簡易檢索 / 詳目顯示

研究生: 卞家緯
Bian, Jia-Wei
論文名稱: 由浮標上ADCP所測得的回波強度推算懸浮沉積物濃度和濁度
Extraction of suspended sediment concentration and turbidity based on echo intensity obtained from ADCP mounted on a data buoy
指導教授: 黃清哲
Huang, Ching-Jer
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 285
中文關鍵詞: ADCP背散射強度懸浮沉積物濃度光學濁度粒徑分布
外文關鍵詞: ADCP, Backscatter intensity, Suspended sediment concentration, Optical turbidity, Particle size distribution
相關次數: 點閱:127下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去,量化水中懸浮沉積物廣泛使用光學儀器與現場實際採樣,使用聲學儀器ADCP (Acoustic Doppler Current Profilers) 則是近來發展的技術。聲學儀器在量測上沒有光學儀器容易受到生物干擾、水色差異等缺點,也無現場實際採樣破壞性量測等缺點,且ADCP的量測,可以觀測整體水層,並非單點量測,儀器也易於維護。
    本研究於2016年9月至2016年10月期間於東港溪河口浮標上佈放ADCP,並且在當地採集三次水樣,進行ADCP觀測的回波強度與採集水樣之濁度與濃度的率定,同時取得當地潮位資料以及將當地採集水樣做粒徑分析,但由於只採樣三次,資料點過少,導致率定結果不良。
    於是,在2017年6月至2017年8月期間於七股近海浮標上加裝ADCP,並於距離海平面以下約13 公尺 處繫上水質儀觀測水體濁度值,同時進行一次現場採樣作業,並且收集當地流速、波浪、潮位及樣品粒徑分析等資料。結果顯示,ADCP所觀測的回波強度的對數尺度與水質儀所觀測的濁度呈現良好正相關,尤其在水體有較高濁度值時,率定結果較佳。進一步將濁度值與海氣象資料比對,結果顯示,潮汐引發的強潮流會使底層水體濁度值增加,波浪對於水體濁度值的影響則較小,颱風亦會影響ADCP所接收到的回波強度大小。
    經由長時間觀測,證明聲學儀器ADCP有利於量測懸浮沉積物的濁度與濃度。但,根據粒徑分析的結果,東港溪河口粒徑約分布約在1 μm至300 μm 之間,七股近海地區,粒徑大小分布則約介於1 μm 至120 μm 之間,兩地粒徑分布均十分不均勻,並且在水樣分析實驗當中,發現沉積物色澤有時空變化上的差異,現地沉積物不穩定的特性對於光學儀器與聲學儀器在觀測上所造成的誤差,還是一個必須克服的問題。

    Suspended sediment concentration and turbidity were assessed using an acoustic Doppler current profiler (ADCP) mounted on a data buoy. Observations were performed at two sites: the Donggang estuary during September and October 2016 and in Qigu coastal waters from June to August 2017. Manual sampling was performed three times in the local area of the Donggang estuary, and the ADCP echo intensities were correlated with the water sample concentration and turbidity. Tidal data were also collected, and the particle size was analyzed. In the Qigu coastal waters, a turbidimeter was mounted on a data buoy 13 m below sea level, and manual sampling was performed once: velocity, wave, and tidal data were collected, and the particle size was determined. A poor correlation was obtained between the echo intensities and turbidity observations for the Donggang estuary. However, turbidity data expressed on a logarithmic scale were proportional to the echo intensity measured in the Qigu coastal waters. The relationship between turbidity and marine meteorology indicated that a strong tidal current can increase turbidity, whereas the influence of waves on turbidity is relatively small. The particle size distribution ranged between 1–300 μm in the Donggang estuary and between 1–120 μm in the Qigu coastal waters.

    摘要 I ABSTRACT II 誌謝 X 目錄 XII 表目錄 XVIII 圖目錄 XXV 符號 XLIII 第一章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 4 1-3 研究方法 27 1-4 論文架構 27 第二章 ADCP 簡介與基本原理 28 2-1 ADCP簡史 28 2-2 都卜勒效應 (The Doppler Effect) 29 2-3 散射物質與流速 (Scatters and Radial Current Velocity) 30 2-4 寬頻都卜勒的處理 (BroadBand Doppler Processing) 34 2-5 三維流速向量 (Three-dimensional Current Velocity Vectors) 36 2-6 流速剖面 (Velocity Profile) 39 2-7 音鼓與聲波束 (音束) (Transducer and Beam) 44 2-8 ADCP運動 (Pitch、Roll、Heading) 之修正 51 2-9 回波的強度和剖面的量測範圍 (Echo Intensity and Profiling Range) 53 2-10 整體平均 (Ensemble averaging) 56 2-11 聲速的校正 (Sound Speed Corrections) 57 2-12 聲波通過溫躍層 (Thermoclines) 之影響 58 2-13 底跡 (Bottom tracking) 60 第三章 理論介紹 61 3-1 河口沉積物的性質與現象 61 3-2 聲納方程式 65 3-2-1 主動聲納方程式 68 3-2-2 被動聲納方程式 71 3-2-3 環境噪音與迴響對聲納系統作用的影響 73 3-3 聲波在水中的衰減與吸收 75 3-3-1 聲波在水中的衰減 75 3-3-2 聲波在水中的水體吸收 76 3-3-3 聲波在水中的懸浮沉積物吸收 83 3-4 聲波量測水中懸浮沉積顆粒機制 86 3-4-1 瑞利散射 86 3-5 適用於RDI ADCP之聲納方程式 89 第四章 觀測結果 94 4-1 儀器介紹 94 4-1-1 聲學都卜勒流速剖面儀 (Acoustic Doppler Current Profilers, ADCP) 94 4-1-2 單繩採水器 (Sampling bottle) 95 4-1-3 桌上型濁度計 (Laboratory turbidimeter) 96 4-1-4 動態光散射儀 (Dynamic Light Scattering, DLS) 98 4-1-5 水質儀 (Water Quality) 100 4-2 東港溪河口觀測 108 4-2-1 東港溪河口地區水文背景與觀測項目 108 4-2-2 東港溪河口採集水樣桌上型濁度計量測結果 110 4-2-3 東港溪河口採集水樣濃度量測結果 115 4-2-4 東港溪河口桌上型濁度量測結果與濃度量測結果之率定 119 4-2-5 東港溪河口ADCP接收回波強度與水樣濁度和濃度之率定 122 4-2-6 東港溪河口粒徑分析結果 125 4-3 七股近海觀測 130 4-3-1 七股近海地區水文背景與觀測項目 130 4-3-2 七股近海現地採集水樣 133 4-3-3 七股近海採集水樣桌上型濁度計量測結果 135 4-3-4 七股近海採集水樣濃度量測結果 137 4-3-5 七股近海桌上型濁度量測結果與濃度量測結果之率定 139 4-3-6 七股近海水質儀觀測數據 140 4-3-7 七股近海ADCP接收回波強度與水質儀觀測濁度之率定 144 4-3-8 七股近海粒徑分析結果 152 第五章 結果與討論 156 5-1 現地量測到的聲波衰減與吸收 156 5-2 颱風對ADCP之回波強度造成的影響 159 5-3 現地海氣象特性對水體濁度與濃度的影響 165 5-3-1 潮位與水體濁度的關係 167 5-3-2 流速與水體濁度的關係 171 5-3-3 波浪與水體濁度的關係 174 5-4 現地沉積物特性對水體濁度與濃度的影響 181 第六章 結論與建議 185 6-1 結論 185 6-2 建議 187 參考文獻 188 附錄A 使用濾紙過濾與烘箱量測懸浮固體濃度 198 附錄A-1濾紙過濾與烘箱量測懸浮固體濃度步驟 198 附錄A-2濾紙過濾與烘箱量測懸浮固體濃度相關實驗照片 202 附錄B 使用桌上型濁度計量測水樣濁度 205 附錄B-1桌上型濁度計量測水樣濁度步驟 205 附錄B-2桌上型濁度計量測水樣濁度相關實驗照片 210 附錄C 東港溪河口ADCP接收回波強度與水樣濁度和濃度率定圖表 211 附錄C-1東港溪河口ADCP接收回波強度與水樣濁度率定圖表 211 附錄C-1-1東港溪河口ADCP第一音鼓接收回波強度與水樣濁度率定圖表 211 附錄C-1-2東港溪河口ADCP第二音鼓接收回波強度與水樣濁度率定圖表 214 附錄C-1-3東港溪河口ADCP第三音鼓接收回波強度與水樣濁度率定圖表 217 附錄C-1-4東港溪河口ADCP第四音鼓接收回波強度與水樣濁度率定圖表 220 附錄C-1-5東港溪河口ADCP平均音鼓接收回波強度與水樣濁度率定圖表 223 附錄C-2東港溪河口ADCP接收回波強度與水樣濃度率定圖表 225 附錄C-2-1東港溪河口ADCP第一音鼓接收回波強度與水樣濃度率定圖表 225 附錄C-2-2東港溪河口ADCP第二音鼓接收回波強度與水樣濃度率定圖表 228 附錄C-2-3東港溪河口ADCP第三音鼓接收回波強度與水樣濃度率定圖表 231 附錄C-2-4東港溪河口ADCP第四音鼓接收回波強度與水樣濃度率定圖表 234 附錄C-2-5東港溪河口ADCP平均音鼓接收回波強度與水樣濃度率定圖表 237 附錄D 東港溪河口粒徑分析圖 239 附錄D-1東港溪河口2016年09月25日水樣粒徑分析 239 附錄D-2東港溪河口2016年10月19日水樣粒徑分析 243 附錄D-3東港溪河口2016年10月20日水樣粒徑分析 258 附錄E 七股近海ADCP接收回波強度與水質儀觀測濁度率定圖 274 附錄E-1時間差兩分鐘以內 274 附錄E-1-1時間差兩分鐘以內全時段 274 附錄E-1-2時間差兩分鐘以內每日 275 附錄E-2時間差一分鐘以內 278 附錄E-2-1時間差一分鐘以內全時段 278 附錄E-2-2時間差一分鐘以內每日 279 附錄E-3時間差零分鐘以內 282 附錄E-3-1時間差零分鐘以內全時段 282 附錄E-3-2時間差零分鐘以內每日 283

    [1] Anderson, V. C., "Sound Scattering from a Fluid Sphere," The Journal of the Acoustical Society of America, vol. 22, no. 4, pp. 426-431, 1950.
    [2] Angga, D., M. M. Henry, P. Tri, Susilohadi, and I. Delyuzar, "Estimation of suspended sediment concentration from Acoustic Doppler Current Profiler (ADCP) instrument: A case study of Lembeh Strait, North Sulawesi," IOP Conference Series: Earth and Environmental Science, vol. 54, no. 1, p. 012082, 2017.
    [3] Attard, M. E., "Evaluation of ADCPs for suspended sediment transport monitoring, Fraser River, British Columbia," Environment: Department of Geography, 2012.
    [4] Bai, X. F., S. R. Li, D. J. Gong, Y. P. Xu, and J. B. Jiang, "Estimation of suspended sediment concentrations using Pulse-coherent Acoustic Doppler Profiler (PCADP)," Chinese Journal of Oceanology and Limnology, vol. 27, no. 2, pp. 260-265, 2009.
    [5] Bartholoma, A., A. Kubicki, T. H. Badewien, and B. W. Flemming, "Suspended sediment transport in the German Wadden Sea-seasonal variations and extreme events," Ocean Dynamics, vol. 59, no. 2, pp. 213-225, 2009.
    [6] Bin Omar, A. F. and M. Z. Bin MatJafri, "Turbidimeter design and analysis: a review on optical fiber sensors for the measurement of water turbidity," Sensors, vol. 9, no. 10, pp. 8311-8335, 2009.
    [7] Chanson, H., M. Takeuchi, and M. Trevethan, "Using turbidity and acoustic backscatter intensity as surrogate measures of suspended sediment concentration in a small subtropical estuary," Journal of Environmental Management, vol. 88, no. 4, pp. 1406-1416, 2008.
    [8] Dadson, S., N. Hovius, S. Pegg, W. B. Dade, M. Horng, and H. Chen, "Hyperpycnal river flows from an active mountain belt," Journal of Geophysical Research: Earth Surface, vol. 110, no. F4, 2005.
    [9] Defendi, V., V. Kovacevic, F. Arena, and L. Zaggia, "Estimating sediment transport from acoustic measurements in the Venice Lagoon inlets," Continental Shelf Research, vol. 30, no. 8, pp. 883-893, 2010.
