| 研究生: | 許家瑜 Hsu, Chia-Yu | 
|---|---|
| 論文名稱: | 於多軸曲面加工時刀軸方位與刀具尺寸限制之研究 Study on Constraints of Cutter Orientation and Cutter Size for Multi-axis Surface Machining | 
| 指導教授: | 李榮顯 Lee, Rong-Shean | 
| 學位類別: | 碩士 Master | 
| 系所名稱: | 工學院 - 機械工程學系 Department of Mechanical Engineering | 
| 論文出版年: | 2004 | 
| 畢業學年度: | 92 | 
| 語文別: | 中文 | 
| 論文頁數: | 108 | 
| 中文關鍵詞: | 刀具尺寸 、刀軸方位 、曲面加工 | 
| 外文關鍵詞: | surface machining, tool orientation, cutter size | 
| 相關次數: | 點閱:85 下載:11 | 
| 分享至: | 
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 | 
  多軸加工是目前精密製造中的一個重要製程,在對自由曲面加工時,以往的方式都是憑藉工程師的經驗與技術進行工具機選擇與工件安裝,若是在製程規劃產生前,先對曲面評估出正確的刀具尺寸與其可行方位,便能避免因缺乏經驗造成的加工錯誤設定,並減少製程規劃的時間。
  首先在多軸工具機部份,工具機工作空間與可視錐理論結合進行分析自由曲面的可製造性,利用工具機構型碼與座標轉換矩陣推導工具機的刀軸可行範圍。在評估三、四軸加工時,系統會嘗試以單一工件安裝方位加工完整個曲面,或是加上分度盤做第二次的工件設定。而五軸結合可視錐與刀具尺寸限制影響之刀軸方位,計算於工具機旋轉軸的最小旋轉限制角度以尋找正確的構型。以往可視性與可視錐分析將刀具忽略為一無窮遠的直線,而造成加工時真實存在的刀具可能對曲面造成干涉或碰撞,為了避免發生此情形,本文根據曲面幾何推算出不同種類的刀具限制尺寸,再以該尺寸計算出不發生干涉的刀軸方位並結合可視錐作分析,最後將加入刀具尺寸分析的可視錐與工作空間交集得到不發生干涉的刀軸方位可行範圍。 
  本文結合多軸工具機工作空間與刀具幾何分析,以Microsoft Visual C++為基礎撰寫曲面可製造性之初步評估系統,從曲面點資料即可判別製造曲面時所需工具機構型、工件安裝角度、刀軸或工作台之最小旋轉軸角度與避免干涉的刀具尺寸,文中探討當曲面取樣點密度不同時對刀具幾何的影響。最後以套裝軟體Unigraphic NX驗證以限制尺寸的刀具加工的正確性。此分析系統作為電腦輔助製造中製程規劃的前處理能提升選擇工具機與刀具的效率。
  The multi-axis machining is one of the important processes in modern precision manufacturing. For the machining of sculptured surface, traditional methods of choosing machine configuration and cutter geometry for multi-axis surface machining depend on the expertise and experience of manufacturing engineers. If a preliminary analysis system is available to evaluate appropriate cutter size and orientation of workpiece before the manufacturing process begins, the errors caused by lack of experience can be avoided and the process planning time will be decreased.
  To evaluate manufacturability, visibility cone theory and feasible tool orientation are combined to perform the machine tool configuration analysis. Feasible tool orientations for each configuration are obtained by configuration code of the machine tool and coordinate transform matrix. For three-axis and four-axis machining, the preliminary analysis system will try the first priority of setup orientation to finish the machining or generated secondary setup orientation with indexing table. For five-axis machining, visibility cones with constrained cutter orientation of the workpiece are combined to find the minimal necessary angle for the rotary axis of the specific machine tool. In conventional visibility analysis the cutter geometry and its effect on the manufacturability are often ignored and only a vector with infinite length is considered. In order to avoid tool interference, this research calculate constricted cutter size without interference and adapting with original visibility cone analysis according to geometric parameters of different cutters, and use this result to obtain precise tool orientation.
  In this research, a manufacturability evaluation system written with Microsoft Visual C++®, enables to analyze and suggest machine tool configuration, optimum workpiece orientation and constrained cutter geometry before process planning for multi-axis surface machining. The relation between different sampling point density and cutter geometry was discussed. The CAD/CAM software Unigraphic NX® was used to generate cutter location file and verify the purposed method of constrained cutter geometry. Potential application of proposed system can serves as preprocessor of computer-aided-manufacture system to improve efficiency of machine tool selection and cutter size selection.
1.Balasubramaniam, M., P. Laxmiprasad, S. Sa and Z. Shaikh, “Generating 5-axis NC Roughing Paths Directly from a Tessellated Representation”, Computer-Aided Design, Vol.32, pp.261-277 (2000).
2.Balasubramaniam, M., S. E. Sarma and K. Marciniak, “Collision-Free Finishing Toolpaths from Visibility Data”, Computer-Aided Design, Vol.35, pp.359-374 (2003).
3.Bedi, S., S. Gravelle and Y. H. Chen,“Principal Curvature Alignment Technique for Machining Complex Surfaces”,ASME Trans. Journal of Manufacturing Science and Engineering,Vol.119,pp.756-765(1997).
4.Chen, L. L. and T. C. Woo, “Computational Geometry on the Sphere With Application to Automated Machining”, ASME Trans. Journal of Mechanical Design, Vol.114, pp.228-295 (1992).
5.Chen, L. L., S. Y. Chou and T. C. Woo, “Separating and Intersecting Spherical Polygons: Computing Machinability on Three-, Four-, and Five-Axis Numerically Controlled Machines”, ACM Trans. on Graphics, Vol.12, No.4,pp.305-326 (1993).
6.Chen, L. L., S. Y. Chou and T. C. Woo, “Partial Visibility for Selecting a Parting Direction in Mold and Die Design”, Journal of Manufacturing System, Vol.14, No.5, pp.319-330 (1995).
7.Choi, B. K. and C. S. Jun, “Ball-End Cutter Interference Avoidance in NC Machining of Sculptured Surface”, Computer-Aided Design, Vol.21, No.6, pp.371-378 (1989).
8.Elber, G. and E. Zussman, “Cone Visibility Decomposition of Freeform Surfaces”, Computer-Aided Design, Vol.30, No.4, pp.315-320 (1998).
9.Elber, G. and E. Cohen, “A Unified Approach to Verification in 5-Axis Freeform Milling Environments”, Computer-Aided Design, Vol.31, pp.795-804 (1999).
10.Gan, J. G., T. C. Woo and K. Tang, “Spherical Maps: Their Construction, Properties, and Approximation”, Journal of Mechanical Design, Vol.116, pp.357-363 (1994).
11.Glaeser, Georg, Johannes Wallner and Helmut Pottmann, “Collision-free 3-axis milling and selection of cutting tools”, Computer-Aided Design, Vol.31, No.3, pp.225-232 (1999).
12.Gupta, P., R. Janardan, J. Majhi and T. Woo, “Efficient Geometric Algorithms for Workpiece Orientation in 4- and 5-Axis NC Machining”, Computer-Aided Design, Vol.28, No.8, pp.577-587 (1996).
13.Jensen, C. G., W. E. Red and J. Pi, “Tool Selection for Five-Axis Curvature Matched Machining”, Computer-Aided Design, Vol.34, pp.251-266 (2002).
14.Kang, J. K. and S. H. Suh, “Machinability and Set-up Orientation for Five-Axis Numerically Controlled Machining of Free Surfaces”, The International Journal of Advanced Manufacturing Technology, Vol.13, pp.311-325 (1997).
15.Kim, D. S., P. Y. Papalambros, and T. C. Woo, “Tangent, Normal, and Visibility Cones on Bezier Surfaces”, Computer Aided Geometric Design, Vol.12, pp.305-320 (1995).
16.Kweon, S. and D. J. Medeiros, “Part Orientations for CMM Inspection Using Dimensioned Visibility Maps”, Computer-Aided Design, Vol.30, NO.9, pp.741-749 (1998).
17.Lee,Y. S. and T. C. Chang, “Automatic Cutter Selection for 5-axis Sculptured Surface Machining”, International Journal of Production Research, Vol.34, No.4, pp.977-998 (1996).
18.Lin, Alan C. and Ching-Long Wei, “Automated Selection of Cutting Tools Based on Solid Models”, Journal of Materials Processing Technology, Vol.72, pp.317-329 (1997).
19.Ong, S. K. and L. C. Chew, “Evaluating the Manufacturability of Machined Parts and Their Setup Plans”, Int. Journal of Production Research, Vol.38, No.11, pp.2397-2415 (2000).
20.Paul, R. P., “Robot Manipulators: Mathematics”, Programming and Control, MIT Press, Cambridge, Mass (1981).
21.Reshetov, D. N. and V. T. Portman, “Accuracy of Machine Tool”, ASME Press, pp.25-60 (1988).
22.Rogers, D. F. and J. A. Adams, “Mathematical Elements for Computer Graphics”, 2nd, McGraw-Hill Publishing Co. (1990).
23.Suh, S. H. and J. K. Kang, “Process Planning for Multi-Axis NC Machining of Free Surfaces”, International Journal of Production Research, Vol.33, No.10, pp.2723-2738 (1995).
24.Suh, S. H. and J. J. Lee, “Five-Axis Part Machining With Three-Axis CNC Machine and Indexing Table”, ASME Trans. Journal of Manufacturing Science and Engineering, Vol.120, pp.120-128 (1998).
25.Tang, K., T. Woo and J. Gan, “Maximum Intersection of Spherical Polygons and Workpiece Orientation for 4- and 5-Axis Machining”, Journal of Mechanical Design, Vol.114, pp.477-485 (1992).
26.Tseng, Y. J. and S. Joshi, “Determining Feasible Tool-Approach Directions for Machining Bezier Curves and Surfaces”, Computer-Aided Design, Vol. 23, No.5, pp.367-379 (1991).
27.Vafaeesefat, A. and H. A. Elemaraghy, “Automated Accessibility Analysis and Measurement Clustering for CMMs”, International Journal of Production Research, Vol.38, No.10, pp.2215-2231 (2000). 
28.Vafaeesefat, A. and H. A. EIMaraghy, “Optimal Workpiece Orientation for Machining of Sculptured Surfaces”, Proc. Instn. Mechanical Engineers, Vol.214, Part B, pp.671-681 (2000).
29.Woo, T. C. and B. F. von Turkovich, “Visibility Map and Its Application to Numerical Control”, Annals of the CIPP, Vol.39, pp.451-454 (1990).
30.Woo, T. C., “Visibility Maps and Spherical Algorithms”, Computer-Aided Design, Vol.26, No.1, pp.6-16 (1994).
31.Yang, D. C. H. and Z. Han, “Interference Detection and Optimal Tool Selection in 3-axis NC Machining of Free-form Surfaces”, Computer-Aided Design, Vol.31, No.5, pp.303-315 (1999).
32.Yin, Z. P., H. Ding and Y. L. Xiong, “Visibility Theory and Algorithms with Application to Manufacturing Processes”, Int. Journal of Production Research, Vol.38, No.13, pp.2891-2909 (2000).
33.You, C. F. and C. H. Chu, “Tool-Path Verification in Five-Axis Machining of Sculptured Surfaces”, Int. Journal of Advanced Manufacturing Technology, Vol.13, pp.248-255 (1997) 
34.Zhu, C., “Avoiding Interference in Manufacturing a Free-Formed Surface with a Cylindrical End Mill Cutter”, Computer in Industry, Vol.14, pp.356-371 (1990).
35.佘振華, “空間凸輪五軸加工數值控制程式設計系統之研究”, 博士論文, 國立成功大學機械工程研究所, 86年6月。
36.李政男, “應用包絡元件於多軸加工數值控制程式設計系統之研究”, 博士論文, 國立成功大學機械工程研究所, 90年1月。
37.葉煌成,“以具分度盤之三軸工具機對自由曲面加工之可製造性評估系統發展”,碩士論文,國立成功大學機械工程研究所, 89年6月。
38.陳福成, “綜合加工機機構之構形合成”,博士論文,國立成功大學機械工程研究所,民國86年1月。
39.陳嘉仁, “多軸曲面加工時利用可視性映射做工具機構型選擇之研究”, 碩士論文, 國立成功大學機械工程研究所, 90年7月。
40.陳耀乾, “以可視錐分析工件夾持方位及多軸工具機構型之研究”, 碩士論文, 國立成功大學機械工程研究所, 91年7月。
41.黃世光, “多軸工具機之合成與分析”, 碩士論文, 國立成功大學機械工程研究所, 81年6月.
42.黃祥峰, “臥式綜合加工機未來發展趨勢”, 機械工業, 90年3月號, pp 258-274.
43.張俊毅, “於多軸曲面加工時以可視錐分析工件做工具機及刀具尺寸限制之研究”, 碩士論文, 國立成功大學機械工程研究所, 92年7月。
44.位元文化研究室 著, “精通視窗程式設計-適用Visual C++6.0版”, 文魁資訊股份有限公司, 2000年3月。