| 研究生: |
陳文華 Chen, Wen-Hua |
|---|---|
| 論文名稱: |
矽奈米結構太陽能電池元件之製作與光電效率之改善 The Fabrication and Efficiency Improvement of Multi-crystalline Silicon Solar Cell with Nanostructures |
| 指導教授: |
洪昭南
Hong, Chau-Nan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 190 |
| 中文關鍵詞: | 奈米結構 、抗反射 、反應性離子蝕刻 、太陽能電池 |
| 外文關鍵詞: | Nanostructure, Anti-reflection, Reactive ion etching, Solar cell |
| 相關次數: | 點閱:84 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在太陽能電池的應用上,氮化矽薄膜為一常用的抗反射層及鈍化層材料,但其只在特定頻寬有較佳抗反射效果。因此我們發展一種簡單的製程,在矽基板上製作次波長結構,期望能達到寬頻抗反射的效果,以增加太陽能電池對光的吸收。
在第一部分之研究中,我們具焦在反應性離子蝕刻的製程參數研究。我們利用六氟化硫與氯氣電漿對矽進行蝕刻,以通入之氧氣而形成之二氧化矽遮罩,利用此一天然遮罩進行矽蝕刻則可得到奈米尖錐狀結構。我們發現不同比例的蝕刻氣體環境下,會導致抗反射結構之變化。我們藉由一系列之參數調整並將其應用於矽太陽能電池中以期得到最佳之效率改善。其中最佳的奈米尖錐抗反射結構為高度為350–450nm,並使得波長350–850nm之有效反射率下降到小於2%,達到寬頻抗反射的效果。
在第二部分中,本研究著重於探討在具矽奈米尖錐之太陽能電池的製程中,所有的製程參數之研究。其中包含: (1)探討開始進行奈米尖錐蝕刻前之基板表面狀態,本研究在使用不同之溶液進行表面微結構之產生,我們發現可以發現這些微結構對於後來之奈米尖錐之形成與效率之影響有其顯著之影響,我們利用QSSPC進行表面性質之分析。由QSSPC分析可知,使用酸性溶液( HF + HNO3) 在開始進行蝕刻前處理異於使用鹼性溶液(KOH) 之前處理,其對於效率也有所不同之影響。(2)為探討蝕刻奈米尖錐所造成之電漿破壞層對於效率之影響,本研究藉由氫氧化鉀(KOH)進行濕式蝕刻,並發現蝕刻後之矽奈米尖錐高度大幅縮減,然其底部寬度與蝕刻前並無明顯差異。藉由此一處理可將此破壞層消除進而達到效率之改善。實驗結果證實本研究蝕刻奈米尖錐所形成之電漿破壞層對於效率亦有決定性之影響。(3)本研究中亦探討由於表面結構之改變其對射極層之電阻最佳值的變化,我們發現由於表面結構之改變我們可以提高射極層之電阻值進而提高太陽能電池之效率改善。綜合來說,本論文針對奈米尖錐其應用在太陽能電池所遇到之問題,提出可行解決之方法。並對於未來將此技術朝向大量生產以及獲得高穩定性之太陽能電池之製造提供一可行方向。
This research is involving of two parts. First part is that the fabrication of Si nanostructures by reactive ion etching. Si nanostructures with a mount of shapes were fabrication as different gas reactant ratio. Besides the nanoscale features, the high density of nanostructures formed on the multi-crystalline Si surface was also required to significantly reduce the reflectivity. A low reflectivity surface was successfully fabricated with the average reflectivity significantly reduced down to <2% for the wavelength range of 300-850 nm. Other part is the device fabrication. The short wavelength spectral response (blue response) improvement is observed in RIE textured solar cells compared to the standard textured cells. The RIE textured surfaces in combination with optimized emitter resistance result in a remarkable enhancement of short circuit current density. Compared with the acidic textured solar cells, the absolute conversion efficiency of the alkaline + RIE textured cells was improved over 0.5% in average
[1]高文芳, ”量子力學的發跡與遠景”, 交大物理所, 2003年3月
[2]http://www.zyvex.com/nanotech/feynman.html
[3]D. M. Eigler and E. K. Schweizer, Positioning single atoms with a scanning tunneling microscope, Nature, 344, 524-526 (1990)
[4]M. F. Crommie, C. P. Lutz, and D. M. Eigler, Confinement of electrons to quantum corrals on a metal surface, Science, 262, 218-220 (1993)
[5]S. Iijima, Helical microtubules of graphitic carbon, Nature, 354, 56-58 (1991)
[6]C. V. Nguyen, C. So, R. M. Stevens, Y. Li, L. Delziet, P. Sarrazin, and M. Meyyappan, High Lateral Resolution Imaging with Sharpened Tip of Multi-Walled Carbon Nanotube Scanning Probe, J. Phys. Chem. B, 108, 2816-2822 (2004)
[7]唐元洪, “矽奈米線及矽奈米管”, 化學工業出版社, 2006年10月
[8]http://zh.wikipedia.org/zh-hant/
[9]D. M. Chapin, C. S. Fuller, G. L. Pearson, A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power, J. Appl. Phys., 25, 676-680 (1954)
[10]Zhao, A. Wang, M. A. Green, The path to 25% silicon solar cell efficiency: history of silicon cell evolution, Prog. Photovolt. Res. Appl.,7, 471-476 (1999)
[11]G. Conibeer, Materials Today,10, 42 (2007)
[12]http://www.nrel.gov/, National Renewable Energy Laboratory website
[13]Martin A. Green, Crystalline and thin-film silicon solar cells: state of the art and future potential, Solar Energy, 74, 181-192 (2003)
[14]J. Yang, A. Banerjee, T. Glatfelter, S. Sugiyama, and S. Guha, Recent progress in amorphous silicon alloy leading to 13% stable cell efficiency, in Photovoltaic Specialists Conference, 563-568(1997)
[15]C. W. Tang and A. C. Albrecht, Chlorophyll-a photovoltaic cells, Nature 254, 507-509 (1975)
[16]H. Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency, Nat. Photonics, 3, 649-653 (2009)
[17]Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%, Adv. Mater. 22, E135-E138 (2010)
[18]Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells, Adv. Mater. 23, 4636-4643 (2011)
[19]A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, Journal of the American Chemical Society, 131, 6050-6051( 2009)
[20]W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. C. Ryu, J. W. Seo, and S. I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science, 348, 1234-1237 (2015)
[21]http://panasonic.co.jp/, Panasonic corporation website
[22]E. Shi, L. Zhang, Z. Li, P. Li, Y. Shang, Y. Jia, J. Wei, K. Wang, H. Zhu, D. Wu, S. Zhang and A. Cao, TiO2-coated carbon nanotube-silicon solar cells with efficiency of 15%”, Sci. Rep. 2, 884 (2012)
[23]Y. Jung, X. Li, N. K. Rajan, André D. Taylor, and Mark A. Reed, Record high efficiency single-walled carbon nanotube/silicon p-n junction solar cells, Nano Lett.13, 95-99 (2013)
[24]J. Di , Z. Yong , X. Zheng , B. Sun , and Q. Li, Aligned carbon nanotubes for high-efficiency schottky solar cells, small, 9, 1367-1372 (2013)
[25]C. S, M. F. Schubert, J. K. Kim, E. F. Schubert, Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics, Applied Physics Letters. 93, 251108-3 (2008)
[26]Y. M. Song, S. Y. Bae, J. S. Yu, Y. T. Lee. Closely packed and aspect-ratio- controlled antireflection subwavelength gratings on GaAs using a lenslike shape transfer, Opt Lett., 34, 1702-1704 (2009)
[27]P. Lalanne, G. M. Morris, Antireflection behavior of silicon sub wavelength periodic structures for visible light, Nanotechnology, 40, 53-56 (1997)
[28]Z. N. Yu, H. Gao, W. Wu, H. X. Ge, S. Y. Chou, Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff. Journal of Vacuum Science & Technology B, 21, 2874-2877 (2003)