    [10] Deines, K. L., "Backscatter Estimation Using Broadband Acoustic Doppler Current Profilers," 1999.
    [11] Duclos, P. A., R. Lafite, S. Le Bot, E. Rivoalen, and A. Cuvilliez, "Dynamics of Turbid Plumes Generated by Marine Aggregate Dredging: An Example of a Macrotidal Environment (the Bay of Seine, France)," Journal of Coastal Research, vol. 29, no. 6A, pp. 25-37, 2013.
    [12] Elci, S., R. Aydin, and P. A. Work, "Estimation of suspended sediment concentration in rivers using acoustic methods," Environmental Monitoring and Assessment, vol. 159, no. 1-4, pp. 255-265, 2009.
    [13] Fisher, F. H. and V. P. Simmons, "Sound absorption in sea water," The Journal of the Acoustical Society of America, vol. 62, no. 3, pp. 558-564, 1977.
    [14] Flammer, G. H., "Ultrasonic measurement of suspended sediment," 1962.
    [15] Fuller, C. B., J. S. Bonner, M. S. Islam, T. Ojo, C. A. Page, and W. D. Kirkey, "Estimating Colloidal Concentration Using Acoustic Backscatter," Ieee Sensors Journal, vol. 13, no. 11, pp. 4546-4555, 2013.
    [16] Gartner, J. W., "Estimation of suspended solids concentrations based on acoustic backscatter intensity: Theoretical background," 2002.
    [17] Gartner, J. W., "Estimating suspended solids concentrations from backscatter intensity measured by acoustic Doppler current profiler in San Francisco Bay, California," Marine Geology, vol. 211, no. 3, pp. 169-187, 2004.
    [18] Ghaffari, P., J. Azizpour, M. Noranian, V. Chegini, V. Tavakoli, and M. Shah-Hosseini, "Estimating suspended sediment concentrations using a broadband ADCP in Mahshahr tidal channel," Ocean Sci. Discuss., vol. 2011, pp. 1601-1630, 2011.
    [19] Gibbs, R. J. and E. Wolanski, "The effect of flocs on optical backscattering measurements of suspended material concentration," Marine Geology, vol. 107, no. 4, pp. 289-291, 1992.
    [20] Gilpin, M. B., "A Snapshot of Suspended Sediment Concentrations and Fluxes using Optical and Acoustic Velocity Profilers The Stour Estuary Suffolk UK," 2003.
    [21] Guerrero, M., N. Rüther, and R. N. Szupiany, "Laboratory validation of acoustic Doppler current profiler (ADCP) techniques for suspended sediment investigations," Flow Measurement and Instrumentation, vol. 23, no. 1, pp. 40-48, 2012.
    [22] Ha, H. K., J. P. Y. Maa, K. Park, and Y. H. Kim, "Estimation of high-resolution sediment concentration profiles in bottom boundary layer using pulse-coherent acoustic Doppler current profilers," Marine Geology, vol. 279, no. 1-4, pp. 199-209, 2011.
    [23] Hall, Physical Review. 1948.
    [24] Hay, A. E. and R. W. Burling, "On sound scattering and attenuation in suspensions, with marine applications," The Journal of the Acoustical Society of America, vol. 72, no. 3, pp. 950-959, 1982.
    [25] Hay, A. E. and J. Sheng, "Vertical profiles of suspended sand concentration and size from multifrequency acoustic backscatter," Journal of Geophysical Research: Oceans, vol. 97, no. C10, pp. 15661-15677, 1992.
    [26] Hennings, I. and D. Herbers, "Suspended sediment signatures induced by shallow water undulating bottom topography," Remote Sensing of Environment, vol. 140, pp. 294-305, 2014.
    [27] Herzfeld, K. F. and T. A. Litovitz, Absorption and dispersion of ultrasonic waves. Academic Press, 1959.
    [28] Hoitink, A. J. F., "Tidally-induced clouds of suspended sediment connected to shallow-water coral reefs," Marine Geology, vol. 208, no. 1, pp. 13-31, 2004.
    [29] Hoitink, A. J. F. and P. Hoekstra, "Observations of suspended sediment from ADCP and OBS measurements in a mud-dominated environment," Coastal Engineering, vol. 52, no. 2, pp. 103-118, 2005.
    [30] Holdaway, G. P., P. D. Thorne, D. Flatt, S. E. Jones, and D. Prandle, "Comparison between ADCP and transmissometer measurements of suspended sediment concentration," Continental Shelf Research, vol. 19, no. 3, pp. 421-441, 1999.
    [31] Johnson, R. K., "Sound scattering from a fluid sphere revisited," The Journal of the Acoustical Society of America, vol. 61, no. 2, pp. 375-377, 1977.
    [32] Kim, Y. H. and G. Voulgaris, "Estimation of suspended sediment concentration in estuarine environments using acoustic backscatter from an ADCP," in Proceedings of Coastal Sediments, 2003.
    [33] Kim, Y. H., B. Gutierrez, T. Nelson, A. Dumars, M. Maza, H. Perales, and G. Voulgaris, "Using the acoustic Doppler current profiler (ADCP) to estimate suspended sediment concentration," 2004.
    [34] Kirchhoff, G., "Ueber den Einfluss der Wärmeleitung in einem Gase auf die Schallbewegung," Annalen der Physik, vol. 210, no. 6, pp. 177-193, 1868.
    [35] Lynch, J. F., J. D. Irish, C. R. Sherwood, and Y. C. Agrawal, "Determining suspended sediment particle size information from acoustical and optical backscatter measurements," Continental Shelf Research, vol. 14, no. 10, pp. 1139-1165, 1994.
    [36] McCormick, M. E., Ocean wave energy conversion. Courier Corporation, 2013.
    [37] Meral, R., "Laboratory Evaluation of Acoustic Backscatter and LISST Methods for Measurements of Suspended Sediments," Sensors (Basel, Switzerland), vol. 8, no. 2, pp. 979-993, 2008.
    [38] Merckelbach, L. M., "A model for high-frequency acoustic Doppler current profiler backscatter from suspended sediment in strong currents," Continental Shelf Research, vol. 26, no. 11, pp. 1316-1335, 2006.
    [39] Orton, P. M., D. A. Jay, and D. Wilson, "A multi-class suspended particulate matter calibration for bottom boundary layers," 2003.
    [40] Öztürk, M., "Sediment Size Effects in Acoustic Doppler Velocimeter-Derived Estimates of Suspended Sediment Concentration," Water, vol. 9, no. 7, p. 529, 2017.
    [41] Park, H. B. and G. h. Lee, "Evaluation of ADCP backscatter inversion to suspended sediment concentration in estuarine environments," Ocean Science Journal, vol. 51, no. 1, pp. 109-125, 2016.
    [42] Pettigrew, N., J. Irish, and R. Beardsley, "Field evaluations of a bottom-mounted acoustic doppler profiler and conventional current meter moorings," vol. 3, pp. 153-162, 1986.
    [43] Poerbandono, Indonesia, and R. MAYERLE, "Assessment of Approaches for Converting Acoustic Echo Intensity into Suspended Sediment Concentration," 2004.
    [44] Reichel, G. and H. P. Nachtnebel, "Suspended sediment monitoring in a fluvial environment: Advantages and limitations applying an Acoustic Doppler Current Profiler," Water Research, vol. 28, no. 4, pp. 751-761, 1994.
    [45] Restrepo, J. C. and J. O. Pierini, "Measurement of suspended sediment concentration using optical and acoustic devices: application in tropical systems (Mira River Delta, Colombia)," Latin American Journal of Aquatic Research, vol. 40, no. 1, pp. 153-168, 2012.
    [46] Richards, S., A. Heathershaw, and P. Thorne, "The effect of suspended particulate matter on sound attenuation in seawater," The Journal of the Acoustical Society of America, vol. 100, no. 3, pp. 1447-1450, 1996.
    [47] Richards, S., T. Leighton, and N. Brown, "Visco–inertial absorption in dilute suspensions of irregular particles," vol. 459, pp. 2153-2167, 2003.
    [48] Ridd, P. and P. Larcombe, "Biofouling control for optical backscatter suspended sediment sensors," Marine Geology, vol. 116, no. 3, pp. 255-258, 1994.
    [49] Rose, C. P. and P. D. Thorne, "Measurements of suspended sediment transport parameters in a tidal estuary," Continental Shelf Research, vol. 21, no. 15, pp. 1551-1575, 2001.
    [50] Rowe, F. and J. Young, "An Ocean Current Profiler Using Doppler Sonar," pp. 292-297, 1979.
    [51] Schettini, C. A. F., M. D. Pereira, E. Siegle, L. B. de Miranda, and M. P. Silva, "Residual fluxes of suspended sediment in a tidally dominated tropical estuary," Continental Shelf Research, vol. 70, pp. 27-35, 2013.
    [52] Schoellhamer, D. H., "Biological interference of optical backscatterance sensors in Tampa Bay, Florida," Marine Geology, vol. 110, no. 3, pp. 303-313, 1993.
    [53] Schulkin, M. and H. W. Marsh, "Sound Absorption in Sea Water," The Journal of the Acoustical Society of America, vol. 34, no. 6, pp. 864-865, 1962.
    [54] Schulkin, M. and H. W. Marsh, "Absorption of sound in sea-water," Radio and Electronic Engineer, vol. 25, no. 6, pp. 493-500, 1963.
    [55] Stokes, G. G., "On the theories of internal friction of fluids in motion," Trans. Camb. Philos. Soc., vol. 8, pp. 287-305, 1845.
    [56] Teledyne_RD_Instruments, "Acoustic Doppler Current Profiler Principles of Operation A Practical Primer," 2011.
    [57] Thorne, P. D. and D. M. Hanes, "A review of acoustic measurement of small-scale sediment processes," Continental Shelf Research, vol. 22, no. 4, pp. 603-632, 2002.
    [58] Thorp, W. H., "Deep‐Ocean Sound Attenuation in the Sub‐ and Low‐Kilocycle‐per‐Second Region," The Journal of the Acoustical Society of America, vol. 38, no. 4, pp. 648-654, 1965.
    [59] Tiron, L. J., J. Le Coz, M. Provansal, N. Panin, G. Raccasi, G. Dramais, and P. Dussouillez, "Flow and sediment processes in a cutoff meander of the Danube Delta during episodic flooding," Geomorphology, vol. 106, no. 3-4, pp. 186-197, 2009.
    [60] Topping, D., S. Wright, R. Griffiths, and D. Dean, "Physically based method for measuring suspended sediment concentration and grain size using multi-frequency arrays of single-frequency acoustic-doppler profilers," in Proceedings of the 10th Federal Interagency Sedimentation Conference, 2015.
    [61] Urick, R. J., "The Absorption of Sound in Suspensions of Irregular Particles," The Journal of the Acoustical Society of America, vol. 20, no. 3, pp. 283-289, 1948.
    [62] Urick, R. J., Principles of Underwater Sound. 1983.
    [63] Wall, G. R., E. A. Nystrom, and S. Litten, "Use of an ADCP to compute suspended-sediment discharge in the tidal Hudson River, New York," 2006.
    [64] Wang, A. J., X. A. Ye, X. Q. Du, and B. X. Zheng, "Observations of cohesive sediment behaviors in the muddy area of the northern Taiwan Strait, China," Continental Shelf Research, vol. 90, pp. 60-69, 2014.
    [65] Wang, Y. P., Y. S. Chu, H. J. Lee, C. K. Han, and B. C. Oh, "Estimation of suspended sediment flux from acoustic Doppler current profiling along the Jinhae Bay entrance," Acta Oceanologica Sinica, vol. 24, no. 2, pp. 16-25, 2005.
    [66] Wang, Y. P. and S. Gao, "ADCP measurements of suspended sediment flux at the entrance to Jiaozhou Bay, western Yellow Sea," Acta Oceanologica Sinica, vol. 32, no. 12, pp. 96-103, 2013.
    [67] Wood, T. M. and J. W. Gartner, "Use of Acoustic Backscatter and Vertical Velocity to Estimate Concentration and Dynamics of Suspended Solids in Upper Klamath Lake, South-Central Oregon: Implications for Aphanizomenon flos-aquae," 2010.
    [68] Wright, L. and C. Nittrouer, "Dispersal of river sediments in coastal seas: six contrasting cases," Estuaries and Coasts, vol. 18, no. 3, pp. 494-508, 1995.
    [69] Yu, J. Q., J. B. Jiang, D. J. Gong, S. R. Li, and Y. P. Xu, "Determining suspended sediment concentration and settling velocity from PC-ADP measurements in the Beibu Gulf, China," Chinese Journal of Oceanology and Limnology, vol. 29, no. 3, pp. 691-701, 2011.
    [70] Yuan, Y., H. Wei, L. Zhao, and W. S. Jiang, "Observations of sediment resuspension and settling off the mouth of Jiaozhou Bay, Yellow Sea," Continental Shelf Research, vol. 28, no. 19, pp. 2630-2643, 2008.
    [71] Zhao, Y. L., Z. F. Liu, Y. W. Zhang, J. R. Li, M. Wang, W. G. Wang, and J. P. Xu, "In situ observation of contour currents in the northern South China Sea: Applications for deepwater sediment transport," Earth and Planetary Science Letters, vol. 430, pp. 477-485, 2015.
    [72] 汪亚平、高抒、李坤业,〈用ADCP进行走航式悬沙浓度测量的初步研究〉,《海洋与湖沼》,06卷,758-763頁,1999。
    [73] 吴中、李宇、苏长城、范平,〈悬沙的ADCP估测方法〉,《海洋工程》,2001。
    [74] 程鵬、高抒,〈ADCP測量懸沙濃度的可行性分析與現場標定〉,《海洋與湖沼》,32 (2) 卷,168-176頁,2001。
    [75] 罗潋葱、张发兵,〈ADP在太湖沉积物再悬浮分析中的应用〉,《湖泊科学》,04卷,331-338頁,2003。
    [76] 兰志刚、龚德俊、李思忍、徐永平、秦枫、姜静波,〈ADCP对悬浮沉积物浓度的测量及其误差分析研究〉,《海洋科学》,10卷,20-23,2004。
    [77] 原野、赵亮、魏皓、江文胜,〈利用ADCP和LISST—100仪观测悬浮物浓度的研究〉,《海洋学报 (中文版) 》,03卷,48-55頁,2008。
    [78] 黃裕君、宋家驥,〈超音波懸浮泥沙溶液濃度及流速量測:以高嶺土及水庫土樣為實驗驗證之研究〉,《博士論文》,臺灣大學,2008。
    [79] 吳清松、潘偉然、張國榮、王君,〈ADCP在瓊州海峽懸沙觀測中的應用〉,《廈門大學學報 (自然科學版) 》,48 (1) 卷,144-148頁,2009。
    [80] 河川環境研究室,〈台灣河川輸砂特性〉,2011。
    [81] 張世樺、黃煌煇,〈聲學濁度儀之率定與應用〉,《碩士論文》,國立成功大學,2011。
    [82] 鄭宇凡、錢樺,〈濁水溪河口懸浮沉積物輸送之調查研究〉,《碩士論文》,國立中央大學,2011。
    [83] 劉金源,《水中聲學:水聲系統之基本操作原理》,國立編譯館出版,2001。
    [84] 台江國家公園保育研究課,〈台江國家公園週邊沙洲、潟湖地景變遷及復育防災策略〉,2012。
    [85] 吳珍怡、劉祖乾,〈利用多頻聲學儀器來探討水中懸浮沉積物粒徑及濃度變化之特性:水槽實驗及現場實測〉,《碩士論文》,國立中山大學,2012。.
    [86] 魏晓、汪亚平、杨旸、陈坚、高建华、王爱军、李东义、胡国栋,〈浅海悬沙浓度观测方法的对比研究〉,《海洋地质与第四纪地质》,01卷,161-170頁,2013。
    [87] 邱鈺宸、黃志誠,〈應用聲學及光學儀器在均勻及現場懸浮質濃度之量測率定及比較〉,《碩士論文》,國立中央大學,2015。
    [88] 胡捷、徐继尚、牛建伟、董平、秦宽宽,〈声学光学法泥沙浓度观测的对比研究〉,《海岸工程》,01卷,47-57頁,2016。
    [89] 經濟部水利署水利規劃試驗所,〈河口及海岸漂沙觀測技術研究 (2/3) 〉,2016。
    [90] 交通部中央氣象局,http://www.cwb.gov.tw。
    [91] 經濟部水利署,http://www.wra.gov.tw。

    下載圖示 校內:2021-07-01公開
    校外:2021-07-01公開
    QR CODE