| 研究生: |
張珮嫻 Chang, Pei-Hsien |
|---|---|
| 論文名稱: |
二氧化鈰粉體之製備及其特性分析 Preparation and Characterization of Cerium Oxide Powders |
| 指導教授: |
陳慧英
Chen, Huey-Ing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 二氧化鈰 、沉澱法 、雙氧水 、棒狀 |
| 外文關鍵詞: | cerium oxide, a precipitation method, hydrogen peroxide, rodlike |
| 相關次數: | 點閱:83 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係以沉澱法來製備二氧化鈰(CeO2)粉體,旨在探討以雙氧水(H2O2)為氧化劑之沉澱反應及其產物特性。研究中改變雙氧水加入之時間點、雙氧水濃度、反應溫度及鈰前驅鹽價數等製備變因,探討其對所得CeO2粉體之晶粒大小、形狀、晶態、比表面積及催化活性等性質之影響,並藉由粒子之演化過程探討粉體形成之機制。
實驗結果發現,在反應過程中,H2O2之添加時間CeO2產物之性質影響頗鉅,在沉殿前加入H2O2,所得產物為小於5nm之粒狀粉體;若沉澱開始後才加入,產物則呈棒狀,且其直徑小於20nm。
當反應溫度為90℃時,隨著H2O2濃度之增加,產物由粒狀晶形逐漸轉為棒狀晶粒,且棒狀/粒狀比例隨著H2O2濃度之增加而增大。添加H2O2所得產物之比表面積遠大於未添加者。另外,唯當反應溫度高於50℃時,才有棒狀晶形出現,否則產物為粒狀。
進一步,以煅燒後之CeO2作為觸媒進行CO氧化反應。結果發現添加H2O2所得CeO2之催化活性較未添加者高,且此活性隨H2O2濃度之增高而增大,此結果與H2-TPR結果相吻合。
比較以Ce(Ш)或Ce(Ⅳ)為前驅鹽之最終產物發現,以前者所得產物之棒狀比例較高,而後者所得產物含有極小晶粒,故具有較大之比表面積。
由產物粒徑演化推測,H2O2在反應中扮演氧化劑之角色,提升氧化速率。更重要的是,由於產生大量過氧基(OOH-)及羥基(OH-)與Ce3+作用形成中間產物而降低CeO2晶粒成長,因此產物粒徑小且具高比表面積。
Cerium dioxide (CeO2) powders were synthesized with adding hydrogen peroxide (H2O2) by the precipitation technique. The investigation of precipitation reaction and properties of products were emphasized in this work. Experimentally, the precipitation reactions were performed under various adding time of H2O2, H2O2 concentrations, reaction temperatures, and valences of cerium precursors. The effects of preparation conditions on the particle size, shape, crystalline structure, surface area and catalytic activity of final CeO2 products were investigated. Moreover, the formation mechanismof CeO2 particle was also discussed via the particle evolution.
The experimental results revealed that, the addition of H2O2 in the precipitation showed great influences on the properties of CeO2 products. As the H2O2 was added prior to the precipitation, the product was particulate powder with a size smaller than 5 nm. However, if H2O2 was added after the precipitation reaction started, the CeO2 product became rodlike shape with a size smaller than 20 nm.
At reaction temperature of 90oC, as the H2O2 concentration was increased, the shape of resulting CeO2 product changed from fully particulate into partially rodlike. In other words, the rodlike/particulate ratio of product was increased with increasing the H2O2 concentration. With the presence of H2O2, the surface area of the product was larger than that without adding H2O2. Besides, rodlike CeO2 powders came out in the final product only at temperature above 50oC; otherwise the product shaped particulate.
The catalytic oxidation of carbon monoxide (CO) was carried out over the calcined CeO2 powders. As compared with the CeO2 powders prepared without H2O2, the catalytic activity of those with H2O2 was much higher, and it was increased with the increase of H2O2 concentration, which was in a good agreement with the TPR results.
To make a comparison between products obtained from Ce(III) and Ce(IV) precursors, it revealed that the former had higher rodlike/ particulate ratio. Nevertheless, the later comprised of many tiny particles exhibited larger surface area.
From the particle evolution of CeO2 powers, it was inferred that, the hydrogen peroxide played a role of oxidizing agent in the precipitation reaction, with which the oxidation rate was accelerated. More importantly, it could provide a large numbers of peroxy (OOH-) and hydroxyl(OH-) species complexing with cerium to form Ce intermediates. This retarded the grain growth of CeO2, resulting in the small size and large surface area of the final product.
1. H. F. Mark, D. F. Othmer, C. G. Overberger and G. T. Seaborg, “Encyclopedia of Chemical Technology,” vol. 5, John Wiley & Sons, New York (1970).
2. L. A. D. Faria and S. Trasatti, “The Point of Zero Charge of CeO2,” J. Colloid Interf. Sci., 167, 352-357 (1994).
3. K. A. Gschneidner, Jr. and L. R. Eyring, “Handbook on the Physics and Chemistry of Rare Earths,” vol. 3, North-Holland, New York (1984).
4. N. B. Kirk and J. V. Wood, “The Effect of the Calcination Process on the Crystallite Shape of Sol-Gel Cerium Oxide Used for Glass Polishing,” J. Mater. Sci., 30, 2171-2175 (1995).
5. X. L. Song, G. Z. Qiu and P. Qu, “Advances in Research on Applications and Synthesis Methods of CeO2 Nanoparticles,” Rare Metal Mater. Eng., 33, 29-34 (2004).
6. P. Patsalas, S. Logothetidis, L. Sygellou and S. Kennou, “Structure-Dependent Electronic Properties of Nanocrystalline Cerium Oxide Films”, Phys. Rev. B, 68, 035104 (2003).
7. M. Sugiura, “Oxygen Storage Materials for Automotive Catalysts: Ceria-zirconia Solid Solutions”, Catal. Surv. Asia, 7, 77-87 (2003).
8. J. Campserveux and P. Gerdanian, “Etude Thermodynamique de l'oxyde CeO2−x Pour 1.5 <O/Ce < <2,” J. Solid State Chem., 23, 73-92 (1978).
9. M. Fox, “Optical Properties of Soli.s,” Oxford, New York (2001).
10. S. Tsunekawa, T. Fukuda and A. Kasuya, “Blue Shift in Ultraviolet Absorption Spectra of Monodispersed CeO2-x Nanoparticles,” J. Appl. Phys., 87, 1318-1321 (2000).
11. T. Masui, K. Machida, T. Sakata, H. Mori and G. Adachi, “Preparation and Characterization of Cerium Oxide Ultrafine Particles Dispersed in Polymer Thin Films,” J. Alloy Compd., 256, 97-101 (1997).
12. N. Serpone, D. Lawless and R. Khairutdinov, “Size Effect on the Photophysical Properties of Colloidal Anatase TiO2 Particles: Size Quantization or Direct Transitions in This Indirect Semiconductor,” J. Phys. Chem. B, 99, 16646-16654 (1995).
13. M. Jiang, N. O. Wood and R. Komanduri, “On Chemo-mechanical Polishing (CMP) of Silicon Nitride (Si3N4) Workmaterial with Various Abrasive,” J. Wear., 200(1), 59-71 (1998) .
14. H.K. Varma, Mukundan, Warrier, K. G. K. and A. D. Damodaran, “Flash Combustion Synthesis of Cerium Oxide,” J. Mater. Sci. Lett., 9, 377-379 (1990).
15. T. V. Mani, H. K. Varma, A. D. Damodaran and K. G. K. Warrier, “Sol-spray Technique for the Fine-grained Ceria Particle,” J. Ceram. Int., 19, 125-128 (1993) .
16. Y. C. Zhou and M. N. Rahaman, “Effect of Redox Reaction on the Sintering Behavior of Cerium Oxide,” J. Acta Mater., 45(9), 3635-3639 (1997) .
17. E. Matijevic and P. Hsu, “Preparation ad Properties of Monodispersed Colloidal Paricles of Lanthanide Compounds,” J. Colloid Interface Sci., 118(2), 506-523 (1987) .
18. B. Ailen, W. P. Hsu and E. Matijevic, “Preparation and Properties of Monodispersed Colloidal Particles of Lanthanide Compounds:
Ⅲ, Yttrium(Ⅲ) and Mixed Yttrium(Ⅲ) /Cerium(Ⅲ) Systems,” J. Am. Ceram. Soc., 71(10), 845-853 (1988) .
19. T. Yamaguchi, N. Ikeda, H. Hattori. and K. Tanabe, “Surface and Catalytic Properties of Cerium Oxide,” J. Catal., 67, 324-330 (1981) .
20. 陳麗梅、陳俊雄, “CMP 氧化磨用研磨液,” 化工技術, 第五卷第十期, 1997 年十月.
21. 何潛淵, “化學機械研磨漿之專利回顧,” 微粉應用技術研討會論文集, 4-1-4-36, 1998 年1 月.
22. Y. Sun, Z. Y. Wang, J. M. Tian and X. G. Cao, “Coloration of Mica Glass Ceramic for Use in Dental CAD/CAM System,” J. Mater. Lett., 57, 425-428 (2002).
