簡易檢索 / 詳目顯示

研究生: 白宜婷
Pai, I-Ting
論文名稱: 壓印聚亞醯胺圖案誘發五環素分子配向之研究
Induced azimuthal molecular orientation of pentacene on imprinted polyimide films
指導教授: 洪敏雄
Hon, Min Hsiung
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 124
中文關鍵詞: 有機半導體壓印分子配向五環素聚亞醯胺
外文關鍵詞: Organic Semiconductor, Nanoimprinting, Molecular Orientation, Pentacene, Polyimide
相關次數: 點閱:83下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究第一部份利用殘餘溶劑輔助壓印法製備聚亞醯胺圖案化薄膜,以聚二甲基矽氧烷為壓印模具,製備大至數十微米小至數百奈米之圖案化薄膜。另一方面,藉由改變聚醯酸胺前驅物溶液之濃度可使整體流動性改變及控制壓印壓力輔助溶液流動,控制最終之多階層圖案,且利用前驅物溶液與基板及聚二甲基矽烷之表面張力差直接製備出一般壓印難以達成之無殘餘層壓印圖案。傅立葉轉換紅外線光譜儀分析得知,在熱處理溫度250 °C下加熱20 min.使聚醯胺酸完全轉換成聚亞醯胺,證實本研究可將壓印及熱處理過程結合,提供一簡便之聚亞醯胺圖案成型製程。

    有機半導體之載子傳輸效率與分子方向性有極大關係,控制有機半導體之分子方向性大幅提高薄膜之整體載子移動率,但至目前為止仍無有效控制分子排列之方法。本研究第二部份探討五環素薄膜之成核成長機制,並利用聚亞醯胺壓印化圖案薄膜作為五環素分子配向層。壓印製程中聚亞醯胺分子鏈隨著溶液流動方向而累積於圖案終端形成配向位置,提供五環素分子於聚亞醯胺圖案凸起處形成具方位性之晶核。藉由掃描式探針顯微鏡分析可知五環素晶粒順著聚亞醯胺波狀圖案凸起表面排列;偏極化拉曼分析更進一步證實五環素晶粒在成核階段之分子方向性即已形成;在電阻分析方面證實具方向排列之五環素薄膜在單位面積內提供較小之電阻率。

    An elastomeric stamp made from poly (dimethylsiloxane) (PDMS) was employed to prepare patterned polyimide (PI) films by the solvent-assisted nanoimprinting process. From the Field-Emission Scanning Electron Microscopic (FeSEM) observation and scanning probe microscopy (SPM), it was found that the patterns from 10 μm to 275 nm pitch size had been completely transformed from the PDMS mold into the PI films. Also, the controllable PI hierarchical structures could be obtained by using various PAA concentrations and different imprinting loads through dewetting in an imprinting process. PI patterns without a residual layer were formed due to the dewetting phenomena caused by the surface tension and thus formed patterns of different ambits were obtained due to the fluidity of PAA solutions. By FTIR spectra analysis, it was observed that the poly-amic acid (PAA) precursor was converted completely to PI by thermal curing at 250 °C for 20 minutes. Throughout the whole work, it was suggested that the excellent performance of pattern transfer of PDMS to PI could be ascribed to the assistance of residual solvent. The present study provides a new approach to fabricate nanoimprinted PI films which is considered to be difficult by the conventional hot embossing technique.

    Moreover, we investigate the nucleation and growth behaviors of pentacene films with preferentially azimuthal orientation along the relief of rib patterned PI surfaces. Pentacene, as an organic semiconductor is found that the carrier transport efficiency is highly dependent on the orientation of molecules but the orientation control is hard to reach. An imprint method is used to construct the patterned PI films to demonstrate the practical applicability of the surface to induce azimuthal molecular orientation of pentacene. The SPM and polarized Raman analysis reveal that the pentacene grain orientation was determined in the initial nucleation step. Our work illustrates the possibility to control the oriented nucleation behavior of pentacene via the patterned PI.

    中文摘要…………………………………………………………….….. I 英文摘要…………………………………………………………….….. II 誌謝…………………………………………………………….……….. IV 總目錄……………………………………………………………….….. V 表目錄……………………………………………………………….….. VIII 圖目錄……………………………………………………………….….. X 英漢名詞與符號對照表……………………………………….……….. XVI 第一章 緒論………………………………………………….……….. 1 第二章 理論基礎與文獻回顧……………………………….……….. 4 2-1 共軛小分子的發展…………………………………….………. 4 2-2 五環素簡介、性質及其相關發展…………………….………. 9 2-2-1 五環素薄膜的基本性質…....…………………………...... 9 2-2-2 五環素分子導電機制.……………………………………. 12 2-2-3 順晶理論………………………………………………….. 13 2-3 聚亞醯胺………………………………………………………. 15 2-4 配向技術………………………………………………………. 17 2-5 壓印技術………………………………………………………. 20 第三章 實驗方法與步驟………………………………………….. 26 3-1 實驗流程………………………………………………………. 26 3-2 實驗藥品……………………………………….……………… 27 3-3 壓印製程….…………………………………………….……… 27 3-3-1 使用儀器……….…………………………………….…….. 27 3-3-2 實驗流程……….…………………………………………... 27 3-4 熱蒸鍍氣相沉積系統.…………………………………….…… 30 3-4-1 真空系統…………………………………………………… 30 3-4-2 電源供應器………...………………………………………. 30 3-4-3五環素薄膜蒸鍍………………..………………………...… 31 3-5 材料分析與鑑定...…………………………………………….… 33 第四章 壓印聚亞醯胺薄膜之性質分析……...……………………… 37 4-1 前言…………………..…...…………………………………...… 37 4-2 聚亞醯胺薄膜性質分析..…….…………………………………. 40 4-2-1 FT-IR分析……….....…………..……………..……..……. 40 4-2-2 TG-DTA分析……….....…………..……………..……..… 43 4-3 聚亞醯胺壓印製程……………………………....…………….... 45 4-3-1 PAA黏度分析…………………………………..………… 45 4-3-2 軟烤溫度對壓印圖案成型的影響……….…….………… 45 4-3-3 壓印圖案表面型態分析……….……….………………… 49 4-4 小結…………………………………………………………….. 62 第五章 五環素薄膜的沉積及特性分析………...…………………… 63 5-1 前言………………………….……………………………….…. 63 5-2 五環素薄膜成長參數分析……………………….…………… 64 5-2-1 蒸鍍速率影響……………..……………………………….. 64 5-2-2 基板影響………………………….…………………….….. 69 5-2-3 五環素沉積於具聚亞醯胺修飾層之性質分析…………… 73 5-3 五環素薄膜性質分析…………..………………………...…… 77 5-3-1 成核成長……………….……………………………..…… 77 5-3-2五環素薄膜晶體結構分析.………………………………… 80 5-4 壓印聚亞醯胺圖案對五環素薄膜的方向配位.………………... 85 5-4-1 聚亞醯胺壓印於玻璃基板.………………………..………. 87 5-4-2 五環素薄膜於聚壓醯胺圖案上之性質………..………….. 88 5-4-2-1 SPM分析………………..…………..…………….. 88 5-4-2-2 薄膜XRD結構分析………………..…………..… 89 5-4-2-3 偏極化拉曼分析…………………………..……… 97 5-4-2-4 Hall電阻量測分析………………………………… 104 5-5 小結……………………………………..………………………. 107 第六章 總結論…………………………………………..……………. 109 參考文獻…………………………..……………………………………. 111 個人簡歷…………………………..……………………………………. 122 著作…………………………..…………………………………………. 122

    1. F. Ebisawa, T. Kurokawa and S. Nara, J. Appl. Phys. 54 (1983) 3255
    2. C. W. Tang and S. A. Van Slyke, Appl. Phys. Lett. 51 (1987) 913
    3. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voos, A. J. H. Splering, R. A. J. Janssen, E. W. Meijer, P. Herwig and D. M. de Leeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers”, Nature 401 (1999) 685
    4. H. Sirringhaus, N. Tessler and R. H. Friend, “Integrated optoelectric devices based on conjugated polymers”, Sicence 287 (1998) 1741
    5. J. G. Laquindanum, H. E. Katz, A. J. Lovinger and A. Dodabalapur, ”Benzodithiophene rings as semiconductor building blocks”, Adv. Mater. 9 (1997) 36
    6. S. Lee, B. Koo, J. Shin, E. Lee and H. Park, “Effects of hydroxyl groups in polymeric dielectrics on organic transistor performance”, Appl. Phys, Lett. 88 (2006) 162109
    7. B. H. Hamadani, D. J. Gundlach, I. McCulloch and M. Heeney, “Undoped polythiophene field-effect transistors with mobility of 1 cm2V-1s-1”, Appl. Phys. Lett. 91 (2007) 243512
    8. H. Wang, D. Song, J. Yang, B. Yu, Y. Geng and D. Yan, “High mobility vanadyl-phthalocyanine polycrystalline films for organic field-effect transistors”, Appl. Phys. Lett. 90 (2007) 253510
    9. J. Li, F. Qin, C. M. Li., Q. Bao, M. B. Chan-Park, W. Zhang, J. Qin and B. S. Ong, “High-performance thin film transistors from solution-processed dithienothiophene polymer semiconductor nanoparticles”, J. Am. Chem. Soc. 20 (2008) 6
    10. S. Liu, C. B. Mannsfeld, M. C. LeMieux, H. W. Lee and Z. Bao, “Organic semiconductor-carbon nanotube bundle bilayer field effect transistors with enhanced mobilities and high on/ off ratios” Appl. Phys. Lett. 92 (2008) 053306
    11. M. Leufeng, O. Rost, C. Gould, G. Schmidt, J. Geurts, L. W. Molenkamp, N. S. Oxtoby, M. Mas-Torrent and C. Rovira, “High-mobility tetrathiafulvalence organic field-effect transistors from solution processing”, Org. Electron. 9 (2008) 1101
    12. S. Kobayashi, T. Takenobu, S. Mori, A. Fujiwara and Y. Iwasa, “C60 thin-film transistors with high field-effect mobility, fabricated by molecular beam deposition”, Adv. Mater. 4 (2003) 371
    13. R. J. Chesterfield, J. C. Mckeen, C. R. Newman, P. C. Ewbank, D. A. de Silva Filho, J. L. Bredas, L. L. Miller, K. R. Mann and C. D. Frisbie, “Organic thin film transistors based on N-Alkyl perylene diimides: charge transport kinetics as a function of gate voltage and temperature”, J. Phys. Chem. 108 (2004) 19281
    14. S. Tatemichi, M. Ichikawa, T. Koyama and Y. Taniguchi, “High mobility n-type thin-film transistors based on N-ditridecyl perylene diimide with thermal treatments”, Appl. Phys. Lett. 89 (2006) 112108
    15. H. Klauk, U. Zschieschang, J. Pflaum and M. Halik, “Ultralow-power organic complementary circuits”, Nature 445 (2007) 745
    16. H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dötz, M. Kastler and A. Facchetti, “A high-mobility electron-transporting polymer for printed transistors”, Nature 457 (2009) 679
    17. C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau and A. G. MacDiarmid, “Electrical conductivity in doped polyacetylene”, Phys. Rev. Lett. 39 (1997) 1098
    18. Gábor Harsányi, “Polymer films in sensor applications”, Technomic Publishing Company, U.S.A, p.209, 1995
    19. R. Ruiz, D. Choudhary, B. Nickel, T. Toccoli, K.-C. Chang, A. C. Mayer, P. Clancy, J. M. Blakely, R. L. Headrick, S. Iannotta, and G. G. Malliaras , “Pentacene thin film growth”, Chem. Mater. 16 (2004) 4497
    20. R. B. Campbell, J. M. Monteath and J. Trotter,””, Acta Cryst. 14 (1961) 705
    21. T. Kakudate and N. Yoshimoto, “Polymorphism in pentacene thin films on SiO2 substrate”, Appl. Phys. Lett. 90 (2007) 081903
    22. D. Holmes, S. Kumaraswamy, A. J. Matzger and K. P. C. Vollhardt, “On the Nature of Nonplanarity in the [N] phenylenes”, Chem. Eur. J. 5 (1999) 3399
    23. L. F. Drummy and D. C. Martin, “Thickness-driven Orthorhombic to Triclinic phase transformation in pentacene thin films”, Adv. Mater. 17 (2005) 903
    24. G. R. Desiraja and A. Gavezzotti, “Crystal structures of polynuclear aromatic hydrocarbons. Classification, rationalization and predication from molecular structure”, Acta Crystallogr. Sec. B, 45 (1989) 473
    25. C. C. Mattheus, G. A. de Wijs, R. A. de Groot, and T. T. M. Palstra, “Modeling the Polymorphism of Pentacene”, J. Am. Chem. Soc., 125 (2003) 6323
    26. C. C. Mattheus, A. B. Dros, J. Baas, A. Meetstma, J. L. de Boer and T. T. M. Palstra, “Polymorphism in pentacene”, Acta Crystallogr. Sec. C, 57 (2001) 939
    27. R. M. Glaser and R. S. Berry, “Mobilities of electrons and holes in organic molecular solids. Comparison of band and hopping models”, J. Chem. Phys. 44 (1966) 3797
    28. N. B. Zhitenev, H. Meng and Z. Bao, “Conductance of small molecular junctions”, Phys. Rev. Lett. 88 (2002) 226801
    29. C. D. Dimitrakopoulos, D. J. Mascaro, “Organic thin-film transistors: A review of recent advances”, IBM J. Res. and Dev. 45 (2001) 11
    30. J. Cornil, J. Ph. Calbert and J. L. Brédas, “Electron structure of the pentacene single crystal: relation to transport properties ”, J. Am. Soc. 123 (2001) 1250
    31. S. Verlaak, V. Arkhipov and P. Heremans, “Modeling of transport in polycrystalline organic semiconductor films”, Appl. Phys. Lett. 82 (2003) 745
    32. G. Horowitz, R. Hajlaoui and P. Delannoy, “An analytical model for organic-based thin-film transistors”, J. Appl. Phys. 70 (1991) 469
    33. A. R. Brown, D. M. de Leeuw, E. E. Havinga and A. Pomp, “A universal relation between conductivity and field-effect mobility in doped amorphous organic semiconductors”, Synth. Met. 68 (1994) 65
    34. M. C. J. M. Vissenberg and M Matters, “Theory of the field-effect mobility in amorphous organic transistors”, Phys. Rev. B 57 (1998) 12964
    35. R. J. Roe, “Methods of X-Ray and neutron scattering in polymer science”, Oxford, New York, p. 107, 2000
    36. D. Wilson, H. D. Stenzenberger and P. M. Hergenrother, Eds. “Polyimides”, Champman and Hall, New York, p1-37, 1990
    37. C. E. Sroong, A. L. Endrey, S. V. Abramo, C. E. Berr, W. M. Edwards and K. L. Olivier, “Aromatic polypyromellitimides from aromatic polyamic acids”, J. Polym. Sci. A. 3 (1965) 1373
    38. Z. K. Zhu, J. Yin, F. Cao, X. Y. Shang and Q. H. Lu, ”Photosensitive polyimide/ silica hybrids”, Adv. Mater. 12 (2000) 1055
    39. H. R. Kricheldorf, “Progress in polyimide chemistry”, Springer, New York, 1999
    40. Porte G, “Tilted alignment of MBBA induced by short-chain surfactants”, J. de Physique 37 (1976) 1245
    41. D. W. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal”, Phys. Rev. Lett. 28 (1972) 1683
    42. J. M. Geary, J. W. Goodby, A. R. Kmetz and J. S. Patel, “The mechanism of polymer alignment of liquid crystal materials”, J. Appl. Phys. 62 (1987) 4100
    43. 陳嘉明,工業技術,210期,93年6月,202頁
    44. 劉品均,工業材料,210期,93年6月,207頁
    45. M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D.Wasserman, S. A. Lyon and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography”, Appl. Phys. Lett. 84 (2004) 5299
    46. S. Y. Chou, P. R. Krauss and P. J. Renstrom, “Imprinting of sub-25 nm vias and trenches in polymers”, Appl. Phys. Lett 67 (1995) 3114
    47. M. Otto, M. Bender, B. Hadam, B. Spangenberg and H. Kurz, “Characterization and application of a UV-based imprint technique”, Microelectron Eng. 57 (2001) 361
    48. P. Ruchhoeft; M. Colburn; B. Choi; H. Nounu; S. Johnson; T. Bailey; S. Damle; M. Stewart; J. Ekerdt; S. V. Sreenivasan; J. C. Wolfe; C. G. Willson, “Patterning curved surfaces: Template generation by ion beam proximitylithography and relief transfer by step and flash imprint lithography”, J. Vac. Sci. Technol. B 17 (1999) 2965
    49. Y. N. Xia; G. M. Whitesides, “Microcontact printing with a cylindrical rolling stamp: a practical step toward automatic manufacturing of patterns with submicrometer-sized features”, Adv. Mater. 8 (1996) 1015
    50. 陳壽安,物理雙月刊,23 (2001) 312
    51. P. Gorostiza, R. Diaz, F. Sanz and J. R. Morante, “Different Behavior in the Deposition of Platinum from HF Solutions on n- and p-Type (100) Si Substrates”, J. Electrochem. Soc. 144 (1997) 4119
    52. C. Kittel, “Introduction of solid state physics”, Wiely, New York, p. 70 (1998)
    53. J. A. Kreuz and J. R. Edman, “Polyimide films”, Adv. Mater. 10 (1998) 1229
    54. D. O. Hummel, “Analysis of Surfactants: Atlas of FTIR-Spectra with Interpretations”, Hanser, New York, p.434-475, 1996
    55. S. L. C. Hsu, U. Wang, J. S. King and J. L. Jeng,, “Photosensitive poly (amic acid)/ organoclay nanocomposites”, Polymer 44 (2003) 5533
    56. T. Nishino, M. Kotera, N. Inayoshi, N. Miki and K. Nakamae, “Residual stress and microstructures of aromatic polyimide with different imidization processes”, Polymer 41 (2000) 6913
    57. I. Karamancheva, V. Stefov, B. Soptrajanov, G. Danev, E. Spasova and J. Assa, ”FTIR spectroscopy and FTIR microscopy of vacuum-evaporated polyimide thin films” Vibrational Spectroscopy, 19 (1999) 369
    58. D. J. Liaw, W. C. O. Yang, L. J. Li and M.-H. Yang, “Synthesis and properties of novel aromatic polyimides derived from Bis (p-aminophenoxy)methylphenylsilane”, J. Appl. Polym. Sci. 63 (1997) 369
    59. I. T. Pai, I. C. Leu and M.H. Hon, “Nanostructures prepared on polyimide films by nanoimprinting with the assistance of residual solvent”, J, Micromech. Microeng. 16 (2006) 2192
    60. J. M. G. Cowie, “Polymers: chemistry and physics of modern materials”, Intertext, Aylesbury, p. 206-208, 1973
    61. I. T. Pai, I. C. Leu and M. H. Hon, “A hierarchical structure through imprinting of a polyimide precursor without residual layers”, J. Micromech. Microeng. 18 (2008) 105005
    62. S. F. Kistler and P. M. Schweizer, “Liquid film coating: scientific principles and their technological implications”, Chapman and Hall, London, 1997
    63. K. Y. Suh, “Surface-Tension-Driven Patterning: Combining Tailored Physical Self-Organization with Microfabrication Methods”, Small 2 (2006) 832
    64. I. T. Pai, D. W. Chiou, M. H. Hon and I. C. Leu, “Hierarchical structure formation induced by dewetting in an imprinting process”, J. Vac. Sci. Technol. B 27 (2009) 2858
    65. I. P. M. Bouchoms, W. A. Schoonveld, J. Vrijmoeth and T. M. Klapwijk, “Morphology identification of the thin film phases of vacuum evaporated pentacene on SIO2 substrates”, Synth. Met. 104 (1999) 175
    66. S. Pratontep, M. Brinkmann, F. Nüesch and L. Zuppiroli, “Correlated growth in ultrathin pentacene films on silicon oxide: Effect of deposition rate“, Phys. Rev. B 69 (2004) 165201
    67. I. Yagi, K. Tsukagoshi and Y. Aoyagi,“ Modification of the electric conduction at the pentacene/SiO2 interface by surface termination of SiO2“, Appl. Phys. Lett. 86 (2005) 103502
    68. M. Shtein, J. Mapel, J. B. Benziger and S. R. Forrest, “Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistors”, Appl. Phys. Lett. 81 (2002) 268
    69. C. K. Song, B. W. Koo, S. B. Lee and D. H. Kim, “Characteristics of pentacene organic thin film transistors with gate insulator processed by organic molecules”, Jpn. J. Appl. Phys. 41 (2002) 2730
    70. F. J. Meyer zu Heringdorf, M. C. Reuter and R. M. Tromp, “Growth dynamics of pentacene thin films”, Nature 412 (2001) 517
    71. J. Lee, J. H. Kim, and S. Im,“ Pentacene thin-film transistors with Al2O3+x gate dielectric films deposited on indium-tin-oxide glass“, Appl. Phys. Lett. 83 (2003) 2689
    72. K. T. Kang, M.-H. Lin, H.-G. Kim, Y. W. Choi, J.-M. Hong, I.-D. Kim and J.-M. Hong,“ Mn-doped Ba0.6Sr0.4TiO3 high-k gate dielectrics for low voltage organic transistor on polymer substrate“, Appl. Phys. Lett. 87 (2005) 242908
    73. C. Kim, A. Facchetti and T. J. Marks, “Gate dielectric microstructural control of pentacene film growth mode and field-effect transistor performance“, Adv. Mater. 19 (2007) 2561
    74. E. Becker, R. Parashkov, G. Ginev, D. Schneider, S. Hartmann, F. Brunetti, T. Dobbertin, D. Metzdorf, T. Riedl, H. H. Johannes and W. Kowalsky, “All-organic-thin film transistors patterned by means of selective electopolymerization”, Appl. Phys. Lett. 83 (2003) 4044
    75. J. G. Amar, F. Family and P. M. Lam, “Dynamic scaling of the island of the island-size distribution and percolation in a model of submonolayer molecular-beam epitaxy”, Phys. Rev. B 50 (1994) 8781
    76. M. ZinkeAllmang and L. C. Feldman, “Scaling and self-similarity in growth of clusters on surfaces“, Appl. Surf. Sci. 52 (1991) 357

    77. A. Di Carlo, F. Piacenza, A. Bolognesi, B. Stadlober, and H. Maresch, “Influence of grain sizes on the mobility of organic thin-film transistorsdielectric roughness on the performance of pentacene transistors”, Appl. Phys. Lett. 86 (2005) 263501
    78. J. H. Kang and X. Y. Zhu, “Pi-stacked pentacene thin films grown on Au (111)”, Appl. Phys. Lett. 82 (2003) 3248
    79. S. Verlaak, S. Steudel, P. Heremans, D. Janssen and M. S. Deleuze, ”Nucleation of organic semiconductors on inert substrates”, Phys. Rev. B: Condens. Matter. Phys. 68 (2003) 195409
    80. J. E. Northrup, M. L. Tiago and S. G. Louie, “Surface energetics and growth of pentacene”, Phys. Rev. B: Condens. Matter. Phys. 66 (2002) 121404
    81. S. Lukas, G. Witte and Ch. Wöll, “Novel Mechanism for Molecular Self-Assembly on Metal Substrates: Unidirectional Rows of Pentacene on Cu (110) Produced by a Substrate-Mediated Repulsion”, Phys. Rev. Lett. 88 (2002) 028301
    82. P. Guaino, D. Carty, G. Hughes, P. Moriarty and A. A. Cafolla, “Scanning tunneling microscopy study of pentacene adsorption on Ag/Si(111)-(root 3 x root 3)R30 degrees”, Appl. Surf. Sci. 212-213 (2003) 537
    83. S. Steudel, S. D. Vusser, S. D. Jonge, D. Janssen, S. Verlaak, J. Genoe, and P. Heremans, “Influence of the dielectric roughness on the performance of pentacene transistors”, Appl. Phys. Lett. 85 (2004) 4400
    84. S. E. Fritz, T. W. Kelley and C. D. Frisbie,” Effect of dielectric roughness on performance of pentacene TFTs and restoration of performance with a polymeric smoothing layer”, J. Phys. Chem. B 109 (2005) 10574
    85. C. S. Kim, S. J. Jo, S. W. Lee, W. J. Kim, H. K. Baik and S. J. Lee, ”Surface-modified high-k oxide gate dielectrics for low-voltage high performance pentacene thin-film transistors”, Adv. Funct. Mater. 17 (2007) 958
    86. J. Lee, S. S. Kim, K. Kim, J. H. Kim and S. Im, “Correlation between photoelectric and optical adsorption spectra of thermally evaporated pentacene films”, Appl. Phys. Lett. 84 (2004) 1701
    87. M. L. Tiago, J. E. Northrup and S. G. Louie, “Ab initio calculation of the electronic and optical properties of solid pentacene”, Phys. Rev. B 67 (2003) 115212
    88. R. Ruiz, D. Choudhary, B. Nickel, T. Toccoli, K.-C. Chang, A. C. Mayer, P. Clancy, J. M. Blakely, R. L. Headrick, S. Iannotta and G. G. Malliaras, “Pentacene thin film growth”, Chem. Mater. 16 (2004) 4497
    89. R. Ruiz, A. Papadimitratos, A. C. Mayer, and G. G. Malliaras, “Thickness dependence of mobility in pentacene thin-film transistors”, Adv. Mater. 17 (2005) 1795
    90. L. E. Alexander, “X-Ray Diffraction Methods in Polymer Science”, Wiley, New York, p. 429, 1969
    91. A. M. Hindeleh and R. Hosemann, ”Microparacrystals: the intermediate stage between crystalline and amorphous”, J. of Mater. Sci. 26 (1991) 5127
    92. L. Shang, C. Wang and M. Liu, “Model to explain the anistropic phenomenon of effective mobility of organic field-effect transistors”, Appl. Phys. Lett., 88 (2006) 20211
    93. M. L. Swiggers, G. Xia, J. D. Slinker, A. A. Gorodetsky, G. G. Malliaras, “Orientation of pentacene films using surface alignment layers and its influence on thin-film transistor characteristics“, Appl. Phys. Lett. 79 (2001) 1300
    94. S. J. Kang, Y. Y. Noh, K. J. Baeg, J. Ghim, J. H. Park, D. Y. Kim, J.S. Kim, J. H. Park, K. Cho, “Effect of rubbed polyimide layer on the field-effect mobility in pentacene thin-film transistors “, Appl. Phys. Lett. 92 (2008) 052107
    95. Y. J. Juang, L. J. Lee and K. W. Koelling, “Hot embossing in microfabrication. Part II: Rheological characterization and process analysis”, Polym. Eng. Sci. 42 (2002) 551
    96. V. A. Beck and E. S. G. Shaqfeh, “Ergodicity-breaking and the unraveling dynamics of a polymer in linear and nonlinear extensional flows”, J. Rheol. 51 (2007) 561
    97. N. Checker, M. R. Mackley and D. W. Mead, “On the flow of molten polymer into, within and out of ducts”, Phil. Trans. R. Soc. Lond. A 308 (1983) 451
    98. L. Colangeli, V. Mennella, G. A. Baratta, E. Bussoletti, and G. Strazzulla, “Raman and infrared spectra of polycyclic aromatic hydrocarbon molecules of possible astrophysical interest”, The Astrophysical Journal 396 (1992) 369
    99. 邱承美,儀器分析原理,科文出版社,p163-164,1972

    無法下載圖示 校內:2015-08-10公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE