| 研究生: |
林素霞 Lin, Su-Shia |
|---|---|
| 論文名稱: |
氧化鋅薄膜的特性改良及應用之研究 The Investigation for Improving Properties and Application of Zinc Oxide Films |
| 指導教授: |
黃肇瑞
Huang, Jow-Lay |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 223 |
| 中文關鍵詞: | 氧化鋅 、射頻磁控濺鍍法 、ZnO:Al 、ZnO:Ti 、氧化鋁 、光學性質 、電阻率 |
| 外文關鍵詞: | resistivity, optical properties, aluminum oxide, ZnO:Ti, ZnO:Al, RF magnetron sputtering, zinc oxide |
| 相關次數: | 點閱:119 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於氧化鋅薄膜具有顯著的c軸優先成長取向及透明性,而且具有明顯的壓電及壓光效應,因此被廣泛地應用於聲電及聲光元件。此外,氧化鋅薄膜的表面織構化或坑洞化的表面型態對於光學元件(如:太陽能電池)有強化陷光(enhanced light trapping)的位能應用。一般氧化鋅薄膜的電阻偏高(約為1-100 W-cm),其導電特性主要受制於氧空缺與鋅間隙原子。氧化鋅薄膜的性質深受其製備參數所影響。在本研究裡,氧化鋅薄膜是於純氬氣中以射頻磁控濺鍍法來沈積。探討射頻功率、基板溫度和薄膜厚度對於氧化鋅薄膜的結構及光學性質之影響是本研究的重點之一。
為了提升具高電阻的氧化鋅薄膜之導電性,則將同時採用射頻(RF)濺射氧化鋅靶材及直流(DC)濺射鋁靶材進行混鍍,進行摻雜多量鋁(11.3 at.%)於氧化鋅薄膜(ZnO:Al)的披覆,實驗結果顯示經改良後,電阻率可降低至8.52×10-3 W-cm。相互比較之下,本研究之多量鋁摻雜的氧化鋅薄膜其導電性並不差於一般文獻所報導的少量鋁(6.2 at.%)摻雜的氧化鋅薄膜,然而仍有改善的空間。此外,ZnO:Ti薄膜是相當有潛力的光電材料,由於以Ti+4來取代Zn+2易產生較多電子,則藉由鈦的少量摻雜就可以提升氧化鋅薄膜的導電性,實驗結果顯示,當Ti含量為1.1at.%時,電阻率可達9.69×10-3 W-cm,確實改善了ZnO薄膜的導電性質。因此,本研究亦將探討基板溫度、直流功率、薄膜厚度和熱處理對於ZnO:Al與ZnO:Ti薄膜性質的影響,以期能達到鍍層的較佳之導電及光學性質。
為了研究具有特殊結晶性的氧化鋅薄膜的影響性及應用,因此將氧化鋁薄膜沈積於玻璃基材及沈積於已披覆氧化鋅薄膜的玻璃基材上以作為比較。根據實驗結果發現,單一層氧化鋁薄膜沈積在玻璃基材上對應於非晶質的結構,然而將其披覆於已沈積氧化鋅薄膜的玻璃基材上,氧化鋁薄膜明顯地從非晶質的結構轉變成多晶結構,而且可見光穿透率大幅提高。本研究的另一目標是探討在玻璃基材上濺鍍雙層材料的整體性質,規劃出最佳條件和個別厚度,使氧化鋅與氧化鋁此雙層薄膜達到最佳組合,並獲得較佳的光學性質。
Zinc oxide (ZnO) thin films with a strong c-axis preferred orientation, obvious piezoelectric and piezo-optical effects, have been used in acousto-electric and acousto-optical devices. Besides, the surface textured or “cratered” morphology of ZnO films have a potential application in enhanced light trapping in optical devices such as solar cells. The conduction characteristics of ZnO film with typical resistivity of 1-100 W-cm were primarily dominated by electrons due to the oxygen vacancies and Zn interstitial atoms. The characteristics of ZnO film were mainly affected by its preparation conditions. In this study, ZnO thin films will be deposited by RF magnetron sputtering by using zinc oxide target under pure Ar atmosphere. The effects of the RF power, substrate temperature and film thickness on the structural and optical properties of ZnO films will be investigated.
In order to further improve the electrical properties of ZnO films, transparent conducting ZnO films was heavily doped with Al (ZnO:Al) by simultaneous RF magnetron sputtering of ZnO and DC magnetron sputtering of Al. Experimental results indicated that the resistivity of ZnO:Al film (11.3 at.%) was 8.52´10-3 W-cm, as good as that reported for ZnO films doped with less Al (6.2 at.%). Certainly, it could be still further improved. In addition, the ZnO:Ti film is another good candidate material for acousto-electric and acousto-optical devices. When Ti content was 1.1 at.%, the resistivity was 9.69×10-3 W-cm. It suggested that the electrical properties of ZnO films indeed were improved. Therefore, the objective of this study is to investigate the effects of the substrate temperature, DC power, film thickness and heat treatment on the ZnO:Al film and ZnO:Ti films.
In order to ascertain the effects of the substrate on the quality of AlOx films, AlOx films were grown on a bare glass and a ZnO-deposited glass. The results indicated that AlOx films exhibited polycrystalline structure upon the ZnO interlayer rather than the amorphous structure obtaining by sputtering on a bare glass. In addition, good optical properties have been found for AlOx films grown on ZnO-deposited glasses. The purpose of this work is to further improve the visible transmission.
[1] P.L. Chen, R.S. Muller, R.D. Jolly, G.L. Halac, R.M. White, A.P. Andrews, T.C. Lim, M.E. Motamedi, IEEE Trans. Electron Devices 29 (1982) 27.
[2] E.S. Kim, R.S. Muller, IEEE Electron. Device Lett. 8 (1987) 467.
[3] K.M. Lakin, J.S. Wang, Appl. Phys. Lett. 38 (1981) 125.
[4] D. Redfield, Appl. Phys. Lett. 25(11) (1974) 634.
[5] M. Miura, Jpn. J. Appl. Phys. 21 (1982) 264.
[6] A. Baneriee, D. Wolf, S. Guha, J. Appl. Phys.70 (1991) 1692.
[7] F. Quaranta, A. Valentini, F.R. Rizzi, G. Casamassima, J. Appl. Phys.74 (1993) 244.
[8] F. S. Mahmood, R.D. Gould, A.K. Hassan, H.M. Salih, Thin Solid Films 270 (1995) 376.
[9] N.W. Emanetoglu, C. Gorla, Y. Liu, S. Liang, Y. Lu, Materials Science in Semiconductor Processing 2 (1999) 247.
[10] Mitsuyu T, Ono S, Wasa K. J Appl Phys. 51(5) (1980) 2464.
[11] Koike J, Tanaka H, leki H, Jpn J Appl Phys. 34 (1995) 2678.
[12] Won Taeg Lim, Chang Hyo Lee, Thin Solid Films 353 (1999) 12.
[13] N. Fujimura, T. Nishihara, S. Goto, J. Xu and T. Ito, J. Cryst. Growth 130 (1993) 269.
[14] D. L. Raimondi and E. Kay, J. Vac. Sci. Technol. Vol.7, No.1 (1969) 96.
[15] G. A. Hirata, J. Mckittrik, T. Cheeks, J. M. Siqueiros, J. A. Diaz, O. Contreras, O. A. Lopez, Thin Solid Films 288, (1996) 29.
[16] B. H. Choi and H. B. Im, Thin Solid Films 193/194, (1990) 712.
[17] T. Minami, H. Sato, H. Nanto, and S. Takata, Jpn. J. Appl. Phys. 1 125, (1986) L776.
[18] G. J. Exarhos, S. K. Sharma, Thin Solid Films 270 (1995) 27-32.
[19] K. Tominaga, M. Kataoka, Thin Solid Films 290/291 (1996) 84.
[20] J. Ma, F. Ji, D. H. Zhang, H. L. Ma, S. Y. Li, Thin Solid Films 357 (1999) 98.
[21] Y. Igasaki and H. Saito, Thin Solid Films 199 (1991) 223.
[22] I. Safi, R.P. Howson, Thin Solid Films 343-344 (1999) 115.
[23] J. Ma, J. Feng, Thin Solid Films 279 (1996) 213.
[24] S. Zafar, F. Ferekides, D. L. Morel, J. Vac. Sci. Technol. A 13 (4) (1995) 2177.
[25] I. Sieber, N. Wanderka, I. Urban, I. Dörfel, E. Schierhorn, F.Fenske, W. Fuhs, Thin Solid Films 330 (1998) 108.
[26] W. Tang, D. C. Cameron, Thin Solid Films 238 (1994) 83.
[27] D. H. Zhang, D. E. Brodie, Thin Solid Films, 238 (1994) 95.
[28] S. A. Studenikin, Nickolay Golego, M. Cocivera, J. Appl. Phys. Vol. 87, 5 (2000) 2413.
[29] F. H. Lu, H. Y. Chen, Thin Solid Films 355-356 (1999) 374.
[30] B. S. Chiou, S. T. Hsieh, W. F. Wu, J. Am. Ceram. Soc., 77 (7) (1994) 1740-1744.
[31] J.M. Schneider, W.D. Sproul, R. W. J. Chia, Ming-Show Wong, A. Matthews, Surface and Coatings Technology 96 (1997) 262.
[32] M. Ohring, The Materials Science of Thin Films, printed in the United States of America, (1991) pp.519.
[33] F. Fietzke, K. Goedicke, W. Hempel, Surface and Coating Technology 86-87 (1996) 657.
[34] J. Skogsmo, M. Halvarsson and S. Vuorinen, Surf. Coat. Technol., 54/55 (1992) 186.
[35] J.A. Thornton and J. Chin, Ceramic Bull., 56 (1977) 504.
[36] R. Lohmann, E. Österschulze, K. Thoma and H. Gärtner, W. Herr, B. Matthes, E. Broszeit and K.-H. Kloos, Materials Science and Engineering, A 139 (1991) 259.
[37] X.W. Sun, L.D. Wang, H.S. Kwok, Thin Solid Films 360 (2000) 75.
[38] Brian Chapman, ”Glow Discharge Processes”, John Wiley and Sons, New York, 1980.
[39] D.S. Richerby and A. Matthews, Advanced Surface Coatings: A Handbook of Surface Engineering, Chapaman and Hall, New York, 1991, p92-100.
[40] S. M. Rossnagel et al., “Handbook of Plasma Processing Technology’, Noyes Publications, Park Ridge, New Jersey, U.S.A.,1982.
[41] Rointan F. Bunshah et al.,”Deposition Technologies for Films and Coatings”, Noyes Publications, Park Ridge, New Jersey, U.S.A., 1982.
[42] John A. Thornton, J. Vac. Sci. Technol., 11 (4) (1974) 666.
[43] H. L. Hartnagel, A. K. Jain and C. Jagadish, “Semiconducting Transparent Thin Films”, published by Institute of Physics Publication, 1995, p.17.
[44] R. Wang, L.H. King and A.W. Sleight, J. Mater. Res. 11 (1996) 1659.
[45] H. Hawamoto, R. Konishi, H. Harada and H. Sasakura, Springer Proceedings in Physics, 38 (1989) 314.
[46] A. Sarkar, S. Ghosh, S. Chaudhury and A.K. Pal, Thin Solid Films 204 (1991) 255.
[47] F.D. Paraguay, J. Morales, W.L. Estrada, E.Andrade, M.M. Yoshida, Thin Solid Films 366 (2000) 16.
[48] C.X. Qiu and I. Shih, Sol. Energy Mater. 13 (1986) 75.
[49] T. Minami, H. Sato, H. Nanto, S. Takada, Jpn. J. Appl. Phys. 125 (1986) 1776.
[50] S. Major, S. Kumar, M. Bhatnagar, K. L. Chopra, Appl. Phys. Lett. 49 (1989) 394.
[51] K. L. Chopra, S. Major, D. K. Pandya, Thin Solid Films, 102 (1983) 1.
[52] H. L. Hartnagel, A. K. Jain and C. Jagadish, “Semiconducting Transparent Thin Films”, published by Institute of Physics Publication, 1995, Chap. 3.
[53] G. Gordillo and C. Calderón, Solar Energy Materials &Solar Cell 69 (2001) 251.
[54] B. S. Chiou, S. T. Hsieh, W. F. Wu, J. Am. Ceram. Soc., 77 (7) (1994)1740.
[55] M. Ohring, The Materials Science of Thin Films (Academic Press, San Diego, CA, 1991), pp.509-514.
[56] D. F. Paraguay, L. W. Estrada, N.D.R. Acosta, E. Andrade, and M. Miki-Yoshida, Thin Solid Films 350 (1999) 192.
[57] N. Serpone, D. Lawless, and R. Khairutdinov, J. Phys. Chem., 99 (1995) 16646.
[58] E. Burstein, ²Anomalous Optical Absorption Limit in InSb², Phys. Rev., 93(1954) p.632-633.
[59] T. S. Moss, ²The Interpretation of the Properties of Indium Antimonide², Phys. Soc. London Sect. B, 67(1954) p.775-782.
[60] L. J. van der Pauw, “A method of measuring specific resistivity and Hall effect of discs of arbitrary shape”, Philips Research Reports 13 (1985) 1.
[61] Y. Zhang, G. Du, D. Liu, X. Wang, Y. Ma, J. Wang, J. Yin, X. Yang, X. Hou, S. Yang, Journal of Crystal Growth 243 (2002) 439.
[62] K. Koski, J. Hölsä, P. Juliet, Thin Solid Films 339 (1999) 240.
[63] L. J. Meng, M. P. dos Santos, Thin Solid Films 322 (1998) 56.
[64] H. F. Winters, P. Sigmund, J. Appl. Phys. 45 (1974) 4760.
[65] K.H. Yoon, J.W. Choi, D.H. Lee, Thin Solid Films 302 (1997) 116.
[66] E.M. Bachari, G. Baud, S. Ben Amor, M. Jacquet, Thin Solid Films 348
(1999) 165.
[67] S. Takada, J. Appl. Phys. 73(10) (1993)4739.
[68] O. Yamazaki, T. Mitsuyu, and K. Wasa, IEEE Transactionson Sonics and Ultrasonics, Vol.SU-27, No. 6 (1980) 369.
[69] R. Lohmann, E. Österschulze, K. Thoma and H. Gärtner, W. Herr, B. Matthes, E. Broszeit and K.-H. Kloos, Materials Science and Engineering, A 139 (1991) 259.
[70] B. D. Cullity, Elements of X-ray diffraction, 2nd ed. (Addison-Wesley, Boston, MA, 1978), pp. 86-87.
[71] P. M. Verghese, D. R. Clarke, J. Mater. Res. Vol. 14, No.3 (1999)1039.
[72] K. Uchida, K. Konishi, H. Ishida, F. Kumon, T. Deguchi, K. Katayama, Nisshin Steel Technol. Rep. 51 (1984) 29.
[73] Y. Natsume, H. Sakata, Thin Solid Films 372 (2000) 30.
[74] G. Sanon, R. Rup, A. Mansingh, Thin Solid Films, 190 (1990) 287.
[75] C.C.F. John, J. B. Frank, J. Electrochem. Soc.:Solid-State Science and Technology, 122 (1975)1719.
[76] I. K. El Zawawi , R. A. Abd Alla , Thin Solid Films, 339 ( 1999 ) 314.
[77] D. Gal, G. Hodes, D. Lincot, H.-W. Schock, Thin Solid Film,361-362 (2000) 79.
[78] Putnis, Introduction to Mineral Sciences, 1992, p.100-106.
[79] N. Fujimura, T. Nishihara, S. Goto, J. Xu and T. Ito, J. Cryst. Growth 130 (1993) 269.
[80] W.K. Burton, N. Carberra and F.C. Frank, Phil. Trans. Roy. Soc. London A 243 (1951) 299.
[81] Y. Ohya, H. Saiki, T. Tanaka, and Y. Takahashi, J. Am. Ceram. Soc. 79 (4) (1996) 825.
[82] A. van der Drift, Philips Res. Rep. 22 (1967) 267.
[83] G. Knuyt, C. Quaeyhaegens, J. D’Haen, L.M. Stals, Thin Solid Films 258 (1995) 159.
[84] G. Knuyt, C. Quaeyhaegens, J. D’Haen, L.M. Stals, Phys. Status Solidi B 195 (1996) 179.
[85] P.B. Barna, M. Adamik, Thin Solid Films 317 (1998) 27.
[86] L. Sagalowicz, G. R. Fox, J. Mater. Res., Vol. 14, No. 5 (1999) 1876.
[87] J. Yu, X. Zhao, Q. Zhao, Thin Solid Films 379 (2000) 2.
[88] B. E. Sernelius, K. F. Berggren, Z. C. Jin, I. Hamberg, and C. G. Granqvist, Physical Review B 37 (1988) 10244.
[89] H. Nanto, T. Minami, S. Shooji, and S. Takata, J. Appl. Phys. 55 (4) (1984) 1029.
[90] S. Ghosh, A. Sarkar, S. Bhattacharya, S. Chaudhuri, A. K. Pal, Journal of Crystal Growth 108 (1991) 534.
[91] A.P. Roth, J.B. Webb, D.F. Williams, Solid State Communications 39 (1981) 1269.
[92] D.C. Reynolds, C.W. Litton, T. C. Collins, Phys. Stat. Solidi 12 (1965) 3.
[93] M. N. Islam, T. B. Ghosh, K. L. Chopra, H. N. Acharya, Thin Solid Films 280 (1996) 20.
[94] Y.J. Kim, H.J. Kim, Materials Letters 41 (1999) 159.
[95] V. E. Henrich, P. A. Cox, The Surface Science of Metal Oxides (Cambridge University Press, Cambridge, U. K.1994).
[96] C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg, Handbook of X-ray Photoelectron Spectroscopy, printed in in the United States of America, 1979, pp.42-43.
[97] C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg, Handbook of X-ray Photoelectron Spectroscopy, printed in in the United States of America, 1979, pp.84-85.
[98] C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg, Handbook of X-ray Photoelectron Spectroscopy, printed in in the United States of America, 1979, pp.50-51.
[99] K. H. Kim, K. C. Park and D. Y. Ma, J. Appl. Phys. 81 (12) (1997) 7764.
[100] J. F. Chang, M.H. Hon, Thin Solid Films 386 (2001) 79.
[101] A. T. Silver, J. C. Joubert, Thin Solid Films 197 (1991) 195.
[102] J. W. Christian, “ The Theory of Transformation in Metals and Alloys,” 2nd ed., Part 1,Pergamon Press, Oxford, U.K., 1975, p.418.
[103] N. Naghavi, A. Rougier, C. Marcel, C. Guéry, J.B. Leriche, J.M.Tarascon, Thin Solid Films 360 (2000) 233.
[104] S. Naguchi and H. Sakata, J. Phys. D, 13 (1980) 1129.
[105] M. Ohring, The Materials Science of Thin Films (Academic Press, San Diego, CA, 1991), p.517.
[106] M. Ohring, The Materials Science of Thin Films (Academic Press, San Diego, CA, 1991), p.465.
[107] T. Schuler, M.A. Aegerter, Thin Solid Films 351 (1999) 125.
[108] M. Ohring, The Materials Science of Thin Films (Academic Press, San Diego, CA, 1991), p.457.
[109] G. Haacke, J. Appl. Phys., 47 (1976) 4086.
[110] T. L. Tansley, D. F. Neely, Thin Solid Films, 121 (1984) 95.
[111] T. Minami, H. Nanto, S. Shooji, S. Takata, Thin Solid Films 111 (1984) 167.
[112] E. Shanthi, V. Dutta, A. Banerjee, K.L. Chopra, J. Appl. Phys. 51 (1980) 2643.
[113] D. V. Morgan, Y.H. Aliyu, R.W. Bunce, A. Salehi, Thin Solid Films 312 (1998) 268.
[114] E. Mollwo, in R.G. Breckenridge, B.R. Russell, E.E. Hahn (eds.), Proc. Photoconductivity Conf., Wiley, New York, 1954, p.509.
[115] M. Ohring, The Materials Science of Thin Films, printed in the United States of America, 1991, pp.379-383,.
[116] G. Laukaitis, S. Lindroos, S. Tamulevičius, M. Leskelä, Appl. Surf. Sci, 185 (2001) 134.
[117] C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg, Handbook of X-ray Photoelectron Spectroscopy, printed in in the United States of America, 1979, pp.68-69.
[118] T. Yamamoto, T. Shiosaki, A. Kawabata, J. Appl. Phys. 51 (6), (1980) 3113.
[119] I. Hamberg, C. G. Granqvist, K. F. Berggren, B.E. Sernelius, L. Engström, Physical Review B, Vol.30, No.6, (1984) 3240.
[120] D. Wang, U. Geyer, S. Schneider, G.V. Minnigerode, Thin Solid Films 292 (1997) 184.
[121] M. Ohring, The Materials Science of Thin Films (Academic Press, San Diego, CA, 1991), p.441.
[122] W. Komatsu, M. Miyamoto, S. Hujita, and Y. Moriyoshi, Yogyo Kyokaishi, 76 (1968) 407.
[123] JCPDS 88-0107 (Joint Committee for Powder Diffraction, Swarthmore, PA, 1999).
[124] M. Ohring, The Materials Science of Thin Films (Academic Press, San Diego, CA, 1991), pp.314-316.
[125] C.V. Thompson, in Evolution of Surface and Thin-Film Microstructure, edited by H.A. Atwater, E.H. Chason, M.K. Grabow, and M.G. Lagally (Mater. Res. Soc. Symp. Proc. 280, Pittsburgh, PA, 1992), p. 307.
[126] C. V. Thompson, Grain Growth in Polycrystalline Thin Films: Structure, Texture, Properties and Applications, edited by K. Barmak, M.A. Parker, J.A. Floro, R. Sinclair, and D.A. Smith (Mater. Res. Soc. Symp. Proc. 343, Pittsburgh, PA, 1994), p.3.
[127] S.V.Prasad, S.D. Walck, J.S. Zabinski, Thin Solid Films 360 (2000) 107.
[128] H.S. Kwok, X.W. Sun, D.H. Kim, Thin Solid Films 335 (1998) 299.
[129] S. S. Lin, J. L. Huang, and D. F. Lii, “The effects of r.f. power and substrate temperature on properties of ZnO films” accepted to Surface and Coatings Technology, 176/2 (2003) 173.
[130] A. Salehi, Thin Solid Films 324 (1998) 214.
[131] M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker, J. Stollenwerk, Thin Solid Films 326 (1998) 72.
[132] S. S. Lin and J. L. Huang, J. Mater. Res., Vol. 18, No. 4 (2003) 965.
[133] D. H. Zhang, J. Phys. D:Appl. Phys. 28 (1995) 1273.
[134] W. D. Sproul, M. E. Graham, M. S. Wong, S. Lopez, D. Li, J. Vac. Sci, Technol. A 13(3) (1995)1188.