23. T. V. Mani, H. K. Varma, A. D. Damodaran and K. G. K. Warrier, “Sol Spray Technique for Fine Grained Ceria Particles,” J. Ceram. Int., 19, 125-128 (1993).
24. S. B. Su, Y. W. Bao, L. Wang and J. X. Li, “Effect of Y2O3, CeO2 on Sintering Properties of Si3N4 Ceramics,” J. Rare Earth, 21, 357-359 (2003).
25. T. K. Bhattacharya, A. Ghosh, H. S. Tripathi and S. K. Das, “Solid State Sintering of Lime in Presence of La2O3 and CeO2,” Bull. Mater. Sci., 26, 703-706 (2003).
26. M. Kamruddin, P. K. Ajikumar, R. Nithya, A. K. Tyagi and B. Raj, “Synthesis of Nanocrystalline Ceria by Thermal Decomposition and Soft-Chemistry Methods,” J. Scr. Mater., 50, 417–422 (2004).
27. J. E. Spanier, R. D. Robinson, F. Zhang, S. W. Chan and I. P. Herman, “Size-Dependent Properties of CeO2 Nanoparticles as Studied by Raman Scattering,” J. Phys. Rev. B: Condens. Matter, 64, 245407-245412 (2001).
28. E. N. S. Muccillo, R. A. Rocha, S. K. Tadokoro, J. F. Q. Rey, R. Muccillo and M. C. Steil, “Electrical Conductivity of CeO2 Prepared from Nanosized Powders,” J. Electroceram., 13, 609–612 (2004).
29. F. Zhang, S. W. Chan, J. E. Spanier, E. Apak, Q. Jin, R. D. Robinson and I. P. Herman, “Cerium Oxide Nanoparticles: Size-Selective Formation and Structure Analysis,” J. Appl. Phys. Lett., 80, 127–129 (2002).
30. F. Zhang, Q. Jin and S. W. Chan, “Ceria Nanoparticles: Size, Size Distribution, and Shape,” J. Appl. Phys., 95, 4319–4326 (2004).
31. M. Hirano and M. Inagaki, “Preparation of Monodispersed Cerium(IV) Oxide Particles by Thermal Hydrolysis: Influence of the Presence of Urea and Gd Doping on Their Morphology and Growth,” J. Mater. Chem., 10, 437–477 (2000).
32. N. Ozer, “Optical Properties and Electrochromic Characterization of Sol–Gel Deposited Ceria Films,” J. Sol. Energy Mater. Sol. Cells, 68, 391–400 (2011).
33. C. Laberty-Robert, J. W. Long, E. M. Lucas, K. A. Pettigrew, R. M. Stround, M. S. Doescher and D. R. Rolison, “Sol–Gel Derived Ceria Nanoarchitectures: Synthesis, Characterization, and Electrical Properties,” J. Chem. Mater., 18, 50–58 (2006).
34. T. Masui, K. Fujiwara, K. Machida, G. Adachi, T. Sakata and H. Mori, “Characterization of Cerium(IV) Oxide Ultrafine Particles Prepared Using Reversed Micelles,” J. Chem. Mater., 9, 2197–2204 (1997).
35. Y. J. He, B. L. Yang and G. X. Cheng, “Controlled Synthesis of CeO2 Nanoparticles from the Coupling Route of Homogenous Precipitation with Microemulsion,” J. Mater. Lett., 57, 1880–18884 (2003).
36. Y. Zhou, R. J. Phillips and J. A. Switzer, “Electrochemical Synthesis and Sintering of Nanocrystalline Cerium(IV) Oxide Powders,” J. Am. Ceram. Soc., 78, 981–985 (1995).
37. N. Guillou, L. C. Nistor, H. Fuess and H. Hahn, “Microstructural Studies of Nanocrystalline CeO2 Produced by Gas Condensation,” J. Nanostruct. Mater., 8, 545–557 (1997).
38. 李道華、葉向榮, “納米材料的室溫(濕)固相化學反應合成,” 化學研討與應用期刊, 11(4):415-417 (1999).
39. 胡盛東、朱達川、涂銘旌、莊稼、劉資甫, “機械力固相化學反應法制備納米氧化鈰粉末,” 中國稀土期刊, 第25卷第5期2004年10月.
40. F. Bondio and A.C. Bonamart, “Nanosized CeO2 Powders Obtained by Flux Method,” J. Mater. Res. Bullet, 34, 2159-2166 (1999).
41. P. L. Chen, I. W. Chen, “Reactive Cerium (IV) Oxide Powders by the Homogeneous Precipitation Method", J. Am. Ceram. Soc. 76, 1577-1583 (1993).
42. 陳建清、陳楊、陳志剛、陳康敏, “超細CeO2磨料對矽晶片的拋光性能研究,” 中國機械工程期刊, 第15卷第8期2004年4月.
43. H.Y. Chang and H.I Chen, “Homogeneous Precipitation of Cerium Dioxide Nanoparticles in Alcohlo/Water Mixed Solvents,” J. Colloids Surf. A, 242(1-3), 61-69 (2004).
44. A. Vantomme, Z. Y. Yuan, G. Du and B. L. Su, “Surfactant-Assisted Large-Scale Preparation of Crystalline CeO2 Nanorods.” Langmuir, 21, 1132–1135 (2005).
45. P. X. Huang, F. Wu, Zhu, B.L., X. P. Gao, H. Y. Zhu, T.Y. Yan, W.P. Huang, S. H. Wu and D. Y. Song, “CeO2 Nanorods and Gold Nanocrystals Supported on CeO2 Nanorods as Catalyst,” J. Phys. Chem. B , 109, 19169–19174 (2005).
46. B. Tang, L. Zhuo, J. Ge, G. Wang, Z. Shi and J. Niu, “A surfactant-Free Route to Single-Crystalline CeO2 Nanowires,” J. Chem. Commun., 28, 3565–3567 (2005).
47. G. Chen, S. Sun, X. Sun, W. Fan and T. You, “Formation of CeO2 Nanotubes from Ce(OH)CO3 Nanorods through Kirkendall Diffusion,” J. Inorg. Chem., 48, 1334–1338 (2009).
48. C. Pan, D. Zhang and L. Shi, “CTAB Assisted Hydrothermal Synthesis, Controlled Conversion and CO Oxidation Properties of CeO2 Nanoplates, Nanotubes and Nanorods,” J. Solid State Chem., 181, 1298–1306 (2008).
49. K. B. Zhou, X. Wang, X. M. Sun, Q. Peng and Y. D. Li, “Enhanced Catalytic Activity of Ceria Nanorods from Well-Defined Reactive Crystal Planes,” J. Catal., 229, 206–212 (2005).
50. W. Q. Han, L. J. Wu and Y. M. Zhu, “Formation and Oxidation State of CeO2-x Nanotubes,” J. Am. Chem. Soc., 127, 12814–12815 (2005).
51. R. J. Qi, Y. J. Zhu, G. F. Cheng and Y.H. Huang, “Sonochemical Synthesis of Single-Crystalline Ce(OH)CO3 rods and Their Thermal conversion to CeO2 Rods,” J. Nanotechnology , 16, 2502–2506 (2005).
52. F. Gao, Q. Lu and S. Komarneni, “Fast synthesis of Cerium Oxide Nanoparticles and Nanorods,” Nanosci. Nanotechnol. , 6, 3812–3819 (2006).
53. Q. Cui, X. Dong, J. Wang and M. Li, “Direct Fabrication of Cerium Oxide Hollow Nanofibers by Electrospinning,” J. Rare Earths, 26, 664–669 (2008).
54. F. Gu, Z. Wang, D. Han, C. Shi and G. Guo, “Reverse Micelles Directed Synthesis of Mesoporous Ceria Nanostructures,” J. Mater. Sci. Eng. B, 139, 62–68 (2007).
55. R. J. La, Z. A. Hu, H. L. Li, X. L. Shang and Y. Y. Yang, “Template Synthesis of CeO2 Ordered Nanowire Arrays,” J. Mater. Sci. Eng. A, 368, 145–148 (2004).
56. Donald A Neamen , “Semiconductor Physics and Devices-Basic Principles 3rd ed,” McGraw-Hill.
57. R. Boistelle and J. P. Astier, “Crystallization Mechanisms in Solution,” J. Cryst. Growth, 90, 14-30 (1988).
58. H. O. K. Kirchner, “Coarsening of Grain-Boundary Precipitates,” Metall. Trans., 2, 2861-2864 (1971).
59. W. A. Tiller, “The Science of Crystallization,” Cambridge University Press, New York (1991).
60. F. Huang, H. Z. Zhang and J. F. Banfield, “Two-stage Crystal Growth Kinetics Observed During Hydrothermal Coarsening of Nanocrystalline ZnS,” Nano Lett., 3, 373-378 (2003).
61. B. Gilbert, H. Z. Zhang, F. Huang, M. P. Finnegan, G. A. Waychunas and J. F. Banfield, “Special Phase Transformation and Crystal Growth Pathways Observed in Nanoparticles,” Geochem. Trans., 4, 20-27 (2003).
62. F.H. Scholes, C. Soste, A.E. Hughes, S.G. Hardin, P.R. Curtis, “The Role of Hydrogen Peroxide in the Deposition of Cerium-Based Conversion Coatings,” J. Appl. Surf. Sci., 253, 1770–1780 (2006).
63. P. L. Chen and I. W. Chen, “Reactive Cerium(IV) Oxide Powders by the Homogeneous Precipitation Method,” J. Am. Ceram. Soc., 76, 1577-1583 (1993).
64. J. G. Li, T. Ikegami, Y. Wang and T. Mori, “Reactive Ceria Nanopowders via Carbonate Precipitation,” J. Am. Ceram. Soc., 85, 2376-2378 (2002).
65. M. Hirano and E. Kato, “Hydrothermal Sytnehsis of Cerium Oxide,” J. Am. Ceram. Soc., 79, 777-780 (1996).
66. Q. Wu, F. Zhang, P. Xiao, H. S. Tao, X. Z. Wang, Z. Hu and Y. N. Lu, “Great Influence of Anions for Controllable Synthesis of CeO2 Nanostructures: From Nanorods to Nanocubes,” J. Phys. Chem. C, 112, 17076–17080 (2008).
67. E. Matijevic and W. P. Hsu, “Preparation and Properties of Monodispersed Colloidal Particles of Lanthanide Compounds,” J. Colloid Interf. Sci., 118, 506-523 (1987).
68. X. D. Zhou, W. Huebner and H. U. Anderson, “Room-Temperature Homogeneous Nucleation Synthesis and Thermal Stability Single Crystal CeO2,” J. Appl. Phys. Lett., 80, 3814-3816 (2002).
69. M. Breysse, M. Guenin, B. Claudel and J. Veron, “Catalysis of Carbon Monoxide Oxidation by Cerium Dioxide,” J. Catal., 28, 54-62 (1973).
70. J. C. Conesa, “Computer Modeling of Surfaces ad Defects on Cerium Dioxide,” J. Surf. Sci., 339, 337-352 (1995).
71. T. X. T. Sayle, S. C. Parker and C. R. A. Catlow, “The Role of Oxygen Vacancies on Ceria Surfaces in the Oxidation of Carbon Monoxide,” J. Surf. Sci., 316, 329-336 (1994).
72. L. Oliviero, J. Barbier, D. Duprez, H. Wahyu, J. W. Ponton, I. S. Metcalfe, and D. Mantzavinos, “Wet Air Oxidation of Aqueous Solutions of Maleic Acid over Ru/CeO2 Catalysts,” J. Appl. Catal. B, 35, 1-12 (2001).
73. J. W. Mullin, “Crystallization,” Butterworth-Heinemann, Boston (1993).
74. F. Aupretre, C. Descorme and D. Duprez, “Bio-Ethanol Catalytic Steam Reforming over Supported Metal Catalysts,” J. Catal. Commun., 3, 263-267 (2002).
75. X. D. Zhou and W. Huebner, “Size-Induced Lattice Relaxation in CeO2 Nanoparticles,” J. Appl. Phys. Lett., 79, 3512-3514 (2001).
76. J. S. Lee and S.C. Choi, “Crystallization Behavior of Nano-Ceria Powders by Hydrothermal Synthesis Using a Mixture of H2O2 and NH4OH,” J. of Materials Letters, 58, 390–393 (2004).
77. K. Zhou, Z. Yang and S. Yang, “Highly Reducible CeO2 Nanotubes,” J. Chem. Mater., 19, 1215-1217 (2007).
78. C. Pan, D. Zhang, L. S. Shi, and J. Fang, “Template-Free Synthesis, Controlled Conversion, and CO Oxidation Properties of CeO2 Nanorods, Nanotubes, Nanowires, and Nanocubes,” Eur. J. Inorg. Chem., 2429–2436 (2008).
79. S. Tsunekawa, R. Sahara, Y. Kawazoe and K. Ishikawa, “Lattice Relaxation of Monosize CeO2-x Nanocrystalline Particles,” J. Appl. Surf. Sci., 152, 53-56 (1999).
80. S. Tsunekawa, S. Ito and Y. Kawazoe, “Surface Structures of Cerium Oxide Nanocrystalline Particles from the Size Dependence of the Lattice Parameters,” J. Appl. Phys. Lett., 85, 3845-3847 (2004).
81. A. Q. Wang, P. Punchaipetch, R. M. Wallace, T. D. Golden, “X-ray Photoelectron Spectroscopy Study of Electrodeposited Nanostructured CