簡易檢索 / 詳目顯示

研究生: 林素霞
Lin, Su-Shia
論文名稱: 氧化鋅薄膜的特性改良及應用之研究
The Investigation for Improving Properties and Application of Zinc Oxide Films
指導教授: 黃肇瑞
Huang, Jow-Lay
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 223
中文關鍵詞: 氧化鋅射頻磁控濺鍍法ZnO:AlZnO:Ti氧化鋁光學性質電阻率
外文關鍵詞: resistivity, optical properties, aluminum oxide, ZnO:Ti, ZnO:Al, RF magnetron sputtering, zinc oxide
相關次數: 點閱:119下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於氧化鋅薄膜具有顯著的c軸優先成長取向及透明性,而且具有明顯的壓電及壓光效應,因此被廣泛地應用於聲電及聲光元件。此外,氧化鋅薄膜的表面織構化或坑洞化的表面型態對於光學元件(如:太陽能電池)有強化陷光(enhanced light trapping)的位能應用。一般氧化鋅薄膜的電阻偏高(約為1-100 W-cm),其導電特性主要受制於氧空缺與鋅間隙原子。氧化鋅薄膜的性質深受其製備參數所影響。在本研究裡,氧化鋅薄膜是於純氬氣中以射頻磁控濺鍍法來沈積。探討射頻功率、基板溫度和薄膜厚度對於氧化鋅薄膜的結構及光學性質之影響是本研究的重點之一。

    為了提升具高電阻的氧化鋅薄膜之導電性,則將同時採用射頻(RF)濺射氧化鋅靶材及直流(DC)濺射鋁靶材進行混鍍,進行摻雜多量鋁(11.3 at.%)於氧化鋅薄膜(ZnO:Al)的披覆,實驗結果顯示經改良後,電阻率可降低至8.52×10-3 W-cm。相互比較之下,本研究之多量鋁摻雜的氧化鋅薄膜其導電性並不差於一般文獻所報導的少量鋁(6.2 at.%)摻雜的氧化鋅薄膜,然而仍有改善的空間。此外,ZnO:Ti薄膜是相當有潛力的光電材料,由於以Ti+4來取代Zn+2易產生較多電子,則藉由鈦的少量摻雜就可以提升氧化鋅薄膜的導電性,實驗結果顯示,當Ti含量為1.1at.%時,電阻率可達9.69×10-3 W-cm,確實改善了ZnO薄膜的導電性質。因此,本研究亦將探討基板溫度、直流功率、薄膜厚度和熱處理對於ZnO:Al與ZnO:Ti薄膜性質的影響,以期能達到鍍層的較佳之導電及光學性質。

    為了研究具有特殊結晶性的氧化鋅薄膜的影響性及應用,因此將氧化鋁薄膜沈積於玻璃基材及沈積於已披覆氧化鋅薄膜的玻璃基材上以作為比較。根據實驗結果發現,單一層氧化鋁薄膜沈積在玻璃基材上對應於非晶質的結構,然而將其披覆於已沈積氧化鋅薄膜的玻璃基材上,氧化鋁薄膜明顯地從非晶質的結構轉變成多晶結構,而且可見光穿透率大幅提高。本研究的另一目標是探討在玻璃基材上濺鍍雙層材料的整體性質,規劃出最佳條件和個別厚度,使氧化鋅與氧化鋁此雙層薄膜達到最佳組合,並獲得較佳的光學性質。

    Zinc oxide (ZnO) thin films with a strong c-axis preferred orientation, obvious piezoelectric and piezo-optical effects, have been used in acousto-electric and acousto-optical devices. Besides, the surface textured or “cratered” morphology of ZnO films have a potential application in enhanced light trapping in optical devices such as solar cells. The conduction characteristics of ZnO film with typical resistivity of 1-100 W-cm were primarily dominated by electrons due to the oxygen vacancies and Zn interstitial atoms. The characteristics of ZnO film were mainly affected by its preparation conditions. In this study, ZnO thin films will be deposited by RF magnetron sputtering by using zinc oxide target under pure Ar atmosphere. The effects of the RF power, substrate temperature and film thickness on the structural and optical properties of ZnO films will be investigated.

    In order to further improve the electrical properties of ZnO films, transparent conducting ZnO films was heavily doped with Al (ZnO:Al) by simultaneous RF magnetron sputtering of ZnO and DC magnetron sputtering of Al. Experimental results indicated that the resistivity of ZnO:Al film (11.3 at.%) was 8.52´10-3 W-cm, as good as that reported for ZnO films doped with less Al (6.2 at.%). Certainly, it could be still further improved. In addition, the ZnO:Ti film is another good candidate material for acousto-electric and acousto-optical devices. When Ti content was 1.1 at.%, the resistivity was 9.69×10-3 W-cm. It suggested that the electrical properties of ZnO films indeed were improved. Therefore, the objective of this study is to investigate the effects of the substrate temperature, DC power, film thickness and heat treatment on the ZnO:Al film and ZnO:Ti films.

    In order to ascertain the effects of the substrate on the quality of AlOx films, AlOx films were grown on a bare glass and a ZnO-deposited glass. The results indicated that AlOx films exhibited polycrystalline structure upon the ZnO interlayer rather than the amorphous structure obtaining by sputtering on a bare glass. In addition, good optical properties have been found for AlOx films grown on ZnO-deposited glasses. The purpose of this work is to further improve the visible transmission.

    總 目 錄 中文摘要…………………………………………………………………………I 英文摘要……………………………………………………………………….III 總目錄……………………………………………………………………..........V 圖目錄………………………………………………………………………….IX 表目錄……………………………………………………………………….XVII 誌謝…………………………………………………………………………..XIX 第一章 緒 論………………………………………………………………….1 1 前言與研究目的……………………………………………………………..1 第二章 理論基礎與前人研究…………………………………………...........6 2-1 電漿………………………………………………………………………...6 2-2 濺鍍理論…………………………………………………………………...8 2-3 濺鍍系統………………………………………………………………….12 2-4 磁控濺鍍系統…………………………………………………………….13 2-5 射頻電源的自偏壓現象………………………………………………….13 2-6 鍍層的成核……………………………………………………………….16 2-7 鍍層微結構的Thorton模型………………………………………..........19 2-8 ZnO薄膜的特性………………………………………………………… 22 第三章 實驗方法與步驟……………………………………………………..27 3-1 實驗流程…………………………………………………………………..27 3-2 實驗原料…………………………………………………………………28 3-3 實驗設備…………………………………………………………………28 3-4 濺鍍前處理………………………………………………………………28 3-5 熱處理實驗………………………………………………………………31 3-6 鍍層分析及測量…………………………………………………………31 3-6-1 濺鍍速率的測量…………………………………………………..31 3-6-2 成份及化學鍵結分析…………………………….………………..31 3-6-3 微結構的分析 ……………………………………………………..33 3-6-4 電性分析…………………………………………………………..34 3-6-5 元素及載子縱深分析……………………………………………..35 3-6-6 光學性質分析……………………………………………………..35 第四章 以射頻磁控濺鍍法沈積ZnO薄膜之性質研究……………………37 4-1 濺鍍步驟與條件…………………………………………………………37 4-2 射頻功率和基板溫度的影響……………………………………………37 4-3 薄膜厚度的影響…………………………………………………………51 4-4 結論………………………………………………………………………61 第五章 同時以射頻及直流磁控混合濺鍍ZnO:Al薄膜之性質研究………62 5-1 濺鍍步驟與條件…………………………………………………………62 5-2 基板溫度的影響…………………………………………………………62 5-3 直流功率的影響…………………………………………………………80 5-4 熱處理的影響………………………………………………………….102 5-5 膜厚的影響……………………………………………………………..111 5-6 結論……………………………………………………………………..119 第六章 同時以射頻及直流磁控混合濺鍍ZnO:Ti薄膜之性質研究……..125 6-1 濺鍍步驟與條件………………………………………………………..125 6-2 Ti含量的影響…………………………………………………………125 6-3 基板溫度的影響………………………………………………………..140 6-4 熱處理的影響…………………………………………………………..151 6-5 膜厚的影響……………………………………………………………..160 6-6 結論……………………………………………………………………..170 第七章 以氧化鋅中介層增進氧化鋁薄膜的結晶性及光學性質………...171 7-1 濺鍍步驟與條件………………………………………………………..171 7-2 ZnO薄膜對AlOx薄膜的結晶性及光學性質之影響 ………………..171 7-3 直流功率及氧化氣氛對沈積在ZnO玻璃的AlOx薄膜其結構及光學性質的影響………………………………………………………………..189 7-4 結論……………………………………………………………………..208 第八章 總 結 論……………………………………………………………209 參考文獻……………………………………………………………………...211 作者簡歷……………………………………………………………………..220 研究成果目錄………………………………………………………………..221 圖 目 錄 Fig.2-1 Plots of voltage vs. current for DC discharge…………………………...7 Fig.2-2 Schematic illustration of the voltage distribution between cathode and anode…………………………………………………………………………….9 Fig.2-3 Interaction of ions with target surface…………………………………11 Fig.2-4 Schematic illustration of the distribution of magnetic lines and electric lines on the target surface………………………………………………………14 Fig.2-5 Schematic illustration of the track of electron under electric field and magnetric field………………………………………………………………….15 Fig.2-6 Schematic illustration of RF supply input: (a) standard output wave; (b) self-bias voltage…………………………………………………17 Fig.2-7 Schematic illustration of the development of a negative bias when an RF potential is coupled to a probe immersed in a plasma……………………...18 Fig.2-8 Nucleation and formation of thin films………………………………..20 Fig.2-9 The Thorton zone model: schematic representation of the influence of substrate temperature and argon working pressure on the structure of coatings deposited by sputtering…………………………………………………………21 Fig.2-10 Atomic arrangement of ZnO in which small circles represent zinc atoms, whereas large circles depict oxygen atoms…………………………….23 Fig.3-1 Flow chart of the experimental procedure…………………………….27 Fig.3-2 Schematic diagram of sputtering system for films deposition…………30 Fig.3-3 Schematic drawing showing the quartz furnace for annealing test…………………………………………………………………………..32 Fig.4-1 The X-ray diffraction patterns of ZnO films prepared at (a) different RF powers (thickness about 500 nm, total pressure of 6mTorr, and substrate temperature of 150℃); (b) different substrate temperatures (thickness about 500 nm, total pressure of 6mTorr, and RF power of 200W)………………………..40 Fig.4-2 The scanning electron micrographs of ZnO films prepared at different conditions. The RF power and the substrate temperature are: (a) 40W, 150℃; (b) 200W, 150℃; and (c) 200W, 50℃…………………………………………….43 Fig.4-3 The morphologies of ZnO films deposited at different conditions. The RF power and the substrate temperature are (a) 40W, 150℃; (b) 200W, 150℃; and (c) 200W, 50℃…………………………………………………………….44 Fig.4-4 The scanning electron micrograph of the textured surface of ZnO film prepared at the RF power of 200W and substrate temperature of 150℃………45 Fig.4-5 The XPS spectrum of ZnO films prepared at the RF power of 200W and substrate temperature of 150℃. The binding states of zinc in the ZnO films are represented by a major peak (ZnI) was at 264.5eV and a minor peak (ZnII) was at 261.4 eV…………………………………………………………………….. 46 Fig.4-6 The optical absorption of ZnO films prepared at the RF power of 200W and the substrate temperature of 150℃………………………………………...48 Fig.4-7. Plots of (αhν)2 vs. hνfor ZnO films prepared at the RF power of 200W and substrate temperature of 150℃……………………………………..50 Fig.4-8 (a) The X-ray diffraction patterns and (b) full width at half maximum (FWHM) of XRD (002) peaks and the crystal sizes for ZnO films with different thickness………………………………………………………………………..52 Fig.4-9 The pole figures of (002) plane in ZnO films deposited to thickness of (a) 300 nm and (b) 500 nm from the X-ray diffraction…………………………….56 Fig.4-10 The 3D AFM images of ZnO films deposited to the thickness of (a) 200 nm; (b) 300 nm; (c) 400 nm; (d) 500 nm; and (e) 600 nm………………...57 Fig.4-11 The plots of (αhν)2 vs. hνfor ZnO films deposited to 200 nm and 600 nm…………………………………………………………………………59 Fig.4-12 The absorbance in the UV-VIS regions of ZnO films with different thickness………………………………………………………………………..60 Fig.5-1 The XPS results showing the Al/Zn at.% and O/Zn at.% of ZnO:Al films deposited at various substrate temperatures……………………………………63 Fig.5-2 (a) O 1s, (b) Zn 2p3/2, and (c) Al 2p photoelectron peaks in the XPS spectrum of ZnO:Al film prepared at substrate temperature of 150℃………...65 Fig.5-3 The relative strength of (a) O 1s peaks (OI, OII, OIII and OIV), (b) Zn 2p3/2 peaks (ZnI and ZnII) and (c) Al 2p peaks (AlI and AlII ) for ZnO:Al films prepared at various substrate temperatures…………………………………….67 Fig.5-4 The X-ray diffraction patterns of ZnO and ZnO:Al films deposited at substrate temperature of 150℃………………………………………………...70 Fig.5-5 The X-ray diffraction patterns of ZnO:Al films deposited at various substrate temperatures………………………………………………………….71 Fig.5-6 The bright field TEM micrograph of ZnO:Al film deposited at the substrate temperature of 150℃………………………………………………...73 Fig.5-7 The EDS analysis from the TEM study of ZnO:Al film deposited at substrate temperature of 150℃………………………………………………...74 Fig.5-8 The selected area diffraction (SAD) patterns from the TEM study of ZnO:Al film deposited at the substrate temperature of 150℃…………………75 Fig.5-9 The electron concentration and mobility of ZnO:Al films deposited at various substrate temperatures…………………………………………………77 Fig.5-10 The calculated mean free paths of the electrons for ZnO:Al film deposited at various substrate temperatures……………………………………79 Fig.5-11 The resistivity of ZnO:Al films deposited at various substrate temperatures……………………………………………………………………81 Fig.5-12 The UV-VIS transmission spectra of ZnO:Al films prepared at various substrate temperatures…………………………………………………………82 Fig.5-13 The X-ray diffraction patterns of ZnO:Al films deposited at different DC powers……………………………………………………………………...84 Fig.5-14 (a) O 1s, (b) Zn 2p3/2, and (c) Al 2p photoelectron peaks in the XPS spectra of ZnO:Al films prepared at DC power of 40W……………………….85 Fig.5-15 (a) O 1s, (b) Zn 2p3/2, and (c) Al 2p photoelectron peaks in the XPS spectra of ZnO:Al films prepared at DC power of 50W……………………….88 Fig.5-16 The relative strength of (a) O 1s peaks (OI, OII, OIII and OIV), (b) Zn 2p3/2 peaks (ZnI and ZnII) and (c) Al 2p peaks (AlI, AlII and AlIII) for ZnO:Al films prepared at different DC powers…………………………………………90 Fig.5-17 The bright field TEM micrographs of ZnO:Al films deposited at DC powers of (a) 40W and (b) 50W………………………………………………..94 Fig.5-18 The selected area diffraction (SAD) patterns from the TEM studies of ZnO:Al films deposited at DC powers of (a) 40W and (b) 50W………………95 Fig.5-19 The morphologies of ZnO:Al films deposited at DC powers of (a) 30W, (b) 40W, (c) 50W and (d) 60W………………..………………………………97 Fig.5-20 The transmission spectra in the UV-VIS region of ZnO:Al films deposited at different DC powers……………………………………………..101 Fig. 5-21 The Haacke’s figure of merit at the various wavelengths for ZnO:Al films deposited at DC power of 40W…………………………………………103 Fig.5-22 The X-ray diffraction patterns of ZnO:Al films before and after annealing in N2 or O2………………………………………………………….104 Fig.5-23 The scanning electron micrograph of the cross section of as-deposited ZnO:Al film…………………………………………………………………...105 Fig.5-24 The scanning electron micrograph of the textured surface of as-deposited ZnO:Al film shown in Fig.5-23……………………………………107 Fig.5-25 The absorbance in the UV-VIS region of ZnO:Al films before and after annealing in N2 or O2…………………………………………………………110 Fig.5-26 Plots of (ahn)2 vs. hn for ZnO:Al films before and after annealing in N2 or O2……………………………………………………………………….112 Fig.5-27 The X-ray diffraction patterns of ZnO:Al films with different thickness………………………………………………………………………113 Fig. 5-28 The morphologies of ZnO:Al films with different thickness………114 Fig. 5-29 The root-mean-square (RMS) roughness of ZnO:Al films with different thickness……………………………………………………………..116 Fig.5-30 The resistivity of ZnO:Al films deposited to different thickness………………………………………………………………………117 Fig.5-31 The mobility and electron concentration of ZnO:Al films deposited to different thickness……………………………………………………………118 Fig.5-32 The transmission spectra in the UV-VIS region of ZnO:Al films deposited to different thickness………………………………………………120 Fig.5-33 The average visible transmission of ZnO:Al films deposited to different thickness………………………………………………………………………121 Fig.5-34 A plot of the figure of merit vs. deposition thickness of the ZnO:Al films…………………………………………………………………………...122 Fig.6-1 O 1s photoelectron peak in the XPS spectrum of ZnO:Ti film prepared at DC power of 30W…………………………………………………………….127 Fig.6-2 The relative strength of O 1s peaks (OI, OII, OIII and OIV) for ZnO:Ti films prepared at different DC powers……………………………………….129 Fig.6-3 The X-ray diffraction patterns of ZnO and ZnO:Ti films with different Ti contents……………………………………………………………………….130 Fig.6-4 The morphology of ZnO:Ti films with Ti contents of (a) 1.0 at.%, (b) 1.1 at.%, (c) 1.7 at.%, (d) 2.8 at.%, and (e) 4.0 at.%...............................................132 Fig.6-5 The bright field TEM micrograph of ZnO:Ti film with Ti content of 1.1 at.%....................................................................................................................133 Fig.6-6 The selected area diffraction (SAD) patterns from the TEM study of ZnO:Ti film with Ti content of 1.1 at.%...........................................................134 Fig.6-7 The transmission spectra in the UV-VIS region of ZnO:Ti films with different Ti contents…………………………………………………………...138 Fig.6-8 Plots of (ahn)2 vs. hn for ZnO:Ti films with different Ti contents…..139 Fig.6-9 The Haacke’s figure of merit for the ZnO:Ti film with 1.1 at.% Ti….141 Fig.6-10 O 1s photoelectron peak in the XPS spectrum of ZnO:Ti film prepared at 200℃……………………………………………………………………….143 Fig.6-11 The relative strength of O 1s peaks (OI, OII, OIII and OIV) for ZnO:Ti films prepared at different substrate temperatures……………………………145 Fig.6-12 The X-ray diffraction patterns of ZnO:Ti films deposited at various substrate temperatures………………………………………………………...146 Fig.6-13 The 3D AFM images of ZnO:Ti films deposited at the substrate temperature of (a) 50℃, (b) 100℃, (c) 150℃, and (d) 200℃………………..148 Fig.6-14 The carrier concentration and mobility of ZnO:Ti films deposited at various substrate temperatures…………………………………………….….149 Fig.6-15 The mean free paths of carriers for the ZnO:Ti films deposited at various substrate temperatures………………………………………………..150 Fig.6-16 The resistivity of ZnO:Ti films deposited at various substrate temperatures…………………………………………………………………..152 Fig.6-17 The UV-VIS transmission spectra of ZnO:Ti films prepared at various substrate temperatures………………………………………………………..153 Fig.6-18 The X-ray diffraction patterns of ZnO:Ti films before and after annealing in N2 or O2…………………………………………………………155 Fig.6-19 The morphologies of ZnO:Ti films before (a), and after annealing in (b) N2 or (c) O2……………………………………………………………………156 Fig.6-20 The absorbance in the UV-VIS region of ZnO:Ti films before and after annealing in N2 or O2………………………………………………………….158 Fig.6-21 shows plots of (ahn)2 vs. hn for ZnO:Ti films before and after annealing in N2 or O2…………………………………………………………159 Fig.6-22 The X-ray diffraction patterns of ZnO:Ti films deposited to different thickness………………………………………………………………………161 Fig.6-23 The 3D AFM images of ZnO:Ti films with different thickness…….162 Fig.6-24 The root-mean-square (RMS) roughness of ZnO:Ti films with different thickness………………………………………………………………………163 Fig.6-25 The resistivity of ZnO:Ti films deposited to different thickness……165 Fig.6-26 The mobility and carrier concentration of ZnO:Ti films deposited to different thickness…………………………………………………………….166 Fig.6-27 The transmission spectra in the UV-VIS region of ZnO:Ti films deposited to different thickness……………………………………………….167 Fig.6-28 A plot of the figure of merit vs. deposition thickness for the ZnO:Ti films…………………………………………………………………………...168 Fig.7-1 The auger depth profiles of (a) sample C and (b) sample D, respectively……………………………………………………………………173 Fig.7-2 The electron and hole depth profiles of (a) sample C and (b) sample D, respectively……………………………………………………………………176 Fig.7-3 The cross-section of AlOx film on ZnO-deposited glass (sample C) obtained using the SEM……………………………………………………….179 Fig.7-4 X-ray diffraction patterns of glass/AlOx (sample A), glass/ZnO (sample B), and glass/ZnO/AlOx (sample C)…………………………………………..180 Fig.7-5 X-ray diffraction patterns of two glass/ZnO/AlOx composite films (sample C and sample D)……………………………………………………..184 Fig.7-6 The bright field TEM micrograph of AlOx film on ZnO-deposited glass (sample C)…………………………………………………………………….185 Fig.7-7 The EDS analysis from the TEM study of the AlOx film on ZnO-deposited glass (sample C)……………………………………………………187 Fig.7-8 The SAD pattern from the TEM study of the AlOx film on ZnO-deposited glass (sample C)……………………………………………………188 Fig.7-9 The UV-VIS transmission spectra of sample A, sample C, and sample D………………………………………………………………………………190 Fig.7-10 X-ray diffraction patterns of (a) sample E, (b) sample F, and (c) sample G………………………………………………………………………………192 Fig.7-11 The SAD patterns from the TEM study of the AlOx films on ZnO-deposited glass: (a) sample E, (b) sample F, and (c) sample G………………200 Fig.7-12 The bright field TEM micrographs of the AlOx films on ZnO-deposited glass: (a) sample E, (b) sample F, and (c) sample G………………………….202 Fig.7-13 Three-dimensional AFM images of the AlOx films on ZnO-deposited glass: (a) sample E, (b) sample F, and (c) sample G………………………….205 Fig.7-14 The optical absorption of sample E, sample F, sample G, and substrate……………………………………………………………………….206 Fig.7-15 The UV-VIS transmission spectra of sample E, sample F, sample G, and substrate…………………………………………………………………..207 表 目 錄 Table 2-1 Fundamental properties of ZnO……………………………………..24 Table 3-1 The chemical composition of Corning 1737F glass…………………29 Table 3-2 The characteristics of Corning 1737F glass………………………...29 Table 4-1 Deposition rate and compositions of ZnO films with the sputtering conditions………………………………………………………………………38 Table 5-1 The Al/Zn at.% and O/Zn at.% of ZnO:Al films deposited at various DC powers detected by XPS…………………………………………………...93 Table 5-2 The resistivity, mobility, carrier concentration, and sheet resistance of ZnO:Al films deposited at various DC powers……………………….………..98 Table 5-3 The electrical character of ZnO:Al films before and after annealing in N2 or O2……………………………………………………………………….108 Table 5-4 The sheet resistance, transmission and figure of merit of ZnO:Al films deposited to different thickness……………………………………………….123 Table 6-1 Elemental composition of the ZnO:Ti films deposited at various sputtering powers detected by XPS…………………………………………...126 Table 6-2 The resistivity, mobility, carrier concentration, sheet resistance and mean free path of ZnO:Ti films with different Ti contents…………………...136 Table 6-3 Elemental composition of the ZnO:Ti films deposited at various substrate temperatures analyzed by XPS……………………………………..142 Table 6-4 The sheet resistance, average visible transmission and figure of merit of the ZnO:Ti films deposited to different thickness…………………………169 Table 7-1 Sputtering conditions for AlOx, ZnO and ZnO/AlOx films………..172 Table 7-2 The sputtering conditions of ZnO-deposited glass and AlOx films..191 Table 7-3 FWHM of XRD (122) peaks of AlOx films grown on ZnO-deposited glass (sample E, sample F, and sample G)…………………………………...197 Table 7-4 The analysis of EDS from the TEM study of the AlOx films on ZnO-deposited glass………………………………………………………………...198

    [1] P.L. Chen, R.S. Muller, R.D. Jolly, G.L. Halac, R.M. White, A.P. Andrews, T.C. Lim, M.E. Motamedi, IEEE Trans. Electron Devices 29 (1982) 27.
    [2] E.S. Kim, R.S. Muller, IEEE Electron. Device Lett. 8 (1987) 467.
    [3] K.M. Lakin, J.S. Wang, Appl. Phys. Lett. 38 (1981) 125.
    [4] D. Redfield, Appl. Phys. Lett. 25(11) (1974) 634.
    [5] M. Miura, Jpn. J. Appl. Phys. 21 (1982) 264.
    [6] A. Baneriee, D. Wolf, S. Guha, J. Appl. Phys.70 (1991) 1692.
    [7] F. Quaranta, A. Valentini, F.R. Rizzi, G. Casamassima, J. Appl. Phys.74 (1993) 244.
    [8] F. S. Mahmood, R.D. Gould, A.K. Hassan, H.M. Salih, Thin Solid Films 270 (1995) 376.
    [9] N.W. Emanetoglu, C. Gorla, Y. Liu, S. Liang, Y. Lu, Materials Science in Semiconductor Processing 2 (1999) 247.
    [10] Mitsuyu T, Ono S, Wasa K. J Appl Phys. 51(5) (1980) 2464.
    [11] Koike J, Tanaka H, leki H, Jpn J Appl Phys. 34 (1995) 2678.
    [12] Won Taeg Lim, Chang Hyo Lee, Thin Solid Films 353 (1999) 12.
    [13] N. Fujimura, T. Nishihara, S. Goto, J. Xu and T. Ito, J. Cryst. Growth 130 (1993) 269.
    [14] D. L. Raimondi and E. Kay, J. Vac. Sci. Technol. Vol.7, No.1 (1969) 96.
    [15] G. A. Hirata, J. Mckittrik, T. Cheeks, J. M. Siqueiros, J. A. Diaz, O. Contreras, O. A. Lopez, Thin Solid Films 288, (1996) 29.
    [16] B. H. Choi and H. B. Im, Thin Solid Films 193/194, (1990) 712.
    [17] T. Minami, H. Sato, H. Nanto, and S. Takata, Jpn. J. Appl. Phys. 1 125, (1986) L776.
    [18] G. J. Exarhos, S. K. Sharma, Thin Solid Films 270 (1995) 27-32.
    [19] K. Tominaga, M. Kataoka, Thin Solid Films 290/291 (1996) 84.
    [20] J. Ma, F. Ji, D. H. Zhang, H. L. Ma, S. Y. Li, Thin Solid Films 357 (1999) 98.
    [21] Y. Igasaki and H. Saito, Thin Solid Films 199 (1991) 223.
    [22] I. Safi, R.P. Howson, Thin Solid Films 343-344 (1999) 115.
    [23] J. Ma, J. Feng, Thin Solid Films 279 (1996) 213.
    [24] S. Zafar, F. Ferekides, D. L. Morel, J. Vac. Sci. Technol. A 13 (4) (1995) 2177.
    [25] I. Sieber, N. Wanderka, I. Urban, I. Dörfel, E. Schierhorn, F.Fenske, W. Fuhs, Thin Solid Films 330 (1998) 108.
    [26] W. Tang, D. C. Cameron, Thin Solid Films 238 (1994) 83.
    [27] D. H. Zhang, D. E. Brodie, Thin Solid Films, 238 (1994) 95.
    [28] S. A. Studenikin, Nickolay Golego, M. Cocivera, J. Appl. Phys. Vol. 87, 5 (2000) 2413.
    [29] F. H. Lu, H. Y. Chen, Thin Solid Films 355-356 (1999) 374.
    [30] B. S. Chiou, S. T. Hsieh, W. F. Wu, J. Am. Ceram. Soc., 77 (7) (1994) 1740-1744.
    [31] J.M. Schneider, W.D. Sproul, R. W. J. Chia, Ming-Show Wong, A. Matthews, Surface and Coatings Technology 96 (1997) 262.
    [32] M. Ohring, The Materials Science of Thin Films, printed in the United States of America, (1991) pp.519.
    [33] F. Fietzke, K. Goedicke, W. Hempel, Surface and Coating Technology 86-87 (1996) 657.
    [34] J. Skogsmo, M. Halvarsson and S. Vuorinen, Surf. Coat. Technol., 54/55 (1992) 186.
    [35] J.A. Thornton and J. Chin, Ceramic Bull., 56 (1977) 504.
    [36] R. Lohmann, E. Österschulze, K. Thoma and H. Gärtner, W. Herr, B. Matthes, E. Broszeit and K.-H. Kloos, Materials Science and Engineering, A 139 (1991) 259.
    [37] X.W. Sun, L.D. Wang, H.S. Kwok, Thin Solid Films 360 (2000) 75.
    [38] Brian Chapman, ”Glow Discharge Processes”, John Wiley and Sons, New York, 1980.
    [39] D.S. Richerby and A. Matthews, Advanced Surface Coatings: A Handbook of Surface Engineering, Chapaman and Hall, New York, 1991, p92-100.
    [40] S. M. Rossnagel et al., “Handbook of Plasma Processing Technology’, Noyes Publications, Park Ridge, New Jersey, U.S.A.,1982.
    [41] Rointan F. Bunshah et al.,”Deposition Technologies for Films and Coatings”, Noyes Publications, Park Ridge, New Jersey, U.S.A., 1982.
    [42] John A. Thornton, J. Vac. Sci. Technol., 11 (4) (1974) 666.
    [43] H. L. Hartnagel, A. K. Jain and C. Jagadish, “Semiconducting Transparent Thin Films”, published by Institute of Physics Publication, 1995, p.17.
    [44] R. Wang, L.H. King and A.W. Sleight, J. Mater. Res. 11 (1996) 1659.
    [45] H. Hawamoto, R. Konishi, H. Harada and H. Sasakura, Springer Proceedings in Physics, 38 (1989) 314.
    [46] A. Sarkar, S. Ghosh, S. Chaudhury and A.K. Pal, Thin Solid Films 204 (1991) 255.
    [47] F.D. Paraguay, J. Morales, W.L. Estrada, E.Andrade, M.M. Yoshida, Thin Solid Films 366 (2000) 16.
    [48] C.X. Qiu and I. Shih, Sol. Energy Mater. 13 (1986) 75.
    [49] T. Minami, H. Sato, H. Nanto, S. Takada, Jpn. J. Appl. Phys. 125 (1986) 1776.
    [50] S. Major, S. Kumar, M. Bhatnagar, K. L. Chopra, Appl. Phys. Lett. 49 (1989) 394.
    [51] K. L. Chopra, S. Major, D. K. Pandya, Thin Solid Films, 102 (1983) 1.
    [52] H. L. Hartnagel, A. K. Jain and C. Jagadish, “Semiconducting Transparent Thin Films”, published by Institute of Physics Publication, 1995, Chap. 3.
    [53] G. Gordillo and C. Calderón, Solar Energy Materials &Solar Cell 69 (2001) 251.
    [54] B. S. Chiou, S. T. Hsieh, W. F. Wu, J. Am. Ceram. Soc., 77 (7) (1994)1740.
    [55] M. Ohring, The Materials Science of Thin Films (Academic Press, San Diego, CA, 1991), pp.509-514.
    [56] D. F. Paraguay, L. W. Estrada, N.D.R. Acosta, E. Andrade, and M. Miki-Yoshida, Thin Solid Films 350 (1999) 192.
    [57] N. Serpone, D. Lawless, and R. Khairutdinov, J. Phys. Chem., 99 (1995) 16646.
    [58] E. Burstein, ²Anomalous Optical Absorption Limit in InSb², Phys. Rev., 93(1954) p.632-633.
    [59] T. S. Moss, ²The Interpretation of the Properties of Indium Antimonide², Phys. Soc. London Sect. B, 67(1954) p.775-782.
    [60] L. J. van der Pauw, “A method of measuring specific resistivity and Hall effect of discs of arbitrary shape”, Philips Research Reports 13 (1985) 1.
    [61] Y. Zhang, G. Du, D. Liu, X. Wang, Y. Ma, J. Wang, J. Yin, X. Yang, X. Hou, S. Yang, Journal of Crystal Growth 243 (2002) 439.
    [62] K. Koski, J. Hölsä, P. Juliet, Thin Solid Films 339 (1999) 240.
    [63] L. J. Meng, M. P. dos Santos, Thin Solid Films 322 (1998) 56.
    [64] H. F. Winters, P. Sigmund, J. Appl. Phys. 45 (1974) 4760.
    [65] K.H. Yoon, J.W. Choi, D.H. Lee, Thin Solid Films 302 (1997) 116.
    [66] E.M. Bachari, G. Baud, S. Ben Amor, M. Jacquet, Thin Solid Films 348
    (1999) 165.
    [67] S. Takada, J. Appl. Phys. 73(10) (1993)4739.
    [68] O. Yamazaki, T. Mitsuyu, and K. Wasa, IEEE Transactionson Sonics and Ultrasonics, Vol.SU-27, No. 6 (1980) 369.
    [69] R. Lohmann, E. Österschulze, K. Thoma and H. Gärtner, W. Herr, B. Matthes, E. Broszeit and K.-H. Kloos, Materials Science and Engineering, A 139 (1991) 259.
    [70] B. D. Cullity, Elements of X-ray diffraction, 2nd ed. (Addison-Wesley, Boston, MA, 1978), pp. 86-87.
    [71] P. M. Verghese, D. R. Clarke, J. Mater. Res. Vol. 14, No.3 (1999)1039.
    [72] K. Uchida, K. Konishi, H. Ishida, F. Kumon, T. Deguchi, K. Katayama, Nisshin Steel Technol. Rep. 51 (1984) 29.
    [73] Y. Natsume, H. Sakata, Thin Solid Films 372 (2000) 30.
    [74] G. Sanon, R. Rup, A. Mansingh, Thin Solid Films, 190 (1990) 287.
    [75] C.C.F. John, J. B. Frank, J. Electrochem. Soc.:Solid-State Science and Technology, 122 (1975)1719.
    [76] I. K. El Zawawi , R. A. Abd Alla , Thin Solid Films, 339 ( 1999 ) 314.
    [77] D. Gal, G. Hodes, D. Lincot, H.-W. Schock, Thin Solid Film,361-362 (2000) 79.
    [78] Putnis, Introduction to Mineral Sciences, 1992, p.100-106.
    [79] N. Fujimura, T. Nishihara, S. Goto, J. Xu and T. Ito, J. Cryst. Growth 130 (1993) 269.
    [80] W.K. Burton, N. Carberra and F.C. Frank, Phil. Trans. Roy. Soc. London A 243 (1951) 299.
    [81] Y. Ohya, H. Saiki, T. Tanaka, and Y. Takahashi, J. Am. Ceram. Soc. 79 (4) (1996) 825.
    [82] A. van der Drift, Philips Res. Rep. 22 (1967) 267.
    [83] G. Knuyt, C. Quaeyhaegens, J. D’Haen, L.M. Stals, Thin Solid Films 258 (1995) 159.
    [84] G. Knuyt, C. Quaeyhaegens, J. D’Haen, L.M. Stals, Phys. Status Solidi B 195 (1996) 179.
    [85] P.B. Barna, M. Adamik, Thin Solid Films 317 (1998) 27.
    [86] L. Sagalowicz, G. R. Fox, J. Mater. Res., Vol. 14, No. 5 (1999) 1876.
    [87] J. Yu, X. Zhao, Q. Zhao, Thin Solid Films 379 (2000) 2.
    [88] B. E. Sernelius, K. F. Berggren, Z. C. Jin, I. Hamberg, and C. G. Granqvist, Physical Review B 37 (1988) 10244.
    [89] H. Nanto, T. Minami, S. Shooji, and S. Takata, J. Appl. Phys. 55 (4) (1984) 1029.
    [90] S. Ghosh, A. Sarkar, S. Bhattacharya, S. Chaudhuri, A. K. Pal, Journal of Crystal Growth 108 (1991) 534.
    [91] A.P. Roth, J.B. Webb, D.F. Williams, Solid State Communications 39 (1981) 1269.
    [92] D.C. Reynolds, C.W. Litton, T. C. Collins, Phys. Stat. Solidi 12 (1965) 3.
    [93] M. N. Islam, T. B. Ghosh, K. L. Chopra, H. N. Acharya, Thin Solid Films 280 (1996) 20.
    [94] Y.J. Kim, H.J. Kim, Materials Letters 41 (1999) 159.
    [95] V. E. Henrich, P. A. Cox, The Surface Science of Metal Oxides (Cambridge University Press, Cambridge, U. K.1994).
    [96] C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg, Handbook of X-ray Photoelectron Spectroscopy, printed in in the United States of America, 1979, pp.42-43.
    [97] C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg, Handbook of X-ray Photoelectron Spectroscopy, printed in in the United States of America, 1979, pp.84-85.
    [98] C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg, Handbook of X-ray Photoelectron Spectroscopy, printed in in the United States of America, 1979, pp.50-51.
    [99] K. H. Kim, K. C. Park and D. Y. Ma, J. Appl. Phys. 81 (12) (1997) 7764.
    [100] J. F. Chang, M.H. Hon, Thin Solid Films 386 (2001) 79.
    [101] A. T. Silver, J. C. Joubert, Thin Solid Films 197 (1991) 195.
    [102] J. W. Christian, “ The Theory of Transformation in Metals and Alloys,” 2nd ed., Part 1,Pergamon Press, Oxford, U.K., 1975, p.418.
    [103] N. Naghavi, A. Rougier, C. Marcel, C. Guéry, J.B. Leriche, J.M.Tarascon, Thin Solid Films 360 (2000) 233.
    [104] S. Naguchi and H. Sakata, J. Phys. D, 13 (1980) 1129.
    [105] M. Ohring, The Materials Science of Thin Films (Academic Press, San Diego, CA, 1991), p.517.
    [106] M. Ohring, The Materials Science of Thin Films (Academic Press, San Diego, CA, 1991), p.465.
    [107] T. Schuler, M.A. Aegerter, Thin Solid Films 351 (1999) 125.
    [108] M. Ohring, The Materials Science of Thin Films (Academic Press, San Diego, CA, 1991), p.457.
    [109] G. Haacke, J. Appl. Phys., 47 (1976) 4086.
    [110] T. L. Tansley, D. F. Neely, Thin Solid Films, 121 (1984) 95.
    [111] T. Minami, H. Nanto, S. Shooji, S. Takata, Thin Solid Films 111 (1984) 167.
    [112] E. Shanthi, V. Dutta, A. Banerjee, K.L. Chopra, J. Appl. Phys. 51 (1980) 2643.
    [113] D. V. Morgan, Y.H. Aliyu, R.W. Bunce, A. Salehi, Thin Solid Films 312 (1998) 268.
    [114] E. Mollwo, in R.G. Breckenridge, B.R. Russell, E.E. Hahn (eds.), Proc. Photoconductivity Conf., Wiley, New York, 1954, p.509.
    [115] M. Ohring, The Materials Science of Thin Films, printed in the United States of America, 1991, pp.379-383,.
    [116] G. Laukaitis, S. Lindroos, S. Tamulevičius, M. Leskelä, Appl. Surf. Sci, 185 (2001) 134.
    [117] C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg, Handbook of X-ray Photoelectron Spectroscopy, printed in in the United States of America, 1979, pp.68-69.
    [118] T. Yamamoto, T. Shiosaki, A. Kawabata, J. Appl. Phys. 51 (6), (1980) 3113.
    [119] I. Hamberg, C. G. Granqvist, K. F. Berggren, B.E. Sernelius, L. Engström, Physical Review B, Vol.30, No.6, (1984) 3240.
    [120] D. Wang, U. Geyer, S. Schneider, G.V. Minnigerode, Thin Solid Films 292 (1997) 184.
    [121] M. Ohring, The Materials Science of Thin Films (Academic Press, San Diego, CA, 1991), p.441.
    [122] W. Komatsu, M. Miyamoto, S. Hujita, and Y. Moriyoshi, Yogyo Kyokaishi, 76 (1968) 407.
    [123] JCPDS 88-0107 (Joint Committee for Powder Diffraction, Swarthmore, PA, 1999).
    [124] M. Ohring, The Materials Science of Thin Films (Academic Press, San Diego, CA, 1991), pp.314-316.
    [125] C.V. Thompson, in Evolution of Surface and Thin-Film Microstructure, edited by H.A. Atwater, E.H. Chason, M.K. Grabow, and M.G. Lagally (Mater. Res. Soc. Symp. Proc. 280, Pittsburgh, PA, 1992), p. 307.
    [126] C. V. Thompson, Grain Growth in Polycrystalline Thin Films: Structure, Texture, Properties and Applications, edited by K. Barmak, M.A. Parker, J.A. Floro, R. Sinclair, and D.A. Smith (Mater. Res. Soc. Symp. Proc. 343, Pittsburgh, PA, 1994), p.3.
    [127] S.V.Prasad, S.D. Walck, J.S. Zabinski, Thin Solid Films 360 (2000) 107.
    [128] H.S. Kwok, X.W. Sun, D.H. Kim, Thin Solid Films 335 (1998) 299.
    [129] S. S. Lin, J. L. Huang, and D. F. Lii, “The effects of r.f. power and substrate temperature on properties of ZnO films” accepted to Surface and Coatings Technology, 176/2 (2003) 173.
    [130] A. Salehi, Thin Solid Films 324 (1998) 214.
    [131] M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker, J. Stollenwerk, Thin Solid Films 326 (1998) 72.
    [132] S. S. Lin and J. L. Huang, J. Mater. Res., Vol. 18, No. 4 (2003) 965.
    [133] D. H. Zhang, J. Phys. D:Appl. Phys. 28 (1995) 1273.
    [134] W. D. Sproul, M. E. Graham, M. S. Wong, S. Lopez, D. Li, J. Vac. Sci, Technol. A 13(3) (1995)1188.

    下載圖示 校內:立即公開
    校外:2003-12-12公開
    QR CODE