簡易檢索 / 詳目顯示

研究生: 蘇柏翰
Su, Bo-Han
論文名稱: 二維異向性彈性體之奇異性分析
Singularity Analysis of Two-Dimensional Anisotropic Elastic Solids
指導教授: 胡潛濱
Hwu, Chyanbin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 81
中文關鍵詞: 史磋公式應力奇異性楔形板裂縫壓痕
外文關鍵詞: Stroh Formalism, Stress Singularity, Wedge, Crack, Indentation
相關次數: 點閱:84下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藉由歸納師門早期提出的複合楔形板、裂縫及壓痕等問題的解析解,大部分裂縫問題與部分壓痕問題為複合楔形板之特例。即,在幾種普遍的邊界條件下,我們能以複合楔形板的近場基本解來模擬裂縫尖端與壓痕邊界的應力奇異性;並利用新的應力強度因子定義式結合上述複合楔形板之基本解,就能提供更為方便的分析途徑。只要問題符合複合楔形板對應之邊界條件,並提供該問題負載下的應力強度因子,便能以複合楔形板之近場解提供準確且可靠的位移與應力分布。
    本文將利用ANSYS模擬均質裂縫、界面裂縫問題,以ANSYS的模擬結果藉由路徑獨立的H積分得到該模擬之應力強度因子,並用上述方法得到近場基本解,再與ANSYS本身之近場結果做比較。

    In this study, we discuss the approach of analyzing singularity by using multi-wedge. By summarizing the singular order and boundary condition of crack and indentation problems, we can find that most of them are special cases of multi-wedge problem. That is, we can use a multi-wedge to simulate the singularity of most problems by applying proper boundary condition. The analytical solution of multi-wedge used in this paper is based on the Stroh formalism and written as program AEPH by our research group. To show the possibility of this method, the results of examples are compared with those of commercial finite element software ANSYS.

    摘要 英文延伸摘要 誌謝 目錄 …………………………………………………………………………i 表目錄 ………………………………………………………………………iv 圖目錄 ………………………………………………………………………v 符號說明……………………………………………………………………vii 第一章 緒論 ………………………………………………………………1 1.1前言……………………………………………………………1 1.2文獻回顧………………………………………………………1 1.3研究目的及本文架構…………………………………………4 第二章 二維異向性彈性力學 ……………………………………………6 2.1史磋公式………………………………………………………6 2.2相關應用公式…………………………………………………7 2.3複合楔形板之近場解…………………………………………9 2.4裂縫問題之邊界條件 ………………………………………10 2.5接觸問題之邊界條件 ………………………………………11 第三章 應力奇異性………………………………………………………13 3.1應力奇異階次 ………………………………………………13  3.1.1複合楔形板 ……………………………………………14  3.1.2裂縫問題 ………………………………………………15  3.1.3接觸問題 ………………………………………………17 3.2奇異階次計算 ………………………………………………18  3.2.1穆勒法 …………………………………………………19 3.2.2程式架構 ………………………………………………20  3.2.3設定值調整建議 ………………………………………22 3.3應力強度因子 ………………………………………………26 3.4 H積分 ………………………………………………………27 3.5移動最小平方法 ……………………………………………28 第四章 數值結果…………………………………………………………30 4.1應力奇異階次趨勢 …………………………………………30 4.2節點數測試 …………………………………………………33 4.3問題整合 ……………………………………………………34 4.3.1均質裂縫 ………………………………………………36 4.3.2界面裂縫 ………………………………………………38 4.3.3接觸問題 ………………………………………………39 第五章 結論………………………………………………………………44 參考文獻……………………………………………………………………46 附表…………………………………………………………………………50 附圖…………………………………………………………………………58

