簡易檢索 / 詳目顯示

研究生: 陳秋月
Chen, Chiu-Yueh
論文名稱: 臉孔辨識與專家辨識歷程的交互作用:以鳥類專家為例
Interaction between Face and Expert Object Recognition: a Study on Bird Expertise
指導教授: 龔俊嘉
Kung, Chun-Chia
學位類別: 碩士
Master
系所名稱: 社會科學院 - 心理學系認知科學碩士班
MS in Cognitive Science
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 64
中文關鍵詞: 知覺專家性整體性處理臉孔處理複合臉效應溯二臉孔物體交互作業
外文關鍵詞: perceptual expertise, holistic processing, face processing, composite effect, 2-back alternative task
相關次數: 點閱:171下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臉孔處理可以說是吾人物體辨識的終極典範:流暢且多樣,高度正確,大量容量等特色,使一派學者強調臉孔處理有從演化(到基因)與發展上(新生兒)的優勢與獨特性。此外,知覺專家假說的支持者強調後天經驗累積學習的重要性,並舉証後天物體專家(如車專家或鳥專家)具有對該專家性物體的優異分辨或辨識能力,與一般人對臉孔的辨識相似。更有研究進一步顯示臉孔與專家物體在雙重作業(如溯二臉車的交互干擾作業)裡,專家程度愈高,其臉孔受干擾的程度愈大。鑑於上述臉孔與專家辨識的研究結果仍有許多爭議,同時對兩者的交互作用也仍有未盡之處,本研究進而探討賞鳥專家在臉孔與鳥類辨識機制的交互作用。研究對象為19位賞鳥經驗者與19名年齡對照組。研究一利用不同難度的臉孔作業,檢試鳥類專家與生手的臉孔處理,結果顯示鳥專家在辨別不同部件(如兩眼或人中的距離)差異的能力表現有組內正相關,建議賞鳥經驗似有幫助吾人臉孔的細微差異辨識能力之可能。研究二顯示雖統稱為鳥類專家,但不同專家性反映其經常熟悉鳥類的方式(如山鳥或水鳥),至少有兩類相關的知覺專家性;研究三探討複合臉與複合鳥的一致性效果,結果發現臉孔有一致性效果,但鳥專家在複合鳥上並無一致性效果,顯示可能的天花板效應與受試的選擇注意彈性;最後,研究四採用溯二臉鳥交互干擾作業,發現整體來說,鳥類區辨能力越強,臉被干擾程度越高,支持並擴展了先前車專家的研究結果;更有趣的是,鳥專家在研究三的複合臉整體處理效果越大(亦即愈能選擇性注意臉孔上半或下半),其在鳥類的受干擾效果愈小,意即從另一個正向的學習移轉角度來建議臉孔與專家物體的交互作用:除了鳥專家性愈高,臉孔干擾愈大之外;臉孔選擇注意彈性愈大,鳥專家的臉孔被干擾愈小。綜合來說,本研究發現鳥類專家在臉孔與鳥類處理上有正向(賞鳥者似乎有較佳的臉孔整體辨識相關;與臉孔處理彈性愈大,鳥類處理被干擾愈小等)與負向(兩者皆競爭有限資源)的交互作用,且這兩者是同時存在且相互獨立的。如此的結果也進一步深化了「臉孔與專家物體處理,使用高度重疊的認知路徑與資源」的說法。

    Face recognition is the hallmark of human ultimate performance: efficient, parallel, highly accurate, and with seemingly unlimited capacity. To explain this, some have suggested that, through the evolution that endows into our genes (shown in newborn infants), faces enjoy privileged processing mechanisms and resources. On the other hand, proponents of the perceptual expertise hypothesis emphasize the importance of experience:by showing not only some acclaimed face-only effects in domain experts, but also interactions between faces and objects of expertise under tasks (i.e., 2-back face-car interference task). To broaden such interaction beyond car experts and also to explore other aspects of this interaction, the current study recruited 19 bird experts and 19 age-matched novices to do (a) face configuration task of various difficulty; (b) two (visual and auditory) bird expertise measurements, (c) composite face and bird task, and (d) the 2-back face-bird interference task. The results showed that (a) though there was no systematic differences between bird experts’ and novices’ performance, birders as a group correlated in the harder distance discrimination (e.g., between eyes or between nose and lip) tasks, suggesting that birding experience seems to increase their discriminability in face gestalts; (b) bird expertise can, depending on their birding locales, be divided into two related, but separate, visual (shorebirds) and auditory (passerines) expertise; (c) there is no bird or face congruency effects in the standard composite task, consistent with some early study’s results. This may reflect the ceiling effect, or that subjects can flexibly change their attended halves (upper or lower); (d) in accordance and extending the previous 2-back alternative task’s results, we also found that the higher the bird expertise, the larger the face interference in our 2-back face-bird task. Furthermore, the higher the face composite effect (meaning the flexible looking of face parts) in study c, the lower the bird interference in the 2-back task on birders. Lastly, both negative (competing common resources) and positive (higher correlation of internal feature sensitivity, and lower bird interference with higher face composite effect) aspects of the face-bird interactions coexist independently, deepening the claim that faces and expert object categories share highly overlapping processing resources.

    第一章 緒論 1 第一節 臉孔辨識 2 第二節 知覺專家性 6 第三節 臉孔與專家物體在知覺系統處理時是否互相干擾 11 第四節 研究目的與研究假設 13 第二章 作業一:不同組態效果的臉孔辨識能力 16 第一節 作業方法 16 第二節 作業程序 18 第三節 作業結果 19 第三章 作業二:鳥類視覺與聽覺的專家能力 22 第一節 作業方法 22 第二節 作業程序 23 第三節 作業分析 24 第四節 作業結果與討論 25 第四章 作業三:複合臉與複合鳥的辨識能力 28 第一節 作業方法 28 第二節 作業程序 31 第三節 作業分析 31 第四節 作業結果 33 第五節 綜合分析 38 第五章 作業四:溯二臉-鳥交互干擾作業 39 第一節 作業方法 39 第二節 作業程序 40 第三節 作業分析 41 第四節 作業結果 42 第五節 綜合分析 47 第六章 綜合討論 52 參考文獻 61

    王嘉雄、吳森雄、黃光瀛、楊秀英、蔡仲晃、蔡牧起與蕭慶亮(民80)。台灣野鳥圖鑑。台北:亞舍圖書有限公司。
    許馨月與簡惠玲(民100)。台灣嬰兒和成人的他種族效應之探討。中華心理學刊,53(1),35-57。
    楊志誠與襲充文(民99)。臉孔辨識及其發展差異:多層次文獻回顧。應用心理研究季刊 ,46,153-232。
    Bukach, C. M., Cottle, J., Ubiwa, J., & Miller, J. (2012). Individuation experience predicts other-race effects in holistic processing for both Caucasian and Black participants. Cognition, 123(2), 319-324.
    Cheung, O. S., & Gauthier, I. (2010). Selective interference on the holistic processing of faces in working memory. J Exp Psychol Hum Percept Perform, 36(2), 448-461.
    de Heering, A., & Rossion, B. (2008). Prolonged visual experience in adulthood modulates holistic face perception. PLoS One, 3(5), e2317.
    de Heering, A., Turati, C., Rossion, B., Bulf, H., Goffaux, V., & Simion, F. (2008). Newborns' face recognition is based on spatial frequencies below 0.5 cycles per degree. Cognition, 106(1), 444-454.
    Diamond, R., & Carey, S. (1986). Why faces are and are not special: an effect of expertise. J Exp Psychol Gen, 115(2), 107-117.
    Folstein, J. R., Palmeri, T. J., & Gauthier, I. (2013). Category learning increases discriminability of relevant object dimensions in visual cortex. Cereb Cortex, 23(4), 814-823.
    Gauthier, I., Anderson, A. W., Tarr, M. J., Skudlarski, P., & Gore, J. C. (1997). Levels of categorization in visual recognition studied using functional magnetic resonance imaging. Curr Biol, 7(9), 645-651.
    Gauthier, I., & Curby, K. M. (2005). A perceptual traffic jam on highway N170 - Interference between face and car expertise. Curr Dir Psychol Sci, 14(1), 30-33.
    Gauthier, I., Curran, T., Curby, K. M., & Collins, D. (2003). Perceptual interference supports a non-modular account of face processing. Nat Neurosci, 6(4), 428-432.
    Gauthier, I., Klaiman, C., & Schultz, R. T. (2009). Face composite effects reveal abnormal face processing in Autism spectrum disorders. Vision Res, 49(4), 470-478.
    Gauthier, I., Skudlarski, P., Gore, J. C., & Anderson, A. W. (2000). Expertise for cars and birds recruits brain areas involved in face recognition. Nat Neurosci, 3(2), 191-197.
    Gauthier, I., & Tarr, M. J. (1997). Becoming a "Greeble" expert: exploring mechanisms for face recognition. Vision Res, 37(12), 1673-1682.
    Gauthier, I., Tarr, M. J., Anderson, A. W., Skudlarski, P., & Gore, J. C. (1999). Activation of the middle fusiform 'face area' increases with expertise in recognizing novel objects. Nat Neurosci, 2(6), 568-573.
    Golby, A. J., Gabrieli, J. D., Chiao, J. Y., & Eberhardt, J. L. (2001). Differential responses in the fusiform region to same-race and other-race faces. Nat Neurosci, 4(8), 845-850.
    Hancock, K. J., & Rhodes, G. (2008). Contact, configural coding and the other-race effect in face recognition. Br J Psychol, 99(Pt 1), 45-56.
    Hanson, S. J., Matsuka, T., & Haxby, J. V. (2004). Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a "face" area? Neuroimage, 23(1), 156-166.
    Harel, A., Gilaie-Dotan, S., Malach, R., & Bentin, S. (2010). Top-down engagement modulates the neural expressions of visual expertise. Cereb Cortex, 20(10), 2304-2318.
    Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293(5539), 2425-2430.
    Kanwisher, N. (2000). Domain specificity in face perception. Nat Neurosci, 3(8), 759-763.
    Kanwisher, N. (2006). Neuroscience. What's in a face? Science, 311(5761), 617-618.
    Kanwisher, N., & Yovel, G. (2006). The fusiform face area: a cortical region specialized for the perception of faces. Philos Trans R Soc Lond B Biol Sci, 361(1476), 2109-2128.
    Liu, J., Harris, A., & Kanwisher, N. (2010). Perception of face parts and face configurations: an FMRI study. J Cogn Neurosci, 22(1), 203-211.
    Mack, M. L., & Palmeri, T. J. (2011). The timing of visual object categorization. Front Psychol, 2, 165.
    Maurer, D., Le Grand, R., & Mondloch, C. J. (2002). The many faces of configural processing. Trends Cogn Sci, 6(6), 255-260.
    McGugin, R. W., McKeeff, T. J., Tong, F., & Gauthier, I. (2011). Irrelevant objects of expertise compete with faces during visual search. Atten Percept Psychophys, 73(2), 309-317.
    McKone, E., Crookes, K. & Kanwisher, N. (2009). The cognitive and neural development of face recognition in humans. In M.S. Gazzaniga (Ed.), The Cognitive Neurosciences (4th ed., pp. 467-482). Cambridge Massachusetts, USA: Bradford Books.
    McKone, E., Kanwisher, N., & Duchaine, B. C. (2007). Can generic expertise explain special processing for faces? Trends Cogn Sci, 11(1), 8-15.
    McKone, E., & Robbins, R. (2011). Are faces special? In Calder, A., Rhodes, G., Johnson, M., & Haxby, J. (Eds.), Oxford handbook of face perception (1st ed., pp. 149-176). Oxford, UK: Oxford University Press.
    Meissner, C. A. B., J. C. (2001). Thirty years of investigating the own-race bias in memory for faces: A meta-analytic review. Psychology, Public Policy, & Law, 7, 3-35.
    Michel, C., Rossion, B., Han, J., Chung, C. S., & Caldara, R. (2006). Holistic processing is finely tuned for faces of one's own race. Psychol Sci, 17(7), 608-615.
    Nichols, D. F., Betts, L. R., & Wilson, H. R. (2010). Decoding of faces and face components in face-sensitive human visual cortex. Front Psychol, 1, 28.
    Ramon, M., & Rossion, B. (2010). Impaired processing of relative distances between features and of the eye region in acquired prosopagnosia--two sides of the same holistic coin? Cortex, 46(3), 374-389.
    Richler, J. J., Cheung, O. S., Wong, A. C. N., & Gauthier, I. (2009). Does response interference contribute to face composite effects? Psychon Bull Rev, 16(2), 258-263.
    Richler, J. J., Palmeri, T. J., & Gauthier, I. (2012). Meanings, mechanisms, and measures of holistic processing. Front Psychol, 3, 553.
    Richler, J. J., Tanaka, J. W., Brown, D. D., & Gauthier, I. (2008). Why does selective attention to parts fail in face processing? J Exp Psychol Learn Mem Cogn, 34(6), 1356-1368.
    Richler, J. J., Wong, Y. K., & Gauthier, I. (2011). Perceptual Expertise as a Shift from Strategic Interference to Automatic Holistic Processing. Curr Dir Psychol Sci, 20(2), 129-134.
    Robbins, R., & McKone, E. (2007). No face-like processing for objects-of-expertise in three behavioural tasks. Cognition, 103(1), 34-79.
    Rosch, E., & Mervis, C. B. (1975). Family Resemblances - Studies in Internal Structure of Categories. Cognitive Psychology, 7(4), 573-605.
    Rossion, B. (2008a). Constraining the cortical face network by neuroimaging studies of acquired prosopagnosia. Neuroimage, 40(2), 423-426.
    Rossion, B. (2008b). Picture-plane inversion leads to qualitative changes of face perception. Acta Psychol (Amst), 128(2), 274-289.
    Rossion, B. (2009). Distinguishing the cause and consequence of face inversion: the perceptual field hypothesis. Acta Psychol (Amst), 132(3), 300-312.
    Rossion, B., Collins, D., Goffaux, V., & Curran, T. (2007). Long-term expertise with artificial objects increases visual competition with early face categorization processes. Journal of Cognitive Neuroscience, 19, 543 - 555.
    Rossion, B., Hanseeuw, B., & Dricot, L. (2012). Defining face perception areas in the human brain: a large-scale factorial fMRI face localizer analysis. Brain Cogn, 79(2), 138-157.
    Rossion, B., Kung, C. C., & Tarr, M. J. (2004). Visual expertise with nonface objects leads to competition with the early perceptual processing of faces in the human occipitotemporal cortex. Proc Natl Acad Sci U S A, 101(40), 14521-14526.
    Russell, R., Duchaine, B., & Nakayama, K. (2009). Super-recognizers: people with extraordinary face recognition ability. Psychon Bull Rev, 16(2), 252-257.
    Saito, D. N., Okada, T., Honda, M., Yonekura, Y., & Sadato, N. (2006). Practice makes perfect: the neural substrates of tactile discrimination by Mah-Jong experts include the primary visual cortex. BMC Neurosci, 7, 79.
    Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory measures. Behav Res Methods Instrum Comput, 31(1), 137-149.
    Tanaka, J. W., & Curran, T. (2001). A neural basis for expert object recognition. Psychol Sci, 12(1), 43-47.
    Tanaka, J. W., & Sengco, J. A. (1997). Features and their configuration in face recognition. Mem Cognit, 25(5), 583-592.
    Tarr, M. J., & Gauthier, I. (2000). FFA: a flexible fusiform area for subordinate-level visual processing automatized by expertise. Nat Neurosci, 3(8), 764-769.
    van der Linden, D., Frese, M., & Meijman, T. F. (2003). Mental fatigue and the control of cognitive processes: effects on perseveration and planning. Acta Psychol (Amst), 113(1), 45-65.
    Wong, A. C., Palmeri, T. J., & Gauthier, I. (2009). Conditions for facelike expertise with objects: becoming a Ziggerin expert--but which type? Psychol Sci, 20(9), 1108-1117.
    Young, A. W., Hellawell, D., & Hay, D. C. (1987). Configurational information in face perception. Perception, 16(6), 747-759.

    下載圖示 校內:立即公開
    校外:2015-08-26公開
    QR CODE