簡易檢索 / 詳目顯示

研究生: 郭柏辰
Kuo, Po-Chen
論文名稱: 利用金屬結構模擬光子拓樸絕緣體之拓樸相變與邊緣態
Simulating Topological Phase Transition and Edge States of Photonic Topological Insulators in Plasmonic Structures
指導教授: 張世慧
Chang, Shih-Hui
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 55
中文關鍵詞: 光子晶體光子拓樸絕緣體拓樸相變電漿子邊緣態
外文關鍵詞: photonic crystals, photonic topological insulators, topological phase transitions, plasmons, topological edge states, FDTD
相關次數: 點閱:120下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要 I Abstract III 誌謝 XII 目錄 XIII 圖目錄 XV 符號 XVIII 第一章 序論 1 1.1 前言 1 1.2 研究動機 4 1.3 本文內容 5 第二章 研究相關理論 6 2.1 光子晶體(Photonic crystal) 6 2.2 德汝德模型(Drude model) 6 2.3 晶格向量與倒晶格向量(Lattice vectors and reciprocal lattice vectors) 7 2.4 布里淵區(Brillouin zone) 9 2.5 霍爾效應(Hall effect) 12 2.6 量子霍爾效應(Quantum Hall effect) 13 2.7 霍爾丹模型(Haldane model) 15 2.8 量子自旋霍爾效應(Quantum spin Hall effect) 18 2.9 偽自旋(Pseudospin) 19 第三章 數值模擬方法 23 3.1 有限差分時域法 (Finite-Difference Time-Domain method) 23 3.2 摺積完美匹配層 (Convolutional Perfect Matching Layer, CPML) 25 3.3 週期性邊界條件(Periodic Boundary Condition) 26 3.4 Order N 28 第四章 研究結果與討論 29 4.1 介電質圓孔的週期性結構 29 4.2 介電質圓孔的能帶結構與模態 32 4.3 金屬圓柱的結構與能帶圖 37 4.4 金屬圓柱其他形狀的晶體結構 41 4.5 金屬圓柱的模態 43 4.6 金屬的拓樸邊緣態 46 第五章 結論與未來展望 49 5.1 結論 49 5.2 未來展望 49 參考文獻 51

    [1] E.Yablonovitch, “Photonic band-gap structures”, Journal of the Optical Society of America B, vol.10, issue 2, pp. 283-295 (1993)
    [2] E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic Band Structure The Face-Centered-Cubic Case”, Phys. Rev. Lett. 67, 2295 (1989)
    [3] Sajeev John et al, “Theory of fluorescence in photonic crystals”, Phys. Rev. A 65, 043808 (2002)
    [4] Kurt Busch and Sajeev John, “Photonic band gap formation in certain self-organizing systems”, Phys. Rev. E 58, 3896 (1998)
    [5] Steven G. Johnson, and J. D. Joannopoulos, “Introduction to Photonic Crystals : Bloch’s Theorem , Band Diagrams , and Gaps ( But No Defects )”, Phys. (2003)
    [6] E. Chow et al, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity”, Optics Letters vol.29, issue 10, pp. 1093-1095 (2004)
    [7] Dirk Englund et al, “General recipe for designing photonic crystal cavities”, Optics Express, vol.13, issue 16, pp. 5961-5975 (2005)
    [8] Jonathan C. Knight, “Photonic crystal fibres”, Nature, vol. 424, pp. 847–851 (2003)
    [9] Bo Li and Chengkuo Lee, “NEMS diaphragm sensors integrated with triple-nano-ring resonator”, Sensors and Actuators A: Physical, vol.172, issue 1, pp. 61-68 (2011)
    [10] Mikio Nakahara, “Geometry, Topology and Physics ”, Institute of Physics Publishing, London, pp. 140-187 (2003)
    [11] Alexander B. Khanikaev et al, “Photonic Topological Insulators”, Nature Materials, vol.12, pp. 233–239 (2013)
    [12] M. Z. Hasan and C. L. Kane, “Colloquium: Topological insulators”, Rev. Mod. Phys. 82, 3045 (2010)
    [13] Hongfei Wang et al, “Topological photonic crystals: a review”, Frontiers of Optoelectronics, vol.13, pp. 50–72 (2020)
    [14] Tomoki Ozawa et al, “Topological photonics”, Rev. Mod. Phys. 91, 015006 (2019)
    [15] Alexander B. Khanikaev and Gennady Shvets, “Two-dimensional topological photonics”, Nature Photonics vol.11, pp. 763–773 (2017)
    [16] Emerson M. Pugh and Norman Rostoker, “Hall Effect in Ferromagnetic Materials”, Rev. Mod. Phys. 25, 151 (1953)
    [17] K. S. Novoselov et al, “Room-Temperature Quantum Hall Effect in Graphene”, Science, vol.315, issue 5817, p. 1379 (2007)
    [18] Sougata Mardanya et al, “Dynamics of edge currents in a linearly quenched Haldane model”, Phys. Rev. B 97, 115443 (2018)
    [19] B. Andrei Bernevig and Shou-Cheng Zhang, “Quantum Spin Hall Effect”, Phys. Rev. Lett. 96, 106802 (2006)
    [20] Emil Prodan, “Robustness of the spin-Chern number”, Phys. Rev. B 80, 125327 (2009)
    [21] Long-Hua Wu and Xiao Hu, “Topological Properties of Electrons in Honeycomb Lattice with Detuned Hopping Energy”, Scientific Reports, vol.6, 24347 (2016)
    [22] Sabyasachi Barik et al, “Two-dimensionally confined topological edge states in photonic crystals”, New Journal of Physics, vol.18 (2016)
    [23] Gal Harari et al, “Topological insulator laser: Theory”, Science, vol.359, issue 6381 (2018)
    [24] Miguel A. Bandres et al, “Topological insulator laser: Experiments”, Science, vol.359, issue 6381 (2018)
    [25] Jian-Wen Dong et al, “Valley photonic crystals for control of spin and topology”, Nature Materials, vol.16, pp. 298–302 (2017)
    [26] Tzuhsuan Ma and Gennady Shvets, “All-Si valley-Hall photonic topological insulator”, New Journal of Physics, vol.18 (2016)
    [27] Xiaoxiao Wu et al, “Direct observation of valley-polarized topological edge states in designer surface plasmon crystals”, Nature Communications, vol.8, 1304 (2017)
    [28] Alexey Slobozhanyuk et al, “Three-dimensional all-dielectric photonic topological insulator”, Nature Photonics, vol.11, pp. 130–136 (2017)
    [29] Yihao Yang et al, “Realization of a three-dimensional photonic topological insulator”, Nature, vol.565, pp. 622–626 (2019)
    [30] Mostafa Honari-Latifpour and Leila Yousefi, “Topological plasmonic edge states in a planar array of metallic nanoparticles”, Nanophotonics, vol.8, issue 5, pp. 799-806 (2019)
    [31] Matthew Proctor et al, “Exciting Pseudospin-Dependent Edge States in Plasmonic Metasurfaces”, ACS Photonics, vol.6, issue 11, pp. 2985–2995 (2019)
    [32] S. M. Young et al, “Dirac Semimetal in Three Dimensions”, Phys. Rev. Lett. 108, 140405 (2012)
    [33] Bohm-Jung Yang and Naoto Nagaosa, “Classification of stable three-dimensional Dirac semimetals with nontrivial topology”, Nature Communications, vol.5, 4898 (2014)
    [34] Z. K. Liu et al, “Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi”, Science, vol.343, issue 6173, pp. 867-867 (2018)
    [35] Biao Yang et al, “Direct observation of topological surface-state arcs in photonic metamaterials”, Nature Communications, vol.8, 97 (2017)
    [36] Feng Li et al, “Weyl points and Fermi arcs in a chiral phononic crystal”, Nature Physics, vol.14, pp. 30–34 (2018)
    [37] A. A. Burkov et al, “Topological nodal semimetals”, Phys. Rev. B 84, 235126 (2011)
    [38] Zhongbo Yan and Zhong Wang, “Tunable Weyl Points in Periodically Driven Nodal Line Semimetals”, Phys. Rev. Lett. 117, 087402 (2016)
    [39] Eli Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics”, Phys. Rev. Lett. 58, 2059 (1987)
    [40] Sajeev John, “Strong localization of photons in certain disordered dielectric superlattices”, Phys. Rev. Lett. 58, 2486 (1987)
    [41] Rajesh V. Nair and R. Vijaya, “Photonic crystal sensors: An overview”, Progress in Quantum Electronics, vol.34, issue 3, pp. 89-134 (2010)
    [42] P. Drude, “Zur Elektronentheorie der Metalle”, Annalen der Physik, vol.312, issue 3 pp. 566-613 (1902)
    [43] Sidney F. A. Kettle and Lars J. Norrby, “The Wigner-Seitz unit cell”, Journal of Chemical Education, Easton, vol.71, issue 12 (1994)
    [44] E. H. Hall, “On a New Action of the Magnet on Electric Currents”, American Journal of Mathematics, vol.2, 3, pp. 287-292 (1879)
    [45] Bodo Huckestein, “Scaling Theory of the Integer Quantum Hall Effect”, Rev. Mod. Phys. 67, pp. 357-396 (1995)
    [46] Haldane, “Model for a Quantum Hall Effect Without Landau Levels: Condensed-Matter Realization of the Parity Anomaly”, Phys. Rev. Lett., vol.61, 18 (1988)
    [47] T. Thonhauser and David Vanderbilt, “Insulator/Chern-insulator transition in the Haldane model”, Phys. Rev. B 74, 235111 (2006)
    [48] Rui-Bin Liu et al, “Directly probing the Chern number of the Haldane model in optical lattices”, Journal of the Optical Society of America B, vol.32, issue 12, pp. 2500-2506 (2015)
    [49] C. L. Kane and E. J. Mele, “Quantum Spin Hall Effect in Graphene”, Phys. Rev. Lett. 95, 226801 (2005)
    [50] Long-Hua Wu and Xiao Hu, “Scheme for Achieving a Topological Photonic Crystal by Using Dielectric Material”, Phys. Rev. Lett. 114, 223901 (2015)
    [51] Jun Mei et al, “Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals”, Scientific Reports, vol.6, 32752 (2016)
    [52] Bai-Zhan Xia et al, “Topological phononic insulator with robust pseudospin-dependent transport”, Phys. Rev. B 96, 094106 (2017)
    [53] Wei Wang et al, “Topological valley, pseudospin, and pseudospin-valley protected edge states in symmetric pillared phononic crystals”, Phys. Rev. B 100, 140101 (2019)
    [54] Cheng He et al, “Three-dimensional topological acoustic crystals with pseudospin-valley coupled saddle surface states”, Nature Communications, vol.9, 4555 (2018)
    [55] Kane Yee, “Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media”, IEEE Transactions on Antennas and Propagation, vol.14, issue 3 pp. 302-307 (1966)
    [56] Jean Pierre Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves”, Journal of computational physics, vol.114, pp. 185-200 (1994)
    [57] J. Alan Roden and Stephen D. Gedney, “Convolutional PML (CPML): An Efficient FDTD Implementation of the CFS-PML for Arbitrary Media”, Microwave and optical technology letters, vol.27, issue 5, pp. 334-338 (2000)

    無法下載圖示 校內:2027-08-24公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE