簡易檢索 / 詳目顯示

研究生: 康恩宇
Midence Martinez Roberto Andres
論文名稱: 酸敏性離子通道亞型介導的小鼠行為與機械力轉導之探討
On Acid Sensing Ion Channel's Mediation of Subtype-Specific Mechanotransduction and Behavior
指導教授: 陳志成
Chen, Chih-Cheng
共同指導教授: 吳偉立
Wu, Wei-Li
學位類別: 博士
Doctor
系所名稱: 醫學院 - 跨領域神經科學國際博士學位學程
TIGP on The Interdisciplinary Neuroscience
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 91
外文關鍵詞: Neuroscience, Proprioception, ASIC, Mechanotransduction
相關次數: 點閱:102下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Proprioception is the integration of somatosensorial information that enables a person to know their body parts’ location, movement, and strains at any given time. Proprioceptive afferent data provides the foundation of our spatial and movement awareness and has been suggested as the foundation for self-awareness. A section of this somatosensorial input comes from an elaborate system of at least 5 types of peripheral nervous system proprioceptors that innervate muscles, joints, and tendons. Unfortunately, molecular and cellular proprioception remain largely unknown because genetic models to study this sensory modality are lacking. The acid-sensing ion (ASIC) family are trimeric membrane channels typically known for their function in sensing tissue acidosis. These, however, have recently emerged as dual-functioned, mechano-sensing ion channels. This role is in line with their phylogeny as a part of the ENaC/DEG family of well-known mechanosensors. Single-cell RNA sequencing studies reveal that ASICs are expressed unevenly in different subtypes of proprioceptors. My hypothesis is that ASIC members play dissimilar and specialized roles in these subtypes, mediating specific modalities of proprioception. These specific roles remain unknown and probing them would provide the genetic tools needed to study proprioceptor subtypes and their specific roles in proprioception.
    Here I present an approach to probe the specific mammalian proprioceptor classes, with the PNS-exclusive ASIC1b at the forefront of the study. The ASICs are modulators of stretch-induced currents in specific subsets of parvalbumin-positive proprioceptors. In situ hybridization reveals the proprioceptor classes that different ASICs modulate, and conditional ASIC knockout mice show specific gait-related phenotypes. Parvalbumin-conditional knockout of ASICs avoid physical contact and tight spaces, hinting at novel roles of proprioceptor subtypes in the modulation of mechanosensory modalities. Additionally, electrophysiological recordings of mechanotransducing properties evidence various roles of ASICs in the modulation of neurite stretch-induced currents, in vitro and ex vivo. Taken together, this thesis presents ASICs as modulators of specific mammalian stretch-induced proprioceptive currents. The modified currents of these proprioceptors result in specific proprioception-related behaviors.

    Table of Contents Acknowledgement ii Abstract vii Figures List viii i. Diagram 1. Collection of relevant anatomical diagrams and references from the literature viii ii. Diagram 2. Current and planned genetic strategies viii iii. Diagram 3. Working model for ASIC1b influence in proprioceptive-related behavior viii iv. Figures viii a. Figure 1. Three major Pv+ proprioceptor groups in the L4 dorsal root ganglia reveal their RNA in situ hybridization patterns with ASIC1b viii b. Figure 2. Three major Pv+ proprioceptor groups in the L4 dorsal root ganglia reveal their RNA in situ hybridization patterns with ASIC3 viii c. Figure 3. Colocalization patterns of ASIC1b and ASIC3 viii d. Figure 4. T Three major Pv+ proprioceptor groups in the L4 dorsal root ganglia reveal their RNA in situ hybridization patterns pertaining ASIC1b and ASIC3 viii e. Figure 5. Spatiotemporal gait analysis of different Pv and Nav1.8 conditional KOs of ASICs viii f. Figure 6. Standard deviations in gait analysis parameters of different Pv and Nav1.8 conditional KOs of ASICS viii g. Figure 7. Balance beam walking task viii h. Figure 8. Grid walking task viii i. Figure 9. Locomotion and physiology-related parameters viii j. Figure 10. Tube Social Dominance viii k. Figure 11. Pre-Pulse Inhibition viii l. Figure 12. Elevated Plus Maze viii m. Figure 13. Three-Chamber Social Preference viii n. Figure 14. Juvenile Play viii o. Figure 15. Digging