| 研究生: |
郭柏辰 Kuo, Po-Chen |
|---|---|
| 論文名稱: |
利用金屬結構模擬光子拓樸絕緣體之拓樸相變與邊緣態 Simulating Topological Phase Transition and Edge States of Photonic Topological Insulators in Plasmonic Structures |
| 指導教授: |
張世慧
Chang, Shih-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 光子晶體 、光子拓樸絕緣體 、拓樸相變 、電漿子 、邊緣態 |
| 外文關鍵詞: | photonic crystals, photonic topological insulators, topological phase transitions, plasmons, topological edge states, FDTD |
| 相關次數: | 點閱:120 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1] E.Yablonovitch, “Photonic band-gap structures”, Journal of the Optical Society of America B, vol.10, issue 2, pp. 283-295 (1993)
[2] E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic Band Structure The Face-Centered-Cubic Case”, Phys. Rev. Lett. 67, 2295 (1989)
[3] Sajeev John et al, “Theory of fluorescence in photonic crystals”, Phys. Rev. A 65, 043808 (2002)
[4] Kurt Busch and Sajeev John, “Photonic band gap formation in certain self-organizing systems”, Phys. Rev. E 58, 3896 (1998)
[5] Steven G. Johnson, and J. D. Joannopoulos, “Introduction to Photonic Crystals : Bloch’s Theorem , Band Diagrams , and Gaps ( But No Defects )”, Phys. (2003)
[6] E. Chow et al, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity”, Optics Letters vol.29, issue 10, pp. 1093-1095 (2004)
[7] Dirk Englund et al, “General recipe for designing photonic crystal cavities”, Optics Express, vol.13, issue 16, pp. 5961-5975 (2005)
[8] Jonathan C. Knight, “Photonic crystal fibres”, Nature, vol. 424, pp. 847–851 (2003)
[9] Bo Li and Chengkuo Lee, “NEMS diaphragm sensors integrated with triple-nano-ring resonator”, Sensors and Actuators A: Physical, vol.172, issue 1, pp. 61-68 (2011)
[10] Mikio Nakahara, “Geometry, Topology and Physics ”, Institute of Physics Publishing, London, pp. 140-187 (2003)
[11] Alexander B. Khanikaev et al, “Photonic Topological Insulators”, Nature Materials, vol.12, pp. 233–239 (2013)
[12] M. Z. Hasan and C. L. Kane, “Colloquium: Topological insulators”, Rev. Mod. Phys. 82, 3045 (2010)
[13] Hongfei Wang et al, “Topological photonic crystals: a review”, Frontiers of Optoelectronics, vol.13, pp. 50–72 (2020)
[14] Tomoki Ozawa et al, “Topological photonics”, Rev. Mod. Phys. 91, 015006 (2019)
[15] Alexander B. Khanikaev and Gennady Shvets, “Two-dimensional topological photonics”, Nature Photonics vol.11, pp. 763–773 (2017)
[16] Emerson M. Pugh and Norman Rostoker, “Hall Effect in Ferromagnetic Materials”, Rev. Mod. Phys. 25, 151 (1953)
[17] K. S. Novoselov et al, “Room-Temperature Quantum Hall Effect in Graphene”, Science, vol.315, issue 5817, p. 1379 (2007)
[18] Sougata Mardanya et al, “Dynamics of edge currents in a linearly quenched Haldane model”, Phys. Rev. B 97, 115443 (2018)
[19] B. Andrei Bernevig and Shou-Cheng Zhang, “Quantum Spin Hall Effect”, Phys. Rev. Lett. 96, 106802 (2006)
[20] Emil Prodan, “Robustness of the spin-Chern number”, Phys. Rev. B 80, 125327 (2009)
[21] Long-Hua Wu and Xiao Hu, “Topological Properties of Electrons in Honeycomb Lattice with Detuned Hopping Energy”, Scientific Reports, vol.6, 24347 (2016)
[22] Sabyasachi Barik et al, “Two-dimensionally confined topological edge states in photonic crystals”, New Journal of Physics, vol.18 (2016)
[23] Gal Harari et al, “Topological insulator laser: Theory”, Science, vol.359, issue 6381 (2018)
[24] Miguel A. Bandres et al, “Topological insulator laser: Experiments”, Science, vol.359, issue 6381 (2018)
[25] Jian-Wen Dong et al, “Valley photonic crystals for control of spin and topology”, Nature Materials, vol.16, pp. 298–302 (2017)
[26] Tzuhsuan Ma and Gennady Shvets, “All-Si valley-Hall photonic topological insulator”, New Journal of Physics, vol.18 (2016)
[27] Xiaoxiao Wu et al, “Direct observation of valley-polarized topological edge states in designer surface plasmon crystals”, Nature Communications, vol.8, 1304 (2017)
[28] Alexey Slobozhanyuk et al, “Three-dimensional all-dielectric photonic topological insulator”, Nature Photonics, vol.11, pp. 130–136 (2017)
[29] Yihao Yang et al, “Realization of a three-dimensional photonic topological insulator”, Nature, vol.565, pp. 622–626 (2019)
[30] Mostafa Honari-Latifpour and Leila Yousefi, “Topological plasmonic edge states in a planar array of metallic nanoparticles”, Nanophotonics, vol.8, issue 5, pp. 799-806 (2019)
[31] Matthew Proctor et al, “Exciting Pseudospin-Dependent Edge States in Plasmonic Metasurfaces”, ACS Photonics, vol.6, issue 11, pp. 2985–2995 (2019)
[32] S. M. Young et al, “Dirac Semimetal in Three Dimensions”, Phys. Rev. Lett. 108, 140405 (2012)
[33] Bohm-Jung Yang and Naoto Nagaosa, “Classification of stable three-dimensional Dirac semimetals with nontrivial topology”, Nature Communications, vol.5, 4898 (2014)
[34] Z. K. Liu et al, “Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi”, Science, vol.343, issue 6173, pp. 867-867 (2018)
[35] Biao Yang et al, “Direct observation of topological surface-state arcs in photonic metamaterials”, Nature Communications, vol.8, 97 (2017)
[36] Feng Li et al, “Weyl points and Fermi arcs in a chiral phononic crystal”, Nature Physics, vol.14, pp. 30–34 (2018)
[37] A. A. Burkov et al, “Topological nodal semimetals”, Phys. Rev. B 84, 235126 (2011)
[38] Zhongbo Yan and Zhong Wang, “Tunable Weyl Points in Periodically Driven Nodal Line Semimetals”, Phys. Rev. Lett. 117, 087402 (2016)
[39] Eli Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics”, Phys. Rev. Lett. 58, 2059 (1987)
[40] Sajeev John, “Strong localization of photons in certain disordered dielectric superlattices”, Phys. Rev. Lett. 58, 2486 (1987)
[41] Rajesh V. Nair and R. Vijaya, “Photonic crystal sensors: An overview”, Progress in Quantum Electronics, vol.34, issue 3, pp. 89-134 (2010)
[42] P. Drude, “Zur Elektronentheorie der Metalle”, Annalen der Physik, vol.312, issue 3 pp. 566-613 (1902)
[43] Sidney F. A. Kettle and Lars J. Norrby, “The Wigner-Seitz unit cell”, Journal of Chemical Education, Easton, vol.71, issue 12 (1994)
[44] E. H. Hall, “On a New Action of the Magnet on Electric Currents”, American Journal of Mathematics, vol.2, 3, pp. 287-292 (1879)
[45] Bodo Huckestein, “Scaling Theory of the Integer Quantum Hall Effect”, Rev. Mod. Phys. 67, pp. 357-396 (1995)
[46] Haldane, “Model for a Quantum Hall Effect Without Landau Levels: Condensed-Matter Realization of the Parity Anomaly”, Phys. Rev. Lett., vol.61, 18 (1988)
[47] T. Thonhauser and David Vanderbilt, “Insulator/Chern-insulator transition in the Haldane model”, Phys. Rev. B 74, 235111 (2006)
[48] Rui-Bin Liu et al, “Directly probing the Chern number of the Haldane model in optical lattices”, Journal of the Optical Society of America B, vol.32, issue 12, pp. 2500-2506 (2015)
[49] C. L. Kane and E. J. Mele, “Quantum Spin Hall Effect in Graphene”, Phys. Rev. Lett. 95, 226801 (2005)
[50] Long-Hua Wu and Xiao Hu, “Scheme for Achieving a Topological Photonic Crystal by Using Dielectric Material”, Phys. Rev. Lett. 114, 223901 (2015)
[51] Jun Mei et al, “Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals”, Scientific Reports, vol.6, 32752 (2016)
[52] Bai-Zhan Xia et al, “Topological phononic insulator with robust pseudospin-dependent transport”, Phys. Rev. B 96, 094106 (2017)
[53] Wei Wang et al, “Topological valley, pseudospin, and pseudospin-valley protected edge states in symmetric pillared phononic crystals”, Phys. Rev. B 100, 140101 (2019)
[54] Cheng He et al, “Three-dimensional topological acoustic crystals with pseudospin-valley coupled saddle surface states”, Nature Communications, vol.9, 4555 (2018)
[55] Kane Yee, “Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media”, IEEE Transactions on Antennas and Propagation, vol.14, issue 3 pp. 302-307 (1966)
[56] Jean Pierre Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves”, Journal of computational physics, vol.114, pp. 185-200 (1994)
[57] J. Alan Roden and Stephen D. Gedney, “Convolutional PML (CPML): An Efficient FDTD Implementation of the CFS-PML for Arbitrary Media”, Microwave and optical technology letters, vol.27, issue 5, pp. 334-338 (2000)
校內:2027-08-24公開