[29]K. C. Sahoo, M. K. Lin, E. Y. Chang, Y. Y. Lu, C. C. Chen, J. H. Huang, et al., Fabrication of Antireflective Sub-Wavelength Structures on Silicon Nitride Using Nano Cluster Mask for Solar Cell Application. Nanoscale Research Letters., 4, 680-683 (2009)
[30]W. H. Southwell, Gradient-index antireflection coatings, Opt. Lett., 8, 584-586 (1983)
[31]楊德仁, “太陽能電池材料”, 五南圖書出版社, 2008年6月
[32]顏秀崗, “材料科學與工程”, 全華科技圖書出版社, 1990 年12月
[33]龔吉合、潘德華、楊希文、傅承祖、施並裕、丁原傑, “材料科學導論”, 滄海書局出版社, 1998年8月
[34]李世鴻, “半導體物理及元件”, 台商圖書出版社, 2005年2月
[35]J. Neison, The Physics of Solar Cells, Imperial College Press, 1-2
[36]http://www.pveducation.org/pvcdrom/ , PV Education ORG
[37]楊素華、蔡泰成,“太陽光能發電元件” , 科學發展, 390期, 53 (2005)
[38]H. Scheel1, S. Khachadorian, M. Cantoro, A. Colli, A. C. Ferrari, and C. Thomsen1, Phys. Stat. Sol. B, 245, 2090 (2008)
[39]B. Li, D. Yu, and S. L. Zhang, PHYSICAL REVIEW B, 59, 1645 (1999)
[40]T. Kawashima, G. Imamura, T. Saitoh, K. Komori, M. Fujii, and S. Hayashi, J. Phys. Chem. C, 111, 15160 (2007)
[41]蔡進譯, “物理雙月刊”, 27卷5期, 701 (2005)
[42]黃惠良、蕭錫鍊、周明奇、林堅楊、江雨龍、曾百亨、李威儀、李世昌、林唯芳, “太陽能電池” , 五南圖書出版股份有限公司
[43]S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, Anti-reflecting and photonic nanostructures, Mat Sci Eng R, 69, 1-35 (2010)
[44]G. Agostinelli, A. Delabie, P. Vitanov, Z. Alexieva, H. F. W. Dekkers, S. D. Wolf , and G. Beaucarne, Solar Energy Materials and Solar Cells, 90, 3438 (2006)
[45]B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden and W. M. M. Kessels, Applied Physics Letters, 89, 042112 (2006)
[46]J. R. Roth, Industrial plasma engineering-Volume 1: Principles Institute of Physics. Bristol and Philadelphia: Institute of Physics Publishing, 1995
[47]Y. Saito, T. Yoshikawa, Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes, J. Cryst. Growth, 134, 154-156, (1993)
[48]Y. B. Dorfaman, M. Abraizov, Fred H. Pollak, D. Yan, M. Strongin, X. Q. Yang, and Z. Y. Rong, Mat. Res. Soc. Symp. Proc. 349, 547 (1994)
[49]S. Vepřek, S. Reiprich, A concept for the design of novel superhard coatings, Thin Solid Films, 268, 64-71 (1995)
[50]E. Osawa, M. Yoshida, M. Fujita, MRS Bull., 33(1994)
[51]C. G. Bernhard and W. H. Miller, A corneal nipple pattern in insect compound eyes, Acta Physiol. Scand. 56, 385 (1962)
[52]D. G. Stavenga1, S. Foletti1, G. Palasantzas and K. Arikawa, Light on the moth-eye corneal nipple array of butterflies, Proc. R. Soc. B, 273, 661-667 (2006)
[53]D. L. Brundrett, E. N. Glytsis, T. K. Gaylord, Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings conical diffraction and antireflection designs, Applied Optics., 33, 2695(1994)
[54]E. B. Grann, M. G. Moharam, D. A. Pommet, Artificial uniaxial and biaxial dielectrics with use of two-dimensional subwavelength binary gratings, J B, Opt Soc Am A., 11, 2695-2703 (1994)
[55]S. J. Wilson, M. C. Hutley, The optical-properties of moth eye antireflection surfaces, Optica Acta. , 29, 993-1009 (1982).