behavior of phenotyped mice viii p. Figure 16. Thigmotaxis analysis in bright conditions ix q. Figure 17. Thigmotaxis analysis in dark conditions ix r. Figure 18. Thigmotaxis analysis under whiskerless conditions ix s. Figure 19. Substrate indentation deformation-driven electrophysiology experiment DRG neuronal primary culture setup ix t. Figure 20. General parameters of parvalbumin muscle afferents in substrate-indentation driven electrophysiological current experiments ix u. Figure 21. Multiple variable analysis of DRG muscle afferent neuronal populations ix v. Figure 22. ASICs effect on substrate-indentation driven currents of group alpha Pv+ muscle afferent neurons ix w. Figure 23. ASICs effect on substrate-indentation driven currents of group beta Pv+ muscle afferent neurons ix x. Figure 24. Genetic strategies for AA viruses ix y. Figure 25. AAV-driven conditional expression of WGA for retrograde labeling of muscle afferent Pv+ neurons ix z. Figure 26. Immunohistology imaging of the dorsal column nuclei ix aa. Figure 27. c-Fos staining of the dorsal column nuclei ix bb. Figure 28. pERK staining of the dorsal column nuclei nuclei ix cc. Figure 29. Proof-of-concept experimental approaches to probing the dorsal column nuclei ix Abbreviations x Chapter 1. Introduction 1 Proprioception 1 The Proprioceptor Classes 2 Molecular Tools 3 The Acid Sensing Ion Channels 3 ASIC Subtypes/Subunits and Their Trimeric Nature 4 The Dorsal Column Nuclei (DCN) 5 Connections Between the CNS and PNS 5 The Ascending Tracts 6 The Dorsal Column Nuclei Complex (DCN) 7 Sensorial Distribution in the Medulla 9 Significance 11 The Central Hypothesis and Purpose of This Thesis 12 Chapter 2. Materials and Methods 13 In-situ RNA Hybridization 13 Mouse Behavior Experiments 14 Spatiotemporal Analysis of Gait Patterns 15 Grid Walking Test 16 Balance Beam 16 Rotarod 17 Dominance Tube 17 Juvenile Play 18 Open-Field and Edge Preference Analysis 19 Three-Chamber Social Preference 19 Elevated Plus Maze 20 Marble Burying 20 Pre-Pulse Inhibition (Startle Response) 21 Substrate-Deformation Driven Stretch Electrophysiology Recordings 21 Multiple Variable Data Analysis 25 AAV Virus Retrograde Tracing 26 Chemo-optogenetic Channel Activation 27 Statistical Analysis 30 Chapter 3. ASIC Colocalization with Proprioceptors 31 Introduction 31 Results 31 Discussion 32 Chapter 4. ASIC Subtype Specific Behavioral Phenotypes 33 Introduction 33 Results 34 Discussion 35 Chapter 5. ASICS in Substrate-Stretch Driven Currents 38 Introduction 38 Results 40 Discussion 41 Chapter 6. Techniques to Target the Central Nervous System 43 Introduction 43 Results 43 Discussion 44 Chapter 7. Chemo-optogenetics 45 Introduction 45 Results 46 Discussion 47 Chapter 8. An Experimental Model for ASIC1b Somatosensorial Modulation 48 References 51 Anatomical References and Diagrams 59 Genetic Strategies 60 Working Model 62 Figures 63

    1. Tuthill, J.C. and E. Azim, Proprioception. Current Biology, 2018. 28(5): p. R194-R203.
    2. Proske, U. and S.C. Gandevia, The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev, 2012. 92(4): p. 1651-97.
    3. Han, J., et al., Assessing proprioception: A critical review of methods. J Sport Health Sci, 2016. 5(1): p. 80-90.
    4. Crozier, W.R., Shyness: Development, consolidation and change. 2002: Routledge.
    5. Hunt, C.C., Mammalian muscle spindle: peripheral mechanisms. Physiological reviews, 1990. 70(3): p. 643-663.
    6. Crowe, A. and P. Matthews, The effects of stimulation of static and dynamic fusimotor fibres on the response to stretching of the primary endings of muscle spindles. The Journal of physiology, 1964. 174(1): p. 109-131.
    7. Macefield, V.G. and T.P. Knellwolf, Functional properties of human muscle spindles. J Neurophysiol, 2018. 120(2): p. 452-467.
    8. Oliver, K.M., et al., Molecular correlates of muscle spindle and Golgi tendon organ afferents. Nature Communications, 2021. 12(1).
    9. Brown, M., I. Engberg, and P. Matthews, Fusimotor stimulation and the dynamic sensitivity of the secondary ending of the muscle spindle. The Journal of physiology, 1967. 189(3): p. 545-550.
    10. Davies, P., J. Petit, and J. Scott, The dynamic response of Golgi tendon organs to tetanic contraction of in-series motor units. Brain research, 1995. 690(1): p. 82-91.
    11. Waldmann, R., et al., A proton-gated cation channel involved in acid-sensing. Nature, 1997. 386(6621): p. 173-177.
    12. Lingueglia, E., et al., A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion cells. Journal of Biological Chemistry, 1997. 272(47): p. 29778-29783.
    13. Krishtal, O. and V. Pidoplichko, A receptor for protons in the nerve cell membrane. Neuroscience, 1980. 5(12): p. 2325-2327.
    14. Gruol, D.L., et al., Hydrogen ions have multiple effects on the excitability of cultured mammalian neurons. Brain research, 1980. 183(1): p. 247-252.
    15. Waldmann, R. and M. Lazdunski, H+-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels. Current opinion in neurobiology, 1998. 8(3): p. 418-424.
    16. Huang, M. and M. Chalfie, Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans. Nature, 1994. 367(6462): p. 467-470.
    17. Liu, J., B. Schrank, and R.H. Waterston, Interaction between a putative mechanosensory membrane channel and a collagen. Science, 1996. 273(5273): p. 361-364.
    18. Cheng, Y.R., B.Y. Jiang, and C.C. Chen, Acid-sensing ion channels: dual function proteins for chemo-sensing and mechano-sensing. J Biomed Sci, 2018. 25(1): p. 46.
    19. Wemmie, J.A., R.J. Taugher, and C.J. Kreple, Acid-sensing ion channels in pain and disease. Nature Reviews Neuroscience, 2013. 14(7): p. 461-471.
    20. Price, M.P., et al., The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron, 2001. 32(6): p. 1071-1083.
    21. Price, M.P., et al., The mammalian sodium channel BNC1 is required for normal touch sensation. Nature, 2000. 407(6807): p. 1007-1011.
    22. Wemmie, J.A., M.P. Price, and M.J. Welsh, Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends in neurosciences, 2006. 29(10): p. 578-586.
    23. Lu, Y., et al., The ion channel ASIC2 is required for baroreceptor and autonomic control of the circulation. Neuron, 2009. 64(6): p. 885-897.
    24. Roza, C., et al., Knockout of the ASIC2 channel in mice does not impair cutaneous mechanosensation, visceral mechanonociception and hearing. The Journal of physiology, 2004. 558(2): p. 659-669.
    25. Lin, S.H., et al., Evidence for the involvement of ASIC3 in sensory mechanotransduction in proprioceptors. Nat Commun, 2016. 7: p. 11460.
    26. Cheng, C.M., et al., Probing localized neural mechanotransduction through surface-modified elastomeric matrices and electrophysiology. Nat Protoc, 2010. 5(4): p. 714-24.
    27. Baron, A., et al., Venom toxins in the exploration of molecular, physiological and pathophysiological functions of acid-sensing ion channels. Toxicon, 2013. 75: p. 187-204.
    28. Baron, A. and E. Lingueglia, Pharmacology of acid-sensing ion channels–Physiological and therapeutical perspectives. Neuropharmacology, 2015. 94: p. 19-35.
    29. Boiko, N., et al., Restrictive Expression of Acid-Sensing Ion Channel 5 (Asic5) in Unipolar Brush Cells of the Vestibulocerebellum. PLoS ONE, 2014. 9(3): p. e91326.
    30. Garcı́a-Añoveros, J., et al., Transport and localization of the DEG/ENaC ion channel BNaC1α to peripheral mechanosensory terminals of dorsal root ganglia neurons. Journal of Neuroscience, 2001. 21(8): p. 2678-2686.
    31. Jasti, J., et al., Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature, 2007. 449(7160): p. 316-23.
    32. Noël, J., et al., Current perspectives on acid-sensing ion channels: new advances and therapeutic implications. Expert review of clinical pharmacology, 2010. 3(3): p. 331-346.
    33. Hughes, P.A., et al., Localization and comparative analysis of acid‐sensing ion channel (ASIC1, 2, and 3) mRNA expression in mouse colonic sensory neurons within thoracolumbar dorsal root ganglia. Journal of Comparative Neurology, 2007. 500(5): p. 863-875.
    34. Page, A.J., et al., Different contributions of ASIC channels 1a, 2, and 3 in gastrointestinal mechanosensory function. Gut, 2005. 54(10): p. 1408-15.
    35. Coryell, M.W., et al., Targeting ASIC1a reduces innate fear and alters neuronal activity in the fear circuit. Biological psychiatry, 2007. 62(10): p. 1140-1148.
    36. Kreple, C.J., et al., Acid-sensing ion channels contribute to synaptic transmission and inhibit cocaine-evoked plasticity. Nature neuroscience, 2014. 17(8): p. 1083-1091.
    37. Lin, S.H., W.H. Sun, and C.C. Chen, Genetic exploration of the role of acid-sensing ion channels. Neuropharmacology, 2015. 94: p. 99-118.
    38. Wu, W.-L., et al., Targeting ASIC3 for pain, anxiety, and insulin resistance. Pharmacology & therapeutics, 2012. 134(2): p. 127-138.
    39. Rahman, F., et al., Detection of acid-sensing ion channel 3 (ASIC3) in periodontal Ruffini endings of mouse incisors. Neuroscience letters, 2011. 488(2): p. 173-177.
    40. Chen, C.-C., et al., A sensory neuron-specific, proton-gated ion channel. Proceedings of the National Academy of Sciences, 1998. 95(17): p. 10240-10245.
    41. Montaño, J., et al., The expression of ENa+ C and ASIC2 proteins in Pacinian corpuscles is differently regulated by TrkB and its ligands BDNF and NT-4. Neuroscience letters, 2009. 463(2): p. 114-118.
    42. Akopian, A.N., et al., A new member of the acid-sensing ion channel family. Neuroreport, 2000. 11(10): p. 2217-2222.
    43. Kang, S., et al., Simultaneous disruption of mouse ASIC1a, ASIC2 and ASIC3 genes enhances cutaneous mechanosensitivity. PloS one, 2012. 7(4): p. e35225.
    44. Lin, S.H., et al., Genetic mapping of ASIC 4 and contrasting phenotype to ASIC 1a in modulating innate fear and anxiety. European Journal of Neuroscience, 2015. 41(12): p. 1553-1568.
    45. Buchanan, T.W. and D. Tranel, Central and peripheral nervous system interactions: from mind to brain to body. Int J Psychophysiol, 2009. 72(1): p. 1-4.
    46. Baranek, G.T., Efficacy of sensory and motor interventions for children with autism. J Autism Dev Disord, 2002. 32(5): p. 397-422.
    47. Samain-Aupic, L., et al., Emotions can alter kinesthetic acuity. Neurosci Lett, 2019. 694: p. 99-103.
    48. Harrison, L.A., et al., The Importance of Sensory Processing in Mental Health: A Proposed Addition to the Research Domain Criteria (RDoC) and Suggestions for RDoC 2.0. Front Psychol, 2019. 10: p. 103.
    49. Ackerley, R., J.M. Aimonetti, and E. Ribot-Ciscar, Emotions alter muscle proprioceptive coding of movements in humans. Sci Rep, 2017. 7(1): p. 8465.
    50. Arnfred, S.M., et al., Self-Disorder and Brain Processing of Proprioception in Schizophrenia Spectrum Patients: A Re-Analysis. Psychopathology, 2015. 48(1): p. 60-64.
    51. Orefice, L.L., et al., Peripheral Mechanosensory Neuron Dysfunction Underlies Tactile and Behavioral Deficits in Mouse Models of ASDs. Cell, 2016. 166(2): p. 299-313.
    52. Harlow, H.F., R.O. Dodsworth, and M.K. Harlow, Total social isolation in monkeys. Proc Natl Acad Sci U S A, 1965. 54(1): p. 90-7.
    53. Sheridan, M.A., et al., Variation in neural development as a result of exposure to institutionalization early in childhood. Proceedings of the National Academy of Sciences, 2012. 109(32): p. 12927-12932.
    54. Riquelme, I., S.M. Hatem, and P. Montoya, Abnormal Pressure Pain, Touch Sensitivity, Proprioception, and Manual Dexterity in Children with Autism Spectrum Disorders. Neural Plast, 2016. 2016: p. 1723401.
    55. SMITH, M.C. and P. DEACON, TOPOGRAPHICAL ANATOMY OF THE POSTERIOR COLUMNS OF THE SPINAL CORD IN MAN: THE LONG ASCENDING FIBRES. Brain, 1984. 107(3): p. 671-698.
    56. Whitsel, B., et al., Fiber sorting in the fasciculus gracilis of squirrel monkeys. Experimental neurology, 1970. 29(2): p. 227-242.
    57. G. J. Giesler, J., R.L. Nahin, and A.M. Madsen, Postsynaptic dorsal column pathway of the rat. I. Anatomical studies. Journal of Neurophysiology, 1984. 51(2): p. 260-275.
    58. Liao, C.-C., et al., Spinal cord neuron inputs to the cuneate nucleus that partially survive dorsal column lesions: A pathway that could contribute to recovery after spinal cord injury. Journal of Comparative Neurology, 2015. 523(14): p. 2138-2160.
    59. Loutit, A.J., R.M. Vickery, and J.R. Potas, Functional organization and connectivity of the dorsal column nuclei complex reveals a sensorimotor integration and distribution hub. Journal of Comparative Neurology, 2021. 529(1): p. 187-220.
    60. Quy, P.N., et al., Projection patterns of single mossy fiber axons originating from the dorsal column nuclei mapped on the aldolase C compartments in the rat cerebellar cortex. The Journal of Comparative Neurology, 2011. 519(5): p. 874-899.
    61. Abraira, V.E. and D.D. Ginty, The sensory neurons of touch. Neuron, 2013. 79(4): p. 618-639.
    62. Niu, J., et al., Modality-Based Organization of Ascending Somatosensory Axons in the Direct Dorsal Column Pathway. The Journal of Neuroscience, 2013. 33(45): p. 17691-17709.
    63. Versteeg, C., R.H. Chowdhury, and L.E. Miller, Cuneate nucleus: The somatosensory gateway to the brain. Current Opinion in Physiology, 2021.
    64. Kruger, L., R. Siminoff, and P. Witkovsky, Single neuron analysis of dorsal column nuclei and spinal nucleus of trigeminal in cat. Journal of neurophysiology, 1961. 24(4): p. 333-349.
    65. Abrahams, V.C. and J.E. Swett, The pattern of spinal and medullary projections from a cutaneous nerve and a muscle nerve of the forelimb of the cat: A study using the transganglionic transport of HRP. Journal of Comparative Neurology, 1986. 246(1): p. 70-84.
    66. Jasmin, L., J. Courville, and D.A. Bakker, Afferent projections from forelimb muscles to the external and main cuneate nuclei in the cat. Anatomy and Embryology, 1985. 171(3): p. 275-284.
    67. Therman, P.O., TRANSMISSION OF IMPULSES THROUGH THE BURDACH NUCLEUS. Journal of Neurophysiology, 1941. 4(2): p. 153-166.
    68. Berkley, K.J., et al., Output systems of the dorsal column nuclei in the cat. Brain Research Reviews, 1986. 11(3): p. 199-225.
    69. Jones, E.G. and D.P. Friedman, Projection pattern of functional components of thalamic ventrobasal complex on monkey somatosensory cortex. Journal of Neurophysiology, 1982. 48(2): p. 521-544.
    70. Delhaye, B.P., K.H. Long, and S.J. Bensmaia, Neural Basis of Touch and Proprioception in Primate Cortex, in Comprehensive Physiology. p. 1575-1602.
    71. Bermejo, P.E., et al., Quantitative stereological evaluation of the gracile and cuneate nuclei and their projection neurons in the rat. Journal of Comparative Neurology, 2003. 463(4): p. 419-433.
    72. Villanueva, L., et al., Organization of diencephalic projections from the medullary subnucleus reticularis dorsalis and the adjacent cuneate nucleus: A retrograde and anterograde tracer study in the rat. Journal of Comparative Neurology, 1998. 390(1): p. 133-160.
    73. Dolleman-van Der Weel, M.J. and M.P. Witter, Projections from the nucleus reuniens thalami to the entorhinal cortex, hippocampal field CA1, and the subiculum in the rat arise from different populations of neurons. Journal of Comparative Neurology, 1996. 364(4): p. 637-650.
    74. Martinez, L., J. Lamas, and A. Canedo, Pyramidal tract and corticospinal neurons with branching axons to the dorsal column nuclei of the cat. Neuroscience, 1995. 68(1): p. 195-206.
    75. Cheema, S., B.L. Whitsel, and A. Rustioni, The Corticocuneate Pathway in the Cat: Relations among Terminal Distribution Patterns, Cytoarchitecture, and Single Neuron Functional Properties. Somatosensory Research, 1983. 1(2): p. 169-205.
    76. Kitamura, T. and J. Yamada, Spinocerebellar tract neurons with axons passing through the inferior or superior cerebellar peduncles. Brain, behavior and evolution, 1989. 34(3): p. 133-142.
    77. Armstrong, D.M., R.J. Harvey, and R.F. Schild, Topographical localization in the olivo-cerebellar projection: An electrophysiological study in the cat. Journal of Comparative Neurology, 1974. 154(3): p. 287-302.
    78. Mariño, J., J. Aguilar, and A. Canedo, Cortico-subcortical synchronization in the chloralose-anesthetized cat. Neuroscience, 1999. 93(2): p. 409-411.
    79. Aas, J.-E., Subcortical projections to the pontine nuclei in the cat. Journal of Comparative Neurology, 1989. 282(3): p. 331-354.
    80. Robinson, F.R., J.C. Houk, and A.R. Gibson, Limb specific connections of the cat magnocellular red nucleus. Journal of Comparative Neurology, 1987. 257(4): p. 553-577.
    81. Berkley, K.J., Spatial relationships between the terminations of somatic sensory and motor pathways in the rostral brainstem of cats and monkeys. I. Ascending somatic sensory inputs to lateral diencephalon. Journal of Comparative Neurology, 1980. 193(1): p. 283-317.
    82. Aumann, T.D., et al., Projections from the cerebellar interposed and dorsal column nuclei to the thalamus in the rat: A double anterograde labelling study. Journal of Comparative Neurology, 1996. 368(4): p. 608-619.
    83. Barbaresi, P. and E. Mensà, Connections from the rat dorsal column nuclei (DCN) to the periaqueductal gray matter (PAG). Neuroscience research, 2016. 109: p. 35-47.
    84. Blomqvist, A. and J. Broman, Serotoninergic innervation of the dorsal column nuclei and its relation to cytoarchitectonic subdivisions: An immunohistochemical study in cats and monkeys (Aotus trivirgatus). Journal of Comparative Neurology, 1993. 327(4): p. 584-596.
    85. Zwicker, J.G., et al., Developmental coordination disorder: a review and update. Eur J Paediatr Neurol, 2012. 16(6): p. 573-81.
    86. Bernard, J.A. and V.A. Mittal, Updating the research domain criteria: the utility of a motor dimension. Psychol Med, 2015. 45(13): p. 2685-9.
    87. Garvey, M.A. and B.N. Cuthbert, Developing a Motor Systems Domain for the NIMH RDoC Program. Schizophr Bull, 2017. 43(5): p. 935-936.
    88. Clark, L.A., et al., Three Approaches to Understanding and Classifying Mental Disorder: ICD-11, DSM-5, and the National Institute of Mental Health's Research Domain Criteria (RDoC). Psychol Sci Public Interest, 2017. 18(2): p. 72-145.
    89. Loutit, A.J. and J.R. Potas, Restoring Somatosensation: Advantages and Current Limitations of Targeting the Brainstem Dorsal Column Nuclei Complex. Frontiers in Neuroscience, 2020. 14(156).
    90. Lebedev, M.A. and M.A. Nicolelis, Brain-machine interfaces: From basic science to neuroprostheses and neurorehabilitation. Physiological reviews, 2017. 97(2): p. 767-837.
    91. Delhaye, B.P., H.P. Saal, and S.J. Bensmaia, Key considerations in designing a somatosensory neuroprosthesis. Journal of Physiology-Paris, 2016. 110(4): p. 402-408.
    92. O’Doherty, J.E., et al., Creating a neuroprosthesis for active tactile exploration of textures. Proceedings of the National Academy of Sciences, 2019. 116(43): p. 21821-21827.
    93. Wang, F., et al., RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. The Journal of molecular diagnostics, 2012. 14(1): p. 22-29.
    94. Wolfer, D.P., et al., Cage enrichment and mouse behaviour. Nature, 2004. 432(7019): p. 821-822.
    95. Hsieh, T.-H., et al., Time-course gait analysis of hemiparkinsonian rats following 6-hydroxydopamine lesion. Behavioural Brain Research, 2011. 222(1): p. 1-9.
    96. Baskin, Y.K., W.D. Dietrich, and E.J. Green, Two effective behavioral tasks for evaluating sensorimotor dysfunction following traumatic brain injury in mice. Journal of Neuroscience Methods, 2003. 129(1): p. 87-93.
    97. Friard, O. and M. Gamba, BORIS: a free, versatile open‐source event‐logging software for video/audio coding and live observations. Methods in ecology and evolution, 2016. 7(11): p. 1325-1330.
    98. Wang, I.C., et al., Peripheral sensory neuron injury contributes to neuropathic pain in experimental autoimmune encephalomyelitis. Scientific Reports, 2017. 7(1): p. 42304.
    99. Shahbazian, M.D., et al., Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron, 2002. 35(2): p. 243-254.
    100. Wu, W.-L., et al., Asic3−/− Female Mice with Hearing Deficit Affects Social Development of Pups. PLoS ONE, 2009. 4(8): p. e6508.
    101. Kwon, C.-H., et al., Pten regulates neuronal arborization and social interaction in mice. Neuron, 2006. 50(3): p. 377-388.
    102. Wu, W.L., et al., Mice lacking Asic3 show reduced anxiety-like behavior on the elevated plus maze and reduced aggression. Genes Brain Behav, 2010. 9(6): p. 603-14.
    103. Rodriguez, A., et al., ToxId: an efficient algorithm to solve occlusions when tracking multiple animals. Scientific reports, 2017. 7(1): p. 1-8.
    104. Rodriguez, A., et al., ToxTrac: a fast and robust software for tracking organisms. Methods in Ecology and Evolution, 2018. 9(3): p. 460-464.
    105. Moy, S., et al., Mouse behavioral tasks relevant to autism: Phenotypes of 10 inbred strains. Behavioural Brain Research, 2007. 176(1): p. 4-20.
    106. Komada, M., K. Takao, and T. Miyakawa, Elevated plus maze for mice. Journal of visualized experiments : JoVE, 2008(22): p. 1088.
    107. Deacon, R.M.J., Digging and marble burying in mice: simple methods for in vivo identification of biological impacts. Nature Protocols, 2006. 1(1): p. 122-124.
    108. Brody, S., et al., Assessment of a prepulse inhibition deficit in a mutant mouse lacking mGlu5 receptors. Molecular psychiatry, 2004. 9(1): p. 35-41.
    109. Chang, C.-T., et al., Involvement of acid-sensing ion channel 1b in the development of acid-induced chronic muscle pain. Frontiers in neuroscience, 2019. 13: p. 1247.
    110. Malin, S.A., B.M. Davis, and D.C. Molliver, Production of dissociated sensory neuron cultures and considerations for their use in studying neuronal function and plasticity. Nat Protoc, 2007. 2(1): p. 152-60.
    111. Lin, Y.-W., et al., Understanding sensory nerve mechanotransduction through localized elastomeric matrix control. PLoS One, 2009. 4(1): p. e4293.
    112. Cummins, T.R., et al., Voltage-clamp and current-clamp recordings from mammalian DRG neurons. Nat Protoc, 2009. 4(8): p. 1103-12.
    113. Bielefeld, P., et al., A standardized protocol for stereotaxic intrahippocampal administration of kainic acid combined with electroencephalographic seizure monitoring in mice. Frontiers in neuroscience, 2017. 11: p. 160.
    114. Lein, E.S., et al., Genome-wide atlas of gene expression in the adult mouse brain. Nature, 2007. 445(7124): p. 168-176.
    115. Dong, H.W., The Allen reference atlas: A digital color brain atlas of the C57Bl/6J male mouse. 2008: John Wiley & Sons Inc.
    116. Pallast, N., et al., Processing Pipeline for Atlas-Based Imaging Data Analysis of Structural and Functional Mouse Brain MRI (AIDAmri). Frontiers in Neuroinformatics, 2019. 13(42).
    117. Yeh, F., Diffusion mri reconstruction in dsi studio. Advanced Biomedical MRI Lab, National Taiwan University Hospital. Available online at: http://dsi-studio. labsolver. org/Manual/Reconstruction# TOC-Q-Space-Diffeomorphic-Reconstruction-QSDR, 2017.
    118. Smith, S.M., et al., Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 2004. 23: p. S208-S219.
    119. Clemencic, M. and P. Mato. A CMake-based build and configuration framework. in Journal of Physics: Conference Series. 2012. IOP Publishing.
    120. Wu, W.-L., et al., The Effect of ASIC3 Knockout on Corticostriatal Circuit and Mouse Self-grooming Behavior. Frontiers in Cellular Neuroscience, 2019. 13(86).
    121. Chen, C.C. and C.W. Wong, Neurosensory mechanotransduction through acid-sensing ion channels. J Cell Mol Med, 2013. 17(3): p. 337-49.
    122. Ichikawa, H., et al., Parvalbumin, calretinin and carbonic anhydrase in the trigeminal and spinal primary neurons of the rat. Brain Res, 1994. 655(1-2): p. 241-5.
    123. Papalampropoulou-Tsiridou, M., et al., Differential Expression of Acid – Sensing Ion Channels in Mouse Primary Afferents in Naïve and Injured Conditions. Frontiers in Cellular Neuroscience, 2020. 14(103).
    124. Woo, S.-H., et al., Piezo2 is the principal mechanotransduction channel for proprioception. Nature neuroscience, 2015. 18(12): p. 1756-1762.
    125. Florez-Paz, D., et al., A critical role for Piezo2 channels in the mechanotransduction of mouse proprioceptive neurons. Scientific Reports, 2016. 6(1): p. 1-9.
    126. Meyer, A.H., et al., In vivo labeling of parvalbumin-positive interneurons and analysis of electrical coupling in identified neurons. Journal of Neuroscience, 2002. 22(16): p. 7055-7064.
    127. Woodruff, A.R. and P. Sah, Networks of parvalbumin-positive interneurons in the basolateral amygdala. Journal of Neuroscience, 2007. 27(3): p. 553-563.
    128. Hunter, D.V., et al., Advillin Is Expressed in All Adult Neural Crest-Derived Neurons. eNeuro, 2018. 5(5): p. ENEURO.0077-18.2018.
    129. Cox, C.D., et al., Removal of the mechanoprotective influence of the cytoskeleton reveals PIEZO1 is gated by bilayer tension. Nature Communications, 2016. 7(1): p. 10366.
    130. Sun, W.H. and C.C. Chen, Roles of Proton-Sensing Receptors in the Transition from Acute to Chronic Pain. J Dent Res, 2016. 95(2): p. 135-42.
    131. Chalfie, M., Neurosensory mechanotransduction. Nature reviews Molecular cell biology, 2009. 10(1): p. 44-52.
    132. Goodman, M.B., et al., MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation. Nature, 2002. 415(6875): p. 1039-1042.
    133. Goodman, M.B. and E.M. Schwarz, Transducing touch in Caenorhabditis elegans. Annual review of physiology, 2003. 65(1): p. 429-452.
    134. Khalsa, P., et al., Integrin α2β1 affects mechano-transduction in slowly and rapidly adapting cutaneous mechanoreceptors in rat hairy skin. Neuroscience, 2004. 129(2): p. 447-459.
    135. Chiang, L.-Y., et al., Laminin-332 coordinates mechanotransduction and growth cone bifurcation in sensory neurons. Nature neuroscience, 2011. 14(8): p. 993-1000.
    136. Lee, P.Y., et al., Disrupted N-linked glycosylation as a disease mechanism in deficiency of ADA2. Journal of Allergy and Clinical Immunology, 2018. 142(4): p. 1363-1365.e8.
    137. Loutit, A.J., et al., Characterisation and functional mapping of surface potentials in the rat dorsal column nuclei. The Journal of physiology, 2017. 595(13): p. 4507-4524.
    138. Loutit, A.J. and J.R. Potas, Dorsal column nuclei neural signal features permit robust machine-learning of natural tactile-and proprioception-dominated stimuli. Frontiers in Systems Neuroscience, 2020. 14: p. 46.
    139. Popratiloff, A., A. Rustioni, and R. Weinberg, Heterogeneity of AMPA receptors in the dorsal column nuclei of the rat. Brain research, 1997. 754(1-2): p. 333-339.
    140. Hastings, J.W., Chemistries and colors of bioluminescent reactions: a review. Gene, 1996. 173(1): p. 5-11.
    141. Nishihara, R., et al., Luciferase-Specific Coelenterazine Analogues for Optical Contamination-Free Bioassays. Scientific Reports, 2017. 7(1): p. 908.
    142. Schneider, F., C. Grimm, and P. Hegemann, Biophysics of Channelrhodopsin. Annual Review of Biophysics, 2015. 44(1): p. 167-186.
    143. Berglund, K., et al., Light-Emitting Channelrhodopsins for Combined Optogenetic and Chemical-Genetic Control of Neurons. PLoS ONE, 2013. 8(3): p. e59759.
    144. Berglund, K., et al., Luminopsins integrate opto- and chemogenetics by using physical and biological light sources for opsin activation. Proceedings of the National Academy of Sciences, 2016. 113(3): p. E358-E367.
    145. Persson, J.K., J. Hongpaisan, and C. Molander, C-fos expression in gracilothalamic tract neurons after electrical stimulation of the injured sciatic nerve in the adult rat. Somatosensory & motor research, 1993. 10(4): p. 475-483.
    146. Hunt, S.P., A. Pini, and G. Evan, Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature, 1987. 328(6131): p. 632-634.
    147. Shortland, P. and C. Molander, The time-course of Aβ-evoked c-fos expression in neurons of the dorsal horn and gracile nucleus after peripheral nerve injury. Brain research, 1998. 810(1-2): p. 288-293.
    148. Roth, B.L., DREADDs for neuroscientists. Neuron, 2016. 89(4): p. 683-694.
    149. Saloman, J.L., et al., Gi-DREADD Expression in Peripheral Nerves Produces Ligand-Dependent Analgesia, as well as Ligand-Independent Functional Changes in Sensory Neurons. The Journal of Neuroscience, 2016. 36(42): p. 10769-10781.
    150. Mirza, M. and J.M. Das, Neuroanatomy, Area Postrema. StatPearls [Internet], 2020.
    151. Paton, J.F. and S. Kasparov, Sensory channel specific modulation in the nucleus of the solitary tract. Journal of the autonomic nervous system, 2000. 80(3): p. 117-129.
    152. Gray, P.A., Transcription factors define the neuroanatomical organization of the medullary reticular formation. Frontiers in Neuroanatomy, 2013. 7: p. 7.

    無法下載圖示 校內:2024-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE