 sensing properties, J. Alloy. Compd. 783 (2019) 503–512.
    [15] D.K. Li, Y.W. Li, X.H. Wang, G. Sun, J.L. Cao, Y. Wang, Surface modification of In2O3 porous nanospheres with Au single atoms for ultrafast and highly sensitive detection of CO, Appl. Surf. Sci. 613 (2023) 155987.
    [16] M.L. Zhang, T. Ning, S.Y. Zhang, Z.M. Li, Z.H. Yuan, Q.X. Cao, Response time and mechanism of Pd modified TiO2 gas sensor, Mater. Sci. Semicond. Process 17 (2014) 149–154.
    [17] J.B.B. Rayappan, P. Srinivasan, Chemi-resistive sensing of methylamine species using twinned α-MoO3 nanorods: Role of grain features, activation energy and surface defects, Sens. Actuator B-Chem. 349 (2021) 130759.
    [18] A.C. Nwanya, P.R. Deshmukh, R.U. Osuji, M. Maaza, C.D. Lokhande, F.I. Ezema, Synthesis, characterization and gas-sensing properties of SILAR deposited ZnO-CdO nano-composite thin film, Sens. Actuator B-Chem. 206 (2015) 671–678.
    [19] A. Dey, Semiconductor metal oxide gas sensors: a review, Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 229 (2018) 206–217.
    [20] B. W. Shen, F. Li, Y.Z. Xie, J.T. Luo, P. Fan, A.H. Zhong, High performance ammonia gas sensor based on GaN honeycomb nanonetwork, Sens. Actuator A-Phys. 312 (2020) 112172.
    [21] Y.L. Wang, H.H. Pu, G.H. Lu, X.Y. Sui, J.H. Chen, Quantitative analysis of the synergistic effect of Au NPs on SnO2-rGO nanocomposites for room temperature hydrogen sensing, Phys. Chem. Chem. Phys. 23 (2021) 2377–2383.

    Chapter 3.
    [1] S.S. Shendage, V.L. Patil, S.P. Patil, S.A. Vanalakar, J.L. Bhosale, J.H. Kim, P.S. Patil, NO2 sensing properties of porous fibrous reticulated WO3 thin films, J. Anal. Appl. Pyrolysis 125 (2017) 9–16.
    [2] D.L. Kamble, N.S. Harale, V.L. Patil, P.S. Patil, L.D. Kadam, Characterization and NO2 gas sensing properties of spray pyrolyzed SnO2 thin films, J. Anal. Appl. Pyrolysis 127 (2017) 38–46.
    [3] J.B. Shankar, B.B. Rayappan, Gas sensing mechanism of metal oxides: the role of ambient atmosphere, type of semiconductor and gases-a review, Sci. Lett. J. 4 (2015) 126.
    [4] Y. Nagarjuna, J.C. Lin, S.C. Wang, W.T. Hsiao, Y.J. Hsiao, AZO-based ZnO nanosheet MEMS sensor with different Al concentrations for enhanced H2S gas sensing, Nanomaterials 11 (2021) 3377.
    [5] M.S. Wang, Y.C. Zhu, Q. Luo, C.X. Ge, G.W. Liu, G.J. Qiao, E.J. Kim, Below-room-temperature solution-grown ZnO porous nanosheet arrays with ppb-level NO2 sensitivity under intermittent UV irradiation, Appl. Surf. Sci. 566 (2021) 150750.
    [6] J. Zhang, X.H. Liu, G. Neri, N. Pinna, Nanostructured materials for room-temperature gas sensors, Adv. Mater. 28 (2016) 795–831.
    [7] H. Wu, Z. Ma, Z.X. Lin, H.Z. Song, S.C. Yan, Y. Shi, High-sensitive ammonia sensors based on tin monoxide nanoshells, Nanomaterials 9 (2019) 388.
    [8] S. Cao, N. Sui, P. Zhang, T.T. Zhou, J.C. Tu, T. Zhang, TiO2 nanostructures with different crystal phases for sensitive acetone gas sensors, J. Colloid Interface Sci. 607 (2022) 357–366.
    [9] W.H. Wang, L. Zhang, Y.L. Kang, F. Yu, Light-excited Ag-doped TiO2-CoFe2O4 heterojunction applied to toluene gas detection, Nanomaterials 11 (2021) 3261.
    [10] L.Y. Jian, C.T. Lee, H.Y. Lee, Performance improvement of NO2 gas sensor using rod-patterned tantalum pentoxide-alloyed indium oxide sensing membranes, IEEE Sens. J. 21 (2021) 2134–2139.
    [11] X. Liang, J. Zhang, L.Y. Du, M.Z. Zhang, Effect of resonant tunneling modulation on ZnO/In2O3 heterojunction nanocomposite in efficient detection of NO2 gas at room temperature, Sens. Actuators B Chem. 329 (2021) 129230.
    [12] A.V. Almaev, V.I. Nikolaev, N.N. Yakovlev, P.N. Butenko, S.I. Stepanov, A.I. Pechnikov, M.P. Scheglov, E.V. Chernikov, Hydrogen sensors based on Pt/α-Ga2O3:Sn/Pt structures, Sens. Actuators B Chem. 364 (2022) 131904.
    [13] A. Fzal, β-Ga2O3 nanowires and thin films for metal oxide semiconductor gas sensors: Sensing mechanisms and performance enhancement strategies, J. Mater. 5 (2019) 542–557.
    [14] S.J. Pearton, J.C. Yang, P.H. Cary, F. Ren, J. Kim, M.J. Tadjer, M.A. Mastro, A review of Ga2O3 materials, processing, and devices, Appl. Phys. Rev. 5 (2018) 011301.
    [15] J.H. Zhang, S.J. Jiao, D.B. Wang, S.Y. Gao, J.Z. Wang, L.C. Zhao, Nano tree-like branched structure with α-Ga2O3 covered by gamma-Al2O3 for highly efficient detection of solar-blind ultraviolet light using self-powered photoelectrochemical method, Appl. Surf. Sci. 541 (2021) 148380.
    [16] N. Vorobyeva, M. Rumyantseva, V. Platonov, D. Filatova, A. Chizhov, A. Marikutsa, I. Bozhev, A. Gaskov, Ga2O3(Sn) oxides for high-temperature gas sensors, Nanomaterials 11 (2021) 2938.
    [17] M. Bagheri, A.A. Khodadadi, A.R. Mahjoub, Y. Mortazavi, Strong effects of gallia on structure and selective responses of Ga2O3-In2O3 nanocomposite sensors to either ethanol, CO or CH4, Sens. Actuators B Chem. 220 (2015) 590–599.
    [18] Y. Yao, M.L. Yin, J.Q. Yan, S.Z. Liu, P-type sub-tungsten-oxide based urchin-like nanostructure for superior room temperature alcohol sensor, Appl. Surf. Sci. 441 (2018) 277–284.
    [19] D. Nunes, A. Pimentel, A. Goncalves, S. Pereira, R. Branquinho, P. Barquinha, E. Fortunato, R. Martins, Metal oxide nanostructures for sensor applications, Semicond. Sci. Technol. 34 (2019) 043001.
    [20] J. Wang, R.S. Chen, L. Xiang, S. Komarneni, Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: A review, Ceram. Int. 44 (2018) 7357–7377.
    [21] Y.P. Liu, L.Y. Zhu, P. Feng, C.C. Dang, M. Li, H.L. Lu, L.M. Gao, Bimetallic AuPt alloy nanoparticles decorated on ZnO nanowires towards efficient and selective H2S gas sensing, Sens. Actuators B Chem. 367 (2022) 132024.
    [22] S. Pokai, P. Limnonthakul, M. Horprathum, P. Eiamchai, V. Pattantsetakul, S. Limwichean, N. Nuntawong, S. Porntheeraphat, C. Chitichotpanya, Influence of seed layer thickness on well-aligned ZnO nanorods via hydrothermal method, Mater. Today 4 (2017) 6336–6341.
    [23] S.W. Hou, C.Y. Li, Aluminum-doped zinc oxide thin film as seeds layer effects on the alignment of zinc oxide nanorods synthesized in the chemical bath deposition, Thin Solid Films 605 (2016) 37–43.
    [24] H. Ghayour, H.R. Rezaie, S. Mirdamadi, A.A. Nourbakhsh, The effect of seed layer thickness on alignment and morphology of ZnO nanorods, Vaccum 86 (2011) 101–105.
    [25] B. Benhaoua, S. Abbas, A. Rahal, A. Benhaoua, M.S. Aida, Effect of film thickness on the structural, optical and electrical properties of SnO2: F thin films prepared by spray ultrasonic for solar cells applications, Superlattices Microstruct. 83 (2015) 78–88.
    [26] W.G. Kim, Y.J. Tak, B.D. Ahn, T.S. Jung, K.B. Chung, H.J. Kim, High-pressure gas activation for amorphous indium-gallium-zinc-oxide thin-film transistors at 100 °C, Sci. Rep. 6 (2016) 23039.
    [27] R. Pilliadugula, N.G. Krishnan, Gas sensing performance of GaOOH and β-Ga2O3 synthesized by hydrothermal method: A comparison, Mater. Res. Express 6 (2019) 025027.
    [28] V. Anand, A. Sakthivelu, K.D.A. Kumar, S. Valanarasu, V. Ganesh, M. Shkir, S. AlFaify, H. Algarni, Rare earth Eu3+ co-doped AZO thin films prepared by nebulizer spray pyrolysis technique for optoelectronics, J. Sol Gel Sci. Technol. 86 (2018) 293–304.
    [29] M. Kumar, T.N. Bhat, B. Roul, M.K. Rajpalke, A. Kalghatgi, S. Krupanidhi, Carrier concentration dependence of donor activation energy in n-type GaN epilayers grown on Si (111) by plasma-assisted MBE, Mater. Res. Bull. 47 (2012) 1306–1309.
    [30] S.Y. Chu, T.H. Yeh, C.T. Lee, H.Y. Lee, Mg-doped β-Ga2O3 films deposited by plasma-enhanced atomic layer deposition system for metal-semiconductor-metal ultraviolet C photodetectors, Mater. Sci. Semicond. Process. 142 (2022) 106471.
    [31] C.L. Zhu, Y.J. Chen, R.X. Wang, L.J. Wang, M.S. Cao, X.L. Shi, Synthesis and enhanced ethanol sensing properties of α-Fe2O3/ZnO heteronanostructures, Sens. Actuators B Chem. 140 (2009) 185–189.
    [32] M. Kumar, V.S. Bhati, S. Ranwa, J. Singh, M. Kumar, Pd/ZnO nanorods based sensor for highly selective detection of extremely low concentration hydrogen, Sci. Rep. 7 (2017) 236.
    [33] P.S. Zhang, G.F. Pan, B.Q. Zhang, J.L. Zhen, Y.C. Sun, High sensitivity ethanol gas sensor based on Sn-doped ZnO under visible light irradiation at low temperature, Mater. Res-ibero-am. J. 17 (2014) 817–822.
    [34] M.R. Mohammadi, D.J. Fray, Semiconductor TiO2-Ga2O3 thin film gas sensors derived from particulate sol-gel route, Acta Mater. 55 (2007) 4455–4466.
    [35] M.R. Wu, W.Z. Li, C.Y. Tung, C.Y. Huang, Y.H. Chiang, P.L. Liu, R.H. Horng, NO gas sensor based on ZnGa2O4 epilayer grown by metalorganic chemical vapor deposition, Sci. Rep. 9 (2019) 7459.
    [36] M. Shafiei, F. Hoshyargar, N. Motta, A.P. O'Mullane, Utilizing p-type native oxide on liquid metal microdroplets for low temperature gas sensing, Mater. Des. 122 (2017) 288–295.
    [37] Y. Mun, S. Park, H. Ko, C. Lee, S. Lee, NO2 gas sensing properties of ZnO/ZnS core-shell nanowires, J. Korean Phys. Soc. 63 (2013) 1595–1600.
    [38] C. Li, L.M. Yu, X.H. Fan, M.L. Yin, N. Nan, L. Cui, S. Ma, Y. Li, B. Zhang, Nucleation density and pore size tunable growth of ZnO nanowalls by a facile solution approach: Growth mechanism and NO2 gas sensing properties, RSC Adv. 10 (2020) 3319–3328.
    [39] V.S. Kamble, R.K. Zemase, R.H. Gupta, B.D. Aghav, S.A. Shaikh, J.M. Pawara, S.K. Patil, S.T. Salunkhe, Improved toxic NO2 gas sensing response of Cu-doped ZnO thin-film sensors derived by simple co-precipitation route, Opt. Mater. 131 (2022) 112706.

    Chapter 4.
    [1] D.Z. Zhang, Z.M. Yang, Z.L. Wu, G.K. Dong, Metal-organic frameworks-derived hollow zinc oxide/cobalt oxide nanoheterostructure for highly sensitive acetone sensing, Sens. Actuator B-Chem. 283 (2019) 42–51.
    [2] Y. Hong, C.H. Kim, J. Shin, K.Y. Kim, J.S. Kim, C.S. Hwang, J.H. Lee, Highly selective ZnO gas sensor based on MOSFET having a horizontal floating-gate, Sens. Actuator B-Chem. 232 (2016) 653–659.
    [3] A. Nasriddinov, T. Shatalova, S. Maksimov, X.G. Li, M. Rumyantseva, Humidity effect on low-temperature NH3 sensing behavior of In2O3/rGO composites under UV activation, Sensors 23 (2023) 1517.
    [4] L.Y. Jian, C.T. Lee, H.Y. Lee, Performance improvement of NO2; gas sensor using rod-patterned tantalum pentoxide-alloyed indium oxide sensing membranes, IEEE Sens. J. 21 (2021) 2134–2139.
    [5] M. Modak, S. Rane, S. Jagtap, WO3: a review of synthesis techniques, nanocomposite materials and their morphological effects for gas sensing application, Bull. Mat. Sci. 46 (2023) 28.
    [6] B. Lei, H.W. Zhang, Q. Zhao, W.W. Liu, Y. Wei, Y.Y. Lu, T.T. Xiao, J.L. Kong, W.P. Cai, Facile synthesis of ZnO/WO3 nanocomposite porous films for high-performance gas sensing of multiple VOCs, Nanomaterials 13 (2023) 733.
    [7] B. Zhang, H.J. Lin, H.Y. Gao, X.X. Lu, C.Y. Nam, P.X. Gao, Perovskite-sensitized β-Ga2O3 nanorod arrays for highly selective and sensitive NO2 detection at high temperature, J. Mater. Chem. A 8 (2020) 10845–10854.
    [8] S. Jang, S. Jung, J. Kim, F. Ren, S.J. Pearton, K.H. Baik, Hydrogen sensing characteristics of Pt schottky diodes on ("2" ̅01) and (010) Ga2O3 single crystals, ECS J. Solid State Sci. Technol. 7 (2018) Q3180–Q3182.
    [9] Q.T. Li, W. Zeng, Y.Q. Li, Metal oxide gas sensors for detecting NO2 in industrial exhaust gas: recent developments, Sens. Actuators B Chem. 359 (2022) 131579.
    [10] T.T. Dai, Z.H. Deng, M. Li, S.M. Wang, M.X. Chen, G. Meng, Voltage driven chemiresistor with ultralow power consumption based on self-heating bridged WO3 nanowires, Nanoscale 15 (2023) 2162–2170.
    [11] K.G. Krishna, S. Parne, N. Pothukanuri, V. Kathirvelu, S. Gandi, D. Joshi, Nanostructured metal oxide semiconductor-based gas sensors: a comprehensive review, Sens. Actuator A-Phys. 341 (2022) 113578.
    [12] H.F. Chai, Z.C. Zheng, K.W. Liu, J.Y. Xu, K.D. Wu, Y.F. Luo, H.L. Liao, M. Debliquy, C. Zhang, Stability of metal oxide semiconductor gas sensors: A review, IEEE Sens. J. 22 (2022) 5470–5481.
    [13] K.D. Wu, M. Debliquy, C. Zhang, Metal-oxide-semiconductor resistive gas sensors for fish freshness detection, Compr. Rev. Food. Sci. Food Saf. 22 (2023) 913–945.
    [14] S.R. Sriram, S. Parne, V.S.C.S. Vaddadi, D. Edla, P. Nagaraju, R.R. Avala, V. Yelsani, U.B. Sontu, Nanostructured WO3 based gas sensors: a short review, Sens. Rev. 41 (2021) 406–424.
    [15] X.L. Kang, S. Yip, Y. Meng, W. Wang, D.J. Li, C.T. Liu, J.C. Ho, High-performance electrically transduced hazardous gas sensors based on low-dimensional nanomaterials, Nanoscale Adv. 3 (2021) 6254–6270.
    [16] T. Murugesan, R.R. Kumar, A.K. Anbalagan, C.H. Lee, H.N. Lin, Interlinked polyaniline/ZnO nanorod composite for selective NO2 gas sensing at room temperature, ACS Appl. Nano Mater. 5 (2022) 4921–4930.
    [17] L.Z. Chen, Q.B. Gong, Z. Chen, Preparation and application of ultra-thin two dimensional MOF nanomaterials, Prog. Chem. 33 (2021) 1280–1292.
    [18] Q.J. Wang, X.Y. Kou, C. Liu, L.J. Zhao, T.T. Lin, F.M. Liu, X.L. Yang, J. Lin, G.Y. Lu, Hydrothermal synthesis of hierarchical CoO/SnO2 nanostructures for ethanol gas sensor, J. Colloid Interface Sci. 513 (2018) 760–766.
    [19] J.H. Bang, M.S. Choi, A. Mirzaei, Y.J. Kwon, S.S. Kim, T.W. Kim, H.W. Kim, Selective NO2 sensor based on Bi2O3 branched SnO2 nanowires, Sens. Actuator B-Chem. 274 (2018) 356–369.
    [20] A. Katoch, J.H. Kim, Y.J. Kwon, H.W. Kim, S.S. Kim, Bifunctional sensing mechanism of SnO2-ZnO composite nanofibers for drastically enhancing the sensing behavior in H2 gas, ACS Appl. Mater. Interfaces 7 (2015) 11351–11358.
    [21] J.S. Kim, S.Y. Kwon, J.Y. Lee, S.D. Kim, D. Kim, H. Kim, N. Jang, J.J. Wang, D.G. Jung, J.Y. Lee, M.M. Han, S.H. Kong, ZnO/graphene heterostructure for electrical interaction and application for CO2 gas sensing, Jpn. J. Appl. Phys. 62 (2023) SG1015.
    [22] D.L. Li, J.F. Lu, X.J. Zhang, D.F. Jin, H.X. Jin, Engineering of ZnO/rGO towards NO2 gas detection: ratio modulated sensing type and heterojunction determined response, Nanomaterials 13 (2023) 917.
    [23] W. Ding, N. Ansari, Y.H. Yang, K. Bachagha, Superiorly sensitive and selective H2 sensor based on p-n heterojunction of WO3-CoO nanohybrids and its sensing mechanism, Int. J. Hydrog. Energy 46 (2021) 28823–28837.
    [24] M. Chelu, P. Chesler, M. Anastasescu, C. Hornoiu, D. Mitrea, I. Atkinson, C. Brasoveanu, C. Moldovan, G. Craciun, M. Gheorghe, M. Gartner, ZnO/NiO heterostructure-based microsensors used in formaldehyde detection at room temperature: Influence of the sensor operating voltage, J. Mater. Sci.-Mater. Electron. 33 (2022) 19998–20011.
    [25] Y.Y. Zhao, X. Lai, P. Deng, Y.X. Nie, Y. Zhang, L.L. Xing, X.Y. Xue, Pt/ZnO nanoarray nanogenerator as self-powered active gas sensor with linear ethanol sensing at room temperature, Nanotechnology 25 (2014) 115502.
    [26] S. Zeb, X.J. Peng, Y.S. Shi, J.H. Su, J.H. Sun, M.M. Zhang, G.X. Sun, Y. Nie, Y. Cui, X.C. Jiang, Bimetal Au-Pd decorated hierarchical WO3 nanowire bundles for gas sensing application, Sens. Actuator B-Chem. 334 (2021) 129584.
    [27] D.V. Ponnuvelu, J. Dhakshinamoorthy, A.K. Prasad, S. Dhara, M. Kamruddin, B. Pullithadathil, Geometrically controlled Au decorated ZnO heterojunction nanostructures for NO2 detection, ACS Appl. Nano Mater. 3 (2020) 5898–5909.