[56]J. Zhao, A. Wang, Martin A. Green, and F. Ferrazza, 19.8% efficient ‘‘honeycomb’’ textured multicrystalline and 24.4% monocrystalline silicon solar cells, Appl. Phys. Lett. 73, 1991 (1998)
[57]W. C. Cheng, L. A. Wang, Phase masks working in 157 nm wavelength fabricated by immersion interference photolithography, Journal of Vacuum Science Technology B., 21, 3078-3081 (2003)
[58]M. Ben Rabha, S. B. Mohamed, W. Dimassi, M. Gaidi, H. Ezzaouia, B. Bessais, Reduction of absorption loss in multicrystalline silicon via combination of mechanical grooving and porous silicon, Phys. Status Solidi (C) , 8, 883-886 (2011)
[59]H. Nouri, M. Bouaicha, B. Bessais., Effect of porous silicon on the performances of silicon solar cells during the porous silicon-based gettering procedure, Sol. Energy Mater. Sol. Cells, 93, 1823-1826 (2009)
[60]H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, et al., Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks, Applied Physics Letters, 20, 88-91 (2006)
[61]C. M. Hsu, S. T. Connor, M. X. Tang, Y. Cui, Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching. Applied Physics Letters, 13, 93-96 (2008)
[62]Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H.C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures, ” Nanotechnology, 2, 770-774 (2007)
[63]V. V. Iyengar, B. K. Nayak, K. L. More, H. M.MeyerIII, M. D. Biegalski, J. V. Li, M. C. Gupta, Properties of ultrafast laser textured silicon for photovoltaics, Sol. Energy Mater. Sol. Cells, 10, 2745-2751 (2011)
[64]M. B. Rabha, W. Dimassi, M. Bouaïcha, H. Ezzaouia, B. Bessais., Laser-beam-induced current mapping evaluation of porous silicon-based passivation in polycrystalline silicon solar cells, Solar Energy, 83, 721 (2009)
[65]B. K. Nayak, V. V. Iyengar, M. C. Gupta, Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled icro/nanostructures , Progress in Photovoltaics: Research and Applications, 10, 1002-1072, (2011)
[66]B. K. Nayak, M. C. Gupta, Femtosecond-laser-induced-crystallization and simultaneous formation of light trapping microstructures in thin a-Si:H, Applied Physics A: Materials Science and Processing, 89, 663–666 (2007)
[67]T. H. Her, R. J. Finlay, C. Wu, E. Mazur, Femtosecond laser-induced formation of spikes on silicon, Applied Physics A: Materials Science and Processing, 70 , 383-385 (2000)
[68]J. C. Zolper, S. Narayanan, S. R. Wenham, M. A. Green, 16.7-Percent efficient laser textured, buried contact polycrystalline silicon solar-cell, Applied Physics Letters, 55 ,2363–2365 (1989)
[69]Y. Inomata, K. Fukui, K. Shirasawa, Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method, Sol. Energy Mater. Sol. Cells, 48, 237-242 (1997)
[70]C. H. Hsu, H. C. Lo, C. F. Chen, C. T. Wu, J. S. Hwang, D. Das, et al. Generally applicable self-masked dry etching technique for nanotip array fabrication Nano Letters, 4, 471-475 (2004)
[71]K. S. Lee, M. H. Ha, J. H. Kim and J. W. Jeong, Damage free reactive ion etch for high efficiency large area multicrystalline silicon solar cells, Sol. Energy Mater. Sol. Cells, 95, 66-68 (2011)
[72]S. Liu, X. Niu, Wei Shan, W. Liu, J. Aheng, Y. Li, H. Duan, W. Quan, W. Han, C.R. Wronski, Deren Yang, Improvement of conversion efficiency of multicrystalline silicon solar cells by incorporating reactive ion etching texturing, Sol. Energy Mater. Sol. Cells, 127, 21-26 (2014) 21-26
[73]Z. Yue, H. Shen, Y. Jiang, Antireflective nanostructures fabricated by reactive ion etching method on pyramid-structured silicon surface, Appl. Surf. Sci., 271, 402-406 (2013)
[74]S. Zhong, B. Liu, Y. Xia, J. Liu, J. Liu, Z. Shen, Z. Xu, C. Li, Influence of the texturing structure on the properties of black silicon solar cell, Sol. Energy Mater. Sol. Cells, 108, 200–204 (2013)
[75]H. H. Lin, W. H. Chen, C. J. Wang, Franklin C. N. Honga, Fabrication of antireflective nanostructures for crystalline silicon solar cells by reactive ion etching, Thin Solid Films, 529, 138–142 (2013)
[76]J. Yoo, G. Yu, J. Yi, Large-area multicrystalline silicon solar cell fabrication using reactive ion etching (RIE), Sol. Energy Mater. Sol. Cells, 95, 2–6 (2011)
[77]J. U. Gangopadhyay, S. K. Dhungel, P. K. Basu, S. K. Dutta, H. Saha, J. Yi, Comparative study of different approaches of multicrystalline silicon texturing for solar cell fabrication, Sol. Energy Mater. Sol. Cells, 91, 285–289 (2007)
[78]D. S. Ruby, S. Zaidi, S. Narayanan, S. Yamanaka, R. Balanga, RIE-Texturing of industrial multicrystalline silicon solar cells, J. Sol. Energy Eng., 127, 146-149 (2005)
[79]W. A. Nositschka, C. Beneking, O. Voigt, H. Kurz, Texturisation of multicrystalline silicon wafers for solar cells by reactive ion etching through colloidal masks, Sol. Energy Mater. Sol. Cells, 76, 155-166 (2003)
[80]Y. Xia, B. Liu, et al., A novel method to produce black silicon for solar cells, Solar Energy, 85 , 1574-1578 (2011)
[81]B. T. Chan, E. Kunnen, M. Uhlig, J. F. de Marneffe, K. D. Xu, W. Boullart, B. Rau, Implementing plasma texturing process with linear microwave plasma sources for ultra-thin multi-crystalline (150 μm) solar cells, Jpn. J. Appl. Phys. 51 , 10NA01 (2012)
[82]D. G. Choi, H. K. Yu, S. G. Jang, S. M. Yang, Colloidal Lithographic Nano-patterning via Reactive Ion Etching, J. Am. Chem. Soc., 126, 7019-7023 (2004)
[83]H. F. W. Dekkers, F. Duerinckx, J. Szlufcik, J. Nijs, Silicon surface etching by reactive ion etching, Opto-elec. Rev., 8311–316 (2000)
[84]R. S. Davidsen, H. Li, A. To, X. Wang, A. Han, J. An, J. Colwell, C. Chan, A. Wenham, M. S. Schmidt, A. Boisen, O. Hansen, S. Wenham, A. Barnett, Black silicon laser-doped selective emitter solar cell with 18.1% efficiency, Sol. Energy Mater. Sol. Cells, 144, 740-747 (2016)
[85]F. Cao, K. Chen, J. Zhang, X. Ye, J. Li, S. Zou, X. Su, Next-generation multi-crystalline silicon solar cells: Diamond-wire sawing, nano-texture and high efficiency, Sol. Energy Mater. Sol. Cells, 141, 132-138 (2015)
[86]K. M. Park, M. B. Lee, S. Y. Choi, Investigation of surface features for 17.2% efficiency multi-crystalline silicon solar cells, Sol. Energy Mater. Sol. Cells, 132, 356-362 (2015)
[87]G. Kumaravelu, M. M. Alkaisi, D. Macdonald, J. Zhao, B. Rong, A. Bittar, Minority carrier lifetime in plasma-textured silicon wafers for solar cells, Sol. Energy Mater. Sol. Cells, 87, 99-106 (2005)
[88]W. A. Nositschka, O. Voigt, P. Manshanden, H. Kurz, Texturisation of multicrystalline silicon solar cells by RIE and plasma etching, Sol. Energy Mater. Sol. Cells, 2, 227-237 (2003)
[89]D. S Ruby, S. H Zaidi, S Narayanan, B. M Damiani, A Rohatgi, Rie-texturing of multicrystalline silicon solar cells, Sol. Energy Mater. Sol. Cells, 74, 133-137 (2002)
[90]S. Winderbaum, O. Reinhold, F. Yun, Reactive ion etching (RIE) as a method for texturing polycrystalline silicon solar cells, Sol. Energy Mater. Sol. Cells, 46, 239-248 (1997)
[91]http://mksinst.mobi/Docs/UR/gbror.pdf , MKS Instruments Catalog
校內:2021-12-02公開