簡易檢索 / 詳目顯示

研究生: 張育綸
Jang, Yu-Luen
論文名稱: 高性能電腦機房冷凍空調系統研發
The research and development of high performance air conditioner for the Data Center
指導教授: 張錦裕
Jang, Jiin-Yuh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 117
中文關鍵詞: 貨櫃型機房空調分析熱交換器設計計算流體力學
外文關鍵詞: cooling load, heat exchanger design, CFD
相關次數: 點閱:110下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 首先依冷卻負載(Cooling Load)理論:等價溫差法(Cooling loadtemperature difference , CLTD)、太陽負載法(Solar cooling load ,SCL)、負載因子法(Cooling load factor , CLF)分析貨櫃型機房之冷卻負載。利用此理論即可計算貨櫃型機房整體冷卻負載,包括室內熱源(如伺服器、照明設備、工作人員等)與換氣量之冷卻負載,以及環境之冷卻負載。並將分析結果利用Visual Basic(VB)語言撰寫一套交談式操作介面之冷卻負載計算電腦輔助分析軟體。經由此軟體即可計算內部設有9 組伺服器承載器(Rack,每個伺服器承載器能配置42 台1U 伺服器)、9 組風扇群組、2 名工作人員與採用9 隻4 呎T5燈管之貨櫃型機房冷卻負載值,其整體冷卻負載值約為270kw。而熱交換器為了安裝上的考量,採用3 組熱交換器以散出270kw 之熱源,即每組熱交換器之冷卻負載值約為90 kw。將此數值應用至熱交換器設計,進而設計出外觀長1320mm、寬831mm 及高1016mm,採用4row、2pass 之流動方式,而此熱交換器共使用128 支管外徑為9.53mm之銅管。至於鰭片方面規格則為厚度0.12mm 且數目為14 片/in 之鰭片數,散熱面積為80.4m2。
    最後佐以三維計算流體力學(CFD)理論模擬電腦機房之詳細流場,包含速度場與溫度場等,能讓貨櫃型機房之設計更加完整。而三維計算流體力學(CFD)理論所使用的統御方程式包括有質量守恆方程式、動量守恆方程式以及能量守恆方程式,並採用k-ε 紊流模式描述流體的紊流現象,探討機房內溫度場與流場是否有可供改善之處。

    The theoretic analysis of container-type computer room cooling load is estimated by Cooling load temperature difference (CLTD), Solar cooling load (SCL) and Cooling load factor (CLF) respectively. It is convenient to calculate the overall cooling load of container-type computer room, including indoor heat source (such as servers, lighting equipment, staff, etc.) and ventilating cooling load, as well as environmental cooling load. The analyzed results are written by using the Visual Basic (VB) programming language to show a set of interactive operation interface of cooling load calculation for computer-aided analysis software. The container-type computer room cooling load value of 9 Racks, 9 fan groups, 2 staff members and 9 4ft. T5 lamps are calculated through this software, and the result shows that the overall cooling load is approximately 270kw. Considering the installation of heat exchanger, the 3 sets of heat exchangers are used to carry out the 270kw of heat source, that means cooling load of the each heat exchanger is about 90 kw. Set this value to the heat exchanger design, the 4 rows, 2 passes heat exchanger is designed geometrically for long 1320mm, width 831mm and high 1016mm, and the 128 copper tubes, which are radius of 9.53mm, are adopted in heat exchanger. As regards the specification of the fin, the thickness is 0.12mm, the number of fin is 14 tablets/per inch and the cooling area is 80.4m2.
    Finally, the three -dimensional model of computer room is simulated by computational fluid dynamics (CFD) for the detailed flow phenomena, including velocity field and temperature field. That may let the design of container-type computer room more completely. The governing equations are solved by CFD in sequence, including mass conservation equation, momentum conservation equation and energy conservation equation, and the k-ε turbulence model is used to describe the phenomenon of fluid turbulence. Via the simulation process, the improvements of temperature field and flow field of the computer room can be discussed.

    中文摘要..................................................................................................... I 英文摘要....................................................................................................II 誌謝...........................................................................................................III 目錄.......................................................................................................... IV 表目錄...................................................................................................... VI 圖目錄..................................................................................................... VII 符號說明.................................................................................................. IX 第一章 緒論.............................................................................................1 1.1 研究計畫之背景..............................................................................1 1.2 文獻回顧...........................................................................................1 1.3 研究目的..........................................................................................5 第二章 貨櫃型機房之冷卻負載分析計算..........................................11 2.1 貨櫃型機房之冷卻負載要素.........................................................11 2.2 冷卻負載之計算方程式.................................................................11 2.3 冷卻負載分析軟體簡介暨機房之冷卻負載計算.........................22 第三章 貨櫃型機房之熱交換器設計....................................................40 3.1 熱交換器之物理模型.....................................................................40 3.2 熱交換器之理論分析....................................................................40 3.3 結果與討論....................................................................................51 第四章 貨櫃型機房流場暨溫度場之分析............................................71 4.1 物理模型.........................................................................................71 4.2 統御方程式.....................................................................................72 4.3 固體統御方程式.............................................................................76 4.4 多孔性介質區.................................................................................76 4.5 邊界條件.........................................................................................77 4.6 貨櫃型機房流場暨溫度場之數值分析.........................................80 4.7 結果與討論.....................................................................................84 第五章 結論...........................................................................................112 參考文獻.................................................................................................114 自述.........................................................................................................117

    1. Stephenson, D. G. and Mitalas, G. P., “Room thermal response factors”, ASHRAE Transactions, v.73, no.1, PP. 1-10, 1967.
    2. Mitalas, G. P., “Transfer function method of calculating cooling loads, heat extraction and space temperature” , SHRAE Journal 14 12 (1972), PP. 54–57.
    3. Howell, R. H., Sauer, H. J. and William J. C. , ASHRAE ,” Principles of Heating , Ventilating , and , Air Conditioning “,PP.7.24-7.59.
    4. Rich, D. G.,” The Effect of Fin Spacing on the Heat Transfer and Friction Performance of Multi-Row Plate Fin-and-Tube Heat Exchangers ”,ASHRAE Trans.,Vol.17,Pt.2,PP.137-145,1973.
    5. Rich, D. G.,” The Effect of the Number of Tube Rows on the Heat Transfer Performance of Smooth Plate and Fin-and-Tube Heat Exchangers ”,ASHRAE Trans.,Vol.81,Pt.1,PP.307-317,1975.
    6. Myers, R. J., ” The Effect of Dehumidification on the Air Side Heat Transfer Coefficient for a Finned-tube Coil ”,Master thesis ,University of Minnesota , 1967.
    7. Guillory, J. L. and McQuiston, F. C.,” An Experimental Investigation of Air Dehumidication In a Parallel Plate Exchanger “ , ASHRAE , PP.24-28 , 1973.
    8. Chiang, T. P., Tony W. H. Sheu and Tsai, S. F. Topological flow structures in backward-facing step channels , Computes and Fluids, Vol. 26, 321-337, 1997.
    9. Murakami S. and Kato S., “ Numerical and experimental study on room airflow 3D predictions using the k-ε turbulence model ”, Building Envir.24(1) , 85 , 1989.
    10. Gan G., “ Evaluation of Room Air Distribution Systems Using 115 Computational Fluid Dynamic ”, Energy and Buildings , Vol. 23 , PP.83-93 , 1995.
    11. Fanger , P.O., “ Thermal Comfort-Analysis and Application in Environment Engineering ”,Robert E. Krieger , Florida , 1982.
    12. Fanger, P. O., Melikov, A. K., Hanzawa, H. and Ring, J., “ Air Turbulence and Sensation of Draught ”, Energy and Buildings , Vol. 12 , PP.21-39 , 1988.
    13. Fanger , P.O., “ The New Comfort Equation for Indoor Air Quality ”, ASHRAE J.,Vol. 31 , PP.33-38 , 1989.
    14. Kato, S. and Murakami, S., “ New Ventilation Efficiency Scales Based on Spatial Distribution of Contaminant Concentration Aided by Numerical Simulation ”, ASHRAE Transactions , Vol.94 , PP.691-696 , 1988
    15. McQuiston, F.C., “ Correlation for Heat , Mass and Momentum Transport Coefficient for Plate-Fin-Tub Heat Transfer Suefaces with Staggered Tube ”, ASHRAE Trans. Vol.84 , PP.294-309 ,1978.
    16. Gnielinski, V, “ New Equation for Heat and Mass Transfer in Turbulant Pipe and Channel Flow ”, Int. Chem. Eng., Vol.16, PP.359-368, 1976.
    17. Launder, B. E. and Spalding, A. D., “ Mathematical Models of Turbulence ”, pp.90-100, Academic, London, 1972
    18. Launder, B. E. and Spalding, D. B., “ The numerical computation of turbulent flow ”, Comp. Meth. In Appl. Mech. And Eng., 3, pp.90-100, 1974
    19. Chang, W. J. and Jang, J. Y., “ Non-Darcian Effects on Vortex Instability of a Horizontal Natural Convection Flow in a Porous Medium ”, International Journal of Heat and Mass Transfer, Vol. 32, No. 3, PP.529-539, 1989. 116
    20. Wang, C. L. and Jang, J. Y., “ The Developing Mixed Convection in a Vertical Non-Darcian Porous Channel ”, The Chinese Journal of Mechanics, Vol.10, No.2, PP.131-144, 1994.
    21. CFD-ACE(U), CFD Research Corporation, Albama, USA, 2004
    22. STAR-CD, Methodology, Version 3.15, Japan,2001
    23. Moss, D. Personal communications.,2009
    24. Jones,R.,et al., “ Seven Strategies to Improve Data Center Cooling Efficiency. ”,The Green Grid White Paper 11.,2008.
    25. ASHRAE.2008.“2008 ASHRAE Environmental Guidelines for Datacom Equipment-Expanding the Recommended Environmental Envelope. ”
    26. Artman, P., D. Moss, G. Bennett. “DellTM Power-EdgeTM1650: Rack Impacts on Cooling for High Density Servers. ” Dell White Paper. Enterprise Systems Group(EGS) , 2002.

    下載圖示 校內:2012-07-29公開
    校外:2012-07-29公開
    QR CODE