    [28] X.X. Chen, Y.B. Shen, X.X. Zhong, T.T. Li, S.K. Zhao, P.F. Zhou, C. Han, D.Z. Wei, Y.S. Shen, Synthesis of ZnO nanowires/Au nanoparticles hybrid by a facile one-pot method and their enhanced NO2 sensing properties, J. Alloy. Compd. 783 (2019) 503–512.
    [29] D.K. Li, Y.W. Li, X.H. Wang, G. Sun, J.L. Cao, Y. Wang, Surface modification of In2O3 porous nanospheres with Au single atoms for ultrafast and highly sensitive detection of CO, Appl. Surf. Sci. 613 (2023) 155987.
    [30] T.H. Yeh, S.Y. Chu, H.Y. Lee, C.T. Lee, Performance improvement of nitrogen dioxide gas sensors based on novel p-n heterojunction gold black/VOx bi-sensing membranes, Mater. Sci. Semicond. Process 115 (2020) 105125.
    [31] S.Y. Chu, M.J. Wu, T.H. Yeh, C.T. Lee, H.Y. Lee, Investigation of high-sensitivity NO2 gas sensors with Ga2O3 nanorod sensing membrane grown by hydrothermal synthesis method, Nanomaterials 13 (2023) 1064.
    [32] A. Gurlo, N. Bârsan, M. Ivanovskaya, U. Weimar, W. Göpel, In2O3 and MoO3–In2O3 thin film semiconductor sensors: interaction with NO2 and O3, Sens. Actuator B-Chem. 47 (1998) 92–99.
    [33] W.W. Wang, D.Y. Wang, X.X. Zhang, C.Q. Yang, D.Z. Zhang, Self-powered nitrogen dioxide sensor based on Pd decorated ZnO/MoSe2 nanocomposite driven by triboelectric nanogenerator, Nanomaterials 12 (2022) 4274.
    [34] G. Mathankumar, P. Bharathi, M.K. Mohan, J. Archana, S. Harish, M. Navaneethan, Defect manipulation of WO3 nanostructures by yttrium for ultra-sensitive and highly selective NO2 detection, Sens. Actuator B-Chem. 353 (2022) 131057.
    [35] C. Sivakumar, G.H. Tsai, P.F. Chung, B. Balraj, Y.F. Lin, M.S. Ho, High-quality single-crystalline β-Ga2O3 nanowires: synthesis to nonvolatile memory applications, Nanomaterials 11 (2021) 2013.
    [36] S. Peters, S. Peredkov, M. Neeb, W. Eberhardt, M. Al-Hada, Size-dependent XPS spectra of small supported Au-clusters, Surf. Sci. 608 (2013) 129–134.
    [37] N.M. Figueiredo, N.J.M. Carvalho, A. Cavaleiro, An XPS study of Au alloyed Al–O sputtered coatings, Appl. Surf. Sci. 257 (2011) 5793–5798.
    [38] M. Bonyani, S.M. Zebarjad, K. Janghorban, J.Y. Kim, H.W. Kim, S.S. Kim, Au sputter-deposited ZnO nanofibers with enhanced NO2 gas response, Sens. Actuator B-Chem. 372 (2022) 132636.
    [39] H.Y. Lin, J.H. Wang, S.Q. Xu, Q. Zhang, Y.Q. Cheng, D. Han, H.T. Wang, K. Zhuo, Au-WO3 nanowire-based electrodes for NO2 sensing, ACS Appl. Nano Mater. 5 (2022) 14311–14319.
    [40] M.Y. Kim, J.Y. Hwang, A. Mirzaei, S.W. Choi, S.I. Kim, H.S. Kim, S.J. Kim, J.W. Roh, M.S. Choi, K.H. Lee, S.Y. Lee, C. Jin, NO2 gas sensing properties of Ag-functionalized porous ZnO sheets, Adsorpt. Sci. Technol. 2023 (2023) 9021169.
    [41] Z.P. Yin, X.M. Wang, F.Z. Sun, X.H. Tong, C. Zhu, Q.Y. Lv, D. Ye, S. Wang, W. Luo, Y.A. Huang, Aligned hierarchical Ag/ZnO nano-heterostructure arrays via electrohydrodynamic nanowire template for enhanced gas-sensing properties, Sci Rep 7 (2017) 12206.
    [42] W.J. Zhao, R.T. Yan, H. Li, K.L. Ding, Y.S. Chen, D. Xu, Highly sensitive NO2 gas sensor with a low detection limit based on Pt-modified MoS2 flakes, Mater. Lett. 330 (2023) 133386.
    [43] S.F. Zhao, G.J. Wang, J.C. Liao, S.S. Lv, Z.N. Zhu, Z.C. Li, Vertically aligned MoS2/ZnO nanowires nanostructures with highly enhanced NO2 sensing activities, Appl. Surf. Sci. 456 (2018) 808–816.

    Chapter 5.
    [1] L.Y. Zhu, L.X Ou, L.W Mao, X.Y. Wu, Y.P. Liu, H.L. Lu, Advances in noble metal-decorated metal oxide nanomaterials for chemiresistive gas sensors: overview, Nano-Micro Lett. 15 (2023) 89.
    [2] K.L. Hu, Y.P. Yang, Y.J. Hu, W. Zeng, Y. Zhang, M.W. Wang, CuO surface doped In2O3/CeO2 nanofibers for ppb-ppm level carbon monoxide gas detection in low-temperature, Sens. Actuator B-Chem. 376 (2023) 132984.
    [3] X.S. Cui, Z.R. Lu, Z.C. Wang, W. Zeng, Q. Zhou, Highly sensitive SF6 decomposition byproducts sensing platform based on CuO/ZnO heterojunction nanofibers, Chemosensors 11 (2023) 58.
    [4] W.W. Meng, M. Tian, L. Dai, L. Wang, Y.G. Liu, H.Z. Zhou, Z.X. He, Y.H. Li, Impedimetric-type NO2 sensor based on the p-NiO/n-NiNb2O6 heterojunction sensing electrode, Sens. Actuator B-Chem. 371 (2022) 132604.
    [5] M. Chelu, P. Chesler, M. Anastasescu, C. Hornoiu, D. Mitrea, I. Atkinson, C. Brasoveanu, C. Moldovan, G. Craciun, M. Gheorghe, M. Gartner, ZnO/NiO heterostructure-based microsensors used in formaldehyde detection at room temperature: Influence of the sensor operating voltage, J. Mater. Sci.-Mater. Electron. 33 (2022) 19998–20011.
    [6] W. Ding, N. Ansari, Y.H. Yang, K. Bachagha, Superiorly sensitive and selective H2 sensor based on p-n heterojunction of WO3-CoO nanohybrids and its sensing mechanism, Int. J. Hydrog. Energy 46 (2021) 28823–28837.
    [7] Q.J. Wang, X.Y. Kou, C. Liu, L.J. Zhao, T.T. Lin, F.M. Liu, X.L. Yang, J. Lin, G.Y. Lu, Hydrothermal synthesis of hierarchical CoO/SnO2 nanostructures for ethanol gas sensor, J. Colloid Interface Sci. 513 (2018) 760–766.
    [8] J.Y. Han, D.H. Kong, W.R.; Zhou, Y.B. Gao, Y. Gao, G.N. Liu, F.M. Liu, C.G. Wang, P. Sun, G.Y. Lu, Variable dimensional structure and interface design of In2O3/rGO nanocomposites with oxygen vacancy for enhancing NO2 sensing performance, Sens. Actuator B-Chem. 371 (2022) 132596.
    [9] M.N. Norizan, N. Abdullah, N.A. Halim, S.Z.N. Demon, I.S. Mohamad, Heterojunctions of rGO/metal oxide nanocomposites as promising gas-sensing materials-a review, Nanomaterials 12 (2022) 2278.
    [10] Q.A. Drmosh, A.H. Hendi, M.K. Hossain, Z.H. Yamani, R.A. Moqbel, A. Hezam, M. Gondal, UV-activated gold decorated rGO/ZnO heterostructured nanocomposite sensor for efficient room temperature H2 detection, Sens. Actuator B-Chem. 290 (2019) 666–675.
    [11] Q. Sun, K. Wu, J. Zhang, J.W. Sheng, Construction of ZnFe2O4/rGO composites as selective magnetically recyclable photocatalysts under visible light irradiation, Nanotechnology 30 (2019) 315706.
    [12] W.G. Kim, Y.J. Tak, B.D. Ahn, T.S. Jung, K.B. Chung, H.J. Kim, High-pressure gas activation for amorphous indium-gallium-zinc-oxide thin-film transistors at 100 °C, Sci. Rep. 6 (2016) 23039.
    [13] P. Koscielniak, A. Grzeszczak, J. Szuber, XPS and AFM studies of surface chemistry and morphology of In2O3 ultrathin films deposited by rheotaxial growth and vacuum oxidation after air exposure, Cryst. Res. Technol. 50 (2015) 884–890.
    [14] X. Geng, P.F. Lu, C. Zhang, D. Lahem, M.G. Olivier, M. Debliquy, Room-temperature NO2 gas sensors based on rGO@ZnO(1-x) composites: Experiments and molecular dynamics simulation, Sens. Actuator B-Chem. 282 (2019) 609–702.
    [15] C. Rodwihok, D. Wongratanaphisan, Y.L.T. Ngo, M. Khandelwal, S.H. Hur, J.S. Chung, Effect of GO additive in ZnO/rGO nanocomposites with enhanced photosensitivity and photocatalytic activity, Nanomaterials 9 (2019) 1441.
    [16] V.V. Sysoev, I. Kiselev, M. Frietsch, J. Goschnick, Temperature gradient effect on gas discrimination power of a metal-oxide thin-film sensor microarray, Sensors 4 (2004) 37–46.
    [17] J.J. Ding, H.F. Dai, H.X. Chen, Y.X. Jin, H.W. Fu, B. Xiao, Highly sensitive ethylene glycol gas sensor based on ZnO/rGO nanosheets, Sens. Actuator B-Chem. 372 (2022) 132655.
    [18] T. Salehi, A. Taherizadeh, A. Bahrami, A. Allafchian, V. Ghafarinia, Toward a highly functional hybrid ZnO Nanofiber-rGO gas sensor, Adv. Eng. Mater. 22 (2020) 2000005.
    [19] V. Anand, A. Sakthivelu, K.D.A. Kumar, S. Valanarasu, V. Ganesh, M. Shkir, S. AlFaify, H. Algarni, Rare earth Eu3+ co-doped AZO thin films prepared by nebulizer spray pyrolysis technique for optoelectronics, J. Sol Gel Sci. Technol. 86 (2018) 293–304.
    [20] F.B. Gu, R. Nie, D.M. Han, Z.H. Wang, In2O3-graphene nanocomposite based gas sensor for selective detection of NO2 at room temperature, Sens. Actuator B-Chem. 219 (2015) 94–99.
    [21] Jyoti, G.D. Varma, Enhanced room temperature sensitivity of Ag-CuO nanobrick/reduced graphene oxide composite for NO2, J. Alloy. Compd. 806 (2019) 1469–1480.
    [22] X.Q. Jie, D.W. Zeng, J. Zhang, K. Xu, J.J. Wu, B.K. Zhu, C.S. Xie, Graphene-wrapped WO3 nanospheres with room-temperature NO2 sensing induced by interface charge transfer, Sens. Actuator B-Chem. 220 (2015) 201–209.
    [23] Z.W. Chen, H.J. Guo, F.S. Zhang, X.W. Li, J.B. Yu, X.P. Chen, Porous ZnO/rGO nanosheet-based NO2 gas sensor with high sensitivity and ppb-level detection limit at room temperature, Adv. Mater. Interfaces 8 (2021) 2101511.
    [24] P.J. Cao, Y.Z. Cai, D. Pawar, S. Han, W.Y. Xu, M. Fang, X.K. Liu, Y.X. Zeng, W.J. Liu, Y.M. Lu, D.L. Zhu, Au@ZnO/rGO nanocomposite-based ultra-low detection limit highly sensitive and selective NO2 gas sensor, J. Mater. Chem. C 10 (2022) 4295–4305.
    [25] S.L. Bai, X. Sun, N. Han, X. Shu, J.L. Pan, H.P. Guo, S.H. Liu, Y.J. Feng, R.X. Luo, D.Q. Li, A.F. Chen, rGO modified nanoplate-assembled ZnO/CdO junction for detection of NO2, J. Hazard. Mater. 394 (2020) 121832.

    無法下載圖示 校內:2028-07-24公開
    校外:2028-07-24公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE