簡易檢索 / 詳目顯示

研究生: 毛泓諭
Mao, Hong-Yu
論文名稱: 利用腔內式光學元件產生環形光束
Generation of hollow beams with intra-cavity optical elements
指導教授: 魏明達
Wei, Ming-Dar
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 62
中文關鍵詞: 環形光束渦流光束圓柱向量光束
外文關鍵詞: Hollow beam, Optical vortex beam, Cylindrical vector beam
相關次數: 點閱:99下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一部分以四面鏡共振腔搭配腔內黑點來產生環形渦流光束,藉由調控黑點直徑與腔內光束直徑的比值參數M去調控拓樸荷數大小,最多能做到l=4的渦流光束。第二部分以三面鏡系統搭配軸稜錐對,藉由調控軸稜追位置與輸出耦合鏡位置等參數來改變腔內光束之光路做出可調直徑與發散角之環性光束,並在特定操作位置具有圓柱向量光束偏振特性。

    Summary
    In the first part of experiment, we set up a four mirror laser cavity, by adds a 250 μm defect spot in the middle of two focal lens to generate hollow beams which have optical vortex, by adjust the output couple’s distance from lens 2 or fix the position of output couple and move the defect spot along the propogation axis, we can adjust the ratio of defect spot diameter and cavity spot size, consider the different ratio we can produce vortex beam with different magnitudes topology charges, and the highest we can produce a vortex beam which topology charge equal to 4. In the second part, we set up a three mirrors laser cavity, by adds a γ equal to 175° axicon pairs which head to head in the cavity to generate hollow beams ,by move the axicon pairs close to or adjuste the output couple away from lens 2, the average diameter and divergence angle of hollow beams will become bigger continuously, the most important, in the operating position where z_a=30.3 cm, d = 4.9 cm, we produce a hollow beam which divergency angle relatively small, no multiple Bessel rings effect and have azimuthal polarization(AP) characteristics.
    Key word : Hollow beam、Optical vortex beam、Cylindrical vector beam
    Introduction
    As the name of hollow beam, it has annular intensity distribution, and doesn’t exist intensity in the center of beam, according to different optical characteristic we can divide into two hollow beams, the vortex beam and cylindrical vector beam. Optical vortex beam is a special hollow beams, different from normal plan wave, it has the amplitude and phase singularities in the center of beam, and the wavefront which rotates around the propogation direction continuously, called helical wavefront, it’s poynting vector perpendicular to wavefront also rotate with propogation axis. thus the phase will dependence of azimuthal degree in the transverse plan, written in exp⁡(ilϕ), where ϕ is the angular coordinate from 0 to 2π and l is integer called topology charge. The vortex beam have orbital angular momentum (OAM), and the value of OAM is (_-^+)lℏ per photon. In the general solid state laser system, this king of vortex beam called Laguerre-Gaussian mode.
    On the other hand, different from normal linear polarization, circular polarization which the polarization is homogeneous distribution in the free space, the cylindrical vector beam which the polarization is dependence of spatial distribution, it’s polarization is cylindrical symmetrical arrangement in the beam cross section, according to arrangement, divide into two kinds : azimuthal polarization(AP) and radial polarization(RP).
    In recent years, the hollow beam with special properties is very popular research topics and has been developed of potential applications, like particals trapping and manipulation、resolution microscope、materials processing、quantum information.

    EXPERIMENT
    In the first part of experiment, we set up a four mirror laser cavity with Nd:YVO4 gain medium, by adjusting the three part of cavity length for 5.1 cm, 14.6 cm and variable length d = 5.8 cm, the cavity is in critical situation, the varity of cavity spot size is very slow in the middle of two focal lens, we can see the beam as plan wave in this rigion, and then put a 250 μm defect spot 13.1 cm distance from lens 2, in this condition, we generate a hollow beam, to observerse and verificate it’s phase structure have votex phase, we set up a Mach-Zehnder interferometer, after this hollow beam interfere with a plan wave we confirm it is a optical vortex beam which topology charge is 2. After, we move the output couple away from lens 2 to change the cavity spot size,so that we can change the ratio of defect spot diameter to cavity spot size, when we set the d from 6.2 cm to 6.8cm, in this cavity length, the cavity spot sizes are smaller compare to d is 5.8, so that we can produce a hollow beam with topology charge is 1. To generate the higer topology charge, we set cavity length d = 6.8 cm, in this cavity length, there exist a continuous change cavity spot size from about 255 μm to 480 μm, so we move defect spot along propogation axis in this rigion we can generate a topology charge adjustable vortex beam from

    第一章:緒論 1 1.1 簡介 1 1.2 研究動機與目的 5 第二章:渦流光束 7 2.1 原理 7 2.1.1 渦流光束的軌道角動量 7 2.1.2 共振腔腔內光束大小模擬 11 2.1.3 渦流光束的干涉與疊加態 14 2.2 渦流光束的產生與特性分析 18 2.2.1 實驗架構 18 2.2.2 實驗步驟與結果討論 19 第三章 以軸稜錐產生之環形光束 39 3.1 原理 39 3.1.1 非繞射光束與聚焦特性 39 3.2 可調式環形光束 45 3.2.1 實驗架構 45 3.2.2 環形光束的基本特性 45 第四章 結論與未來展望 58 4.1 結論 58 4.2 未來展望 58 參考文獻 60

    [1] J.Poynting,“Thewavemotionofarevolvingshaft,andasuggestionasto the angular momentum in a beam of circularly polarised light,” Proc. R. Soc. Lond. A Ser. A 82, 560–567 (1909)
    [2] R. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
    [3] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular-momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992)
    [4] C. Tamm, “Frequency locking of 2 transverse optical modes of a laser,” Phys. Rev. A 38, 5960–5963 (1988).
    [5] Yao, A.M., and Padgett, M.J. “Orbital angular momentum: origins, behavior and applications,”Advances in Optics and Photonics, 3(2). p. 161. ISSN 1943-8206(2011).
    [6] Bejersbergen, M. W., Allen, L., van der Veen, H. E. L. O. & Woerdman, J. P. Astigmatic laser mode converters and transfer of orbital angular momentum. Opt. Commun. 96, p.123-132 (1993).
    [7] Matsumoto, Naoya, et al. “Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators.” J.Opt.Soc.Am.A. 25(7)p. 1642-1651 (2008).
    [8] N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White,”Generation of optical phase singularities by computer-generated holograms”Opt.Lett.17(3),p. 221-223(1992).
    [9] M.W. Beijersbergen, R.P.C. Coerwinkel, M. Kristensen , j.p. Woerdman.” Helical-wavefront laser beams produced with a spiral phaseplate” Opt. Commun.112(5-6),p. 321-327(1994).
    [10] Jianlang Li, Yao Yao, Junjie Yu, Kegui Xia, and Changhe Zhou,” Efficient Vortex Laser With Annular Pumping Formed by Circle Dammann Grating,” IEEE Photonics Technology Letters.28(4),p. 473-476(2016).
    [11] Ito, Akihiko, Yuichi Kozawa, and Shunichi Sato. “Generation of hollow scalar and vector beams using a spot-defect mirror.” JOSA A 27(9),p. 2072-2077 (2010).
    [12] Pohl, Dieter. “Operation of a ruby laser in the purely transverse electric mode TE01.” Appl Phy Lett 20(7), p. 266-267 (1972).
    [13] Mushiake, Yasuto, K. Matsumura, and N. Nakajima. "Generation of radially polarized optical beam mode by laser oscillation." P IEEE 60(9), p. 1107-1109 (1972).
    [14] Stalder, M., and M. Schadt. “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters.” Opt lett 21(23),p. 1948-1950(1996).
    [15] Machavariani, G., et al. "Spatially-variable retardation plate for efficient generation of radially-and azimuthally-polarized beams." Opt Commun 281(4), p. 732-738 (2008).
    [16]Tidwell, Steve C., Dennis H. Ford, and Wayne D. Kimura. "Generating radially polarized beams interferometrically." Appl Opt 29(15), p. 2234-2239 (1990).
    [17] Yonezawa, Kazuhiro, Yuichi Kozawa, and Shunichi Sato. "Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd: YVO4 crystal." Opt lett 31(14), p. 2151-2153 (2006).
    [18] Ken-Chia Chang, Tyson Lin, and Ming-Dar Wei. "Generation of azimuthally and radially polarized off-axis beams with an intracavity large-apex-angle axicon." Opt express 21(13), p. 16035-16042 (2013).
    [19] Pohl, Dieter. "Operation of a ruby laser in the purely transverse electric mode TE01." Appl Phys Lett. 20.7 (1972): 266-267.
    [20] Kozawa, Yuichi, and Shunichi Sato. "Generation of a radially polarized laser beam by use of a conical Brewster prism." Opt Lett 30(22), p. 3063-3065 (2005).
    [21]Grier, David G. "A revolution in optical manipulation." Nature 424(6950), p. 810-816(2003).
    [22]Manek, I., Yu B. Ovchinnikov, and R. Grimm. "Generation of a hollow laser beam for atom trapping using an axicon." Opt commun 147(1),p. 67-70 (1998).
    [23]Hell, Stefan W., and Jan Wichmann. "Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy." Opt lett 19(11),p. 780-782 (1994).
    [24]Toyoda, Kohei, et al. "Using optical vortex to control the chirality of twisted metal nanostructures." Nano lett 12(7),p.3645-3649(2012).
    [25]S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photon. Rev. 2,p. 299–315 (2008).
    [26]Miles Padgett, Johannes Courtial, and L. Allen, “Lights orbital angular momentum,”Phys.Today.57(5),p. 35-40(2004).
    [27] V.Yu. Bazhenov , M.S. Soskin & M.V. Vasnetsov,” Screw Dislocations in Light Wavefronts”,39(5),p. 985-990(1992).
    [28] Nicholas Paul Pellatz,” The orbital angular momentum of light,”(2014).
    [29]Litvin, Igor A., et al. "Doughnut laser beam as an incoherent superposition of two petal beams." Opt lett 39(3),p.704-707 (2014).
    [30] J. Durnin, J. J. Miceli, Jr. , and J. H. Eberly, “Diffraction-free beam, ”
    Phys. Rev. Lett. 58, p. 1499-1501 (1987).
    [31] Zhan, Qiwen. "Cylindrical vector beams: from mathematical concepts to applications." Adv Opt Photonics 1(1) ,p.1-57 (2009).

    無法下載圖示 校內:2022-08-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE