簡易檢索 / 詳目顯示

研究生: 陳智豪
Chen, Chih-Hao
論文名稱: 磁電彈楔形結構之面外分析
Antiplane Analysis of Magneto-Electro-Elastic Field in a Wedge
指導教授: 褚晴暉
Chue, Ching-Hwei
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 91
中文關鍵詞: 磁電彈楔形結構
外文關鍵詞: wedge, Magneto Electro Elastic
相關次數: 點閱:54下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本文中,利用梅林轉換求解單一磁壓電楔形結構在施加面外剪力負載、面內電負載與磁負載下的磁電彈場解, 型態的奇異性性質在此也將被探討。經由分析發現,奇異性階數會受到磁電彈場的物理量形式和特徵方程式的影響。結果顯示,奇異性階數的強度視楔形角與邊界條件而定。當楔形結構變為一半平面時,在邊界施加均勻分佈的剪力、電位移及磁感負載,作用範圍由楔形尖端開始,其奇異性將由原先的 型態轉變為 的型態。所求得之位移、電位、磁位、應力、電位移與磁感解析解可以退化為壓電楔形結構問題與彈性楔形結構問題。

    By using the Mellin transform, the singular magneto-electro-elastic (MEE) field of a wedge under antiplane shear load, inplane electrical load and inplane magnetic load is studied in this paper. The behavior of r--type singularity will also be discussed. The expressions of the physical quantities of the MEE field and the eigen-equations, which govern the singularity orders, are derived analytically in closed forms. The results show that the singularity orders depend strongly on the wedge angle and the boundary conditions. When one of the boundary edges is subjected to uniformly distributed shear force, electrical displacement and/or the magnetic induction starting from the apex of the wedge, the r--type singularity will be shifted to log(r)-type singularity if the wedge becomes a half-plane. The analytical expressions of the displacements, electrical potentials, magnetic potential, stresses, electrical displacements and magnetic inductance can be simplified to the degenerated problems such as the piezoelectric wedge problem, and the elastic wedge problem.

    目錄 摘要 Ⅰ 英文摘要 Ⅱ 目錄 Ⅲ 表目錄 Ⅵ 圖目錄 Ⅶ 符號說明 Ⅸ 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.3 研究方法 5 1.4 本文架構 6 第二章 理論基礎 7 2.1 磁電彈材料 7 2.2 本構方程式 9 2.3 奇異性階數 12 第三章 單一材料磁電彈楔形之面外奇異性分析 13 3.1 問題定義 13 3.2 基本公式與求解 15 3.3 退化為單一壓電材料 25 3.4 數值分析與結果 30 3.4.1 BaTiO3 – CoFe2O4 的材料係數 30 3.4.2 面外奇異性階數之探討 31 第四章 單一材料磁電彈楔形之磁電彈場分析 37 4.1 問題定義 37 4.2 基本公式與求解 39 4.2.1 面外集中剪力、面內集中電荷與磁感之負載 40 4.2.2 面外均勻分佈應力、面內均勻分佈電與磁之負載 56 4.3 數值分析與結果 64 4.3.1 面外位移場、面內電位場及面內磁位場之探討 64 4.3.2 面外應力場、面內電位移場及面內磁感場之探討 69 第五章 結論 73 參考文獻 75 附錄A 78 附錄B 81

    參考文獻

    [1] Tranter, C.J., 1948. “The use of the Mellin transform in finding the stress distribution in an infinite wedge”, Quarter Journal of Mechanics and Applied Mechanics, Vol. 1, pp. 125-130.
    [2] Williams, M.L., 1952. “Stress singularities resulting from various boundary conditions in angular corners of plates in extension”, Transactions of the ASME, Journal of Applied Mechanics, Vol. 74, pp. 526-528.
    [3] Bogy, D.B., 1968. “Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading”, Transactions of the ASME, Journal of Applied Mechanics, Vol. 35, pp. 460-466.
    [4] Ma, C.C., and Hour, B.L., 1989. “Analysis of dissimilar anisotropic wedge subjected to antiplane shear deformation”, International Journal of Solids and Structures, Vol. 25, pp. 1295-1309.
    [5] Van Suchtelen, J., 1972. “Product properties: a new application of composite materials”, Philips Research Reports, Vol. 27, pp. 28-37.
    [6] 黃錦煌,2002, “磁性技術手冊”,第34章:磁電材料及其應用, 金重勳主編, 中華民國磁性技術協會, 新竹.
    [7] Huang, J.H., and Kuo, W.S., 1997. “The analysis of piezoelectric piezomagnetic composite materials containing ellipsoidal inclusions”, Journal of Applied Physics, Vol. 81(3), pp. 1378-1386.
    [8] Xu, X.L., and Rajapakes, R.K.N.D., 2000. “On singularities in composite piezoelectric wedges and junctions”, International Journal of Solids and Structures, Vol. 37, pp. 3253-3275.
    [9] Zhang, T.Y., and Gao, C.F., 2004 “Fracture behavious of piezoelectric materials”, Theoretical and Applied Fracture Mechanics, Vol.41, pp. 339-379.
    [10] Chen, C.D., and Chue, C.H., 2003 “Singular electro-mechanical fields near the apex of a piezoelectric bonded wedge under antiplane shear”, International Journal of Solids and Structures, Vol. 40, pp. 6513-6526.
    [11] Chue, C.H., and Chen, C.D., 2003 “Antiplane stress singularities in a bimaterial piezoelectric wedge”, Archive of Applied Mechanics, Vol. 72, pp. 673-685.
    [12] Gao, C.F., Tong, P., and Zhang, T.Y., 2004 “Fracture mechanics for a mode Ⅲ crack in a magnetoelectroelastic solid”, International Journal of Solids and Structures, Vol. 41, pp. 6613-6629.
    [13] Yang, Y.Y., and Munz, D., 1995. “Stress distribution in a dissimilar materials joint for complex singular eigenvalues under thermal loading”, Journal of Thermal Stresses, Vol. 18, pp. 407-419.
    [14] Chue, C.H., and Liu, C.I., 2002. “Stress singularities in a bimaterial anisotropic wedge with arbitrary fiber orientation”, Composite Structures, Vol. 58, pp. 49-56.
    [15] Nan, C.W., 1994. “Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases”, Physical Revies B, Vol. 50(9), pp. 6082-6088.
    [16] Chen, Z.T., and Yu, S.W., 1997. “An efficient approach to tackle the anti-plane problems in piezoelectric media”, International Journal of fracture, Vol.84, L25-L29.
    [17] Chen, D.H., and Nisitani, Hironobu., 1993. “Logarithmic singular stress field in bonded wedges”, 日本機械學會論文集, Vol.59(567), pp. 5687-5693.
    [18] Chen, D.H., 1996. “Condition for occurrence of logarithmic stress singularity”, 日本機械學會論文集, Vol.62(599), pp. 1634-1642.
    [19] Liu, J.C., and Chue, C.H., 2005. “On the singularities in a biomaterial magneto-electro-elastic composite wedge under antiplane deformation”, Composite Structures, Vol. 72, pp. 254-265.
    [20] Chue, C.H., and Liu, J.C., 2005. “Magneto-electro-elastic antiplane analysis of a biomaterial BaTiO3-CoFe2O4 composite wedge with an interface crack”, Theoretical and Applied Fracture Mechanics, Vol.44, pp. 275-296.
    [21] 周卓明, 2003. “壓電力學”, 全華, 台北.
    [22] Tuma, J.J., 1979. “Engineering mathematics handbook”, Second Enlarged and Revised Edition.

    下載圖示 校內:立即公開
    校外:2006-06-27公開
    QR CODE