    [1] T. Ting, "Explicit solution and invariance of the singularities at an interface crack in anisotropic composites," International Journal of Solids and Structures, vol. 22, pp. 965-983, 1986.
    [2] T. C. Ting and C. Horgan, "Anisotropic elasticity: theory and applications," Journal of Applied Mechanics, vol. 63, p. 1056, 1996.
    [3] C. Fan and C. Hwu, "Punch problems for an anisotropic elastic half-plane," Journal of Applied Mechanics, vol. 63, pp. 69-76, 1996.
    [4] C. Fan and C. Hwu, "Rigid stamp indentation on a curvilinear hole boundary of an anisotropic elastic body," Journal of Applied Mechanics, vol. 65, pp. 389-397, 1998.
    [5] C. Hwu and C. Fan, "Solving the punch problems by analogy with the interface crack problems," International Journal of Solids and Structures, vol. 35, pp. 3945-3960, 1998.
    [6] C. Hwu and C. Fan, "Contact problems of two dissimilar anisotropic elastic bodies," Journal of Applied Mechanics, vol. 65, pp. 580-587, 1998.
    [7] C. Hwu and C. Fan, "Mixed boundary–value problems of two–dimensional anisotropic elasticity with perturbed boundaries," in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, pp. 1269-1282, 1998.
    [8] H.-P. Chen, "Stress singularities in anisotropic multi-material wedges and junctions," International Journal of Solids and Structures, vol. 35, pp. 1057-1073, 1998.
    [9] C. Hwu and W.-J. Lee, "Thermal effect on the singular behavior of multibonded anisotropic wedges," Journal of Thermal Stresses, vol. 27, pp. 111-136, 2004.
    [10] C. Hwu, M. Omiya, and K. Kishimoto, "A Key Matrix N for the Stress Singularity of the Anisotropic Elastic Composite Wedges," JSME International Journal Series A Solid Mechanics and Material Engineering, vol. 46, pp. 40-50, 2003.
    [11] C. Hwu and T. Kuo, "A unified definition for stress intensity factors of interface corners and cracks," International Journal of Solids and Structures, vol. 44, pp. 6340-6359, 2007.
    [12] C. Hwu and H. Huang, "Investigation of the stress intensity factors for interface corners," Engineering Fracture Mechanics, vol. 93, pp. 204-224, 2012.
    [13] D. Broek, "Elementary Engineering Fracture Mechanics, Delf University of Technology," ed: Noorhoff International Publishing Leiden, 1974.
    [14] M. Williams, "Stress singularities resulting from various boundary conditions," Journal of Applied Mechanics, vol. 19, pp. 526-528, 1952.
    [15] M. Williams, "On the stress distribution at the base of a stationary crack," Journal of Applied Mechanics, vol. 24, pp. 109-ll4, 1957.
    [16] A. Gradin, "A fracture criterion for edge-bonded bimaterial bodies," Journal of Composite Materials, vol. 16, pp. 448-456, 1982.
    [17] H. Groth, "Stress singularities and fracture at interface corners in bonded joints," International Journal of Adhesion and Adhesives, vol. 8, pp. 107-113, 1988.
    [18] S. S. Pageau, K. S. Gadi, S. B. Biggers Jr, and P. F. Joseph, "Standardized complex and logarithmic eigensolutions for n-material wedges and junctions," International Journal of Fracture, vol. 77, pp. 51-76, 1996.
    [19] Qian ZQ, Akisanya AR, "An in vestigation of the stress singularity near the free edge of scarf joints, " European Journal of Mechanics A/Solids, vol. 18, pp. 443-463, 1999
    [20] S. Lekhnitskii, P. Fern, J. J. Brandstatter, and E. Dill, "Theory of elasticity of an anisotropic elastic body," Physics Today, vol. 17, p. 84, 1964.
    [21] A. Stroh, "Steady state problems in anisotropic elasticity," J. math. Phys, vol. 41, pp. 77-103, 1962.
    [22] Chyanbin Hwu, Anisotropic Elastic Plates: Springer Science & Business Media, 2010.
    [23] Chyanbin Hwu, "Matrix form near tip solutions of interface corners," International journal of fracture, vol. 176, pp. 1-16, 2012.
    [24] Chyanbin Hwu, "Explicit solutions for collinear interface crack problems," International Journal of Solids and Structures, vol. 30, No.3, pp. 301-312, 1993.
    [25] N. I. Muskhelishvili, Some basic problems of the mathematical theory of elasticity. Groningen: Noordhoff Publisher, 1954.
    [26] 楊濠, "磁電彈材料之界面角分析," 成功大學航空太空工程學系學位論文, pp. 1-56, 2013.
    [27] 李文仁, "複合楔形板之應力奇異性," 成功大學航空太空工程學系學位論文, pp. 1-88, 2002.
    [28] J. Rice, "Elastic fracture mechanics concepts for interfacial cracks," Journal of Applied Mechanics, vol. 55, pp. 98-103, 1988.
    [29] I. S. Sokolnikoff and R. D. Specht, Mathematical theory of Elasticity vol. 83: McGraw-Hill New York, 1956.
    [30] 郭泰良, "界面接角之應力強度因子," 成功大學航空太空工程學系學位論文, 2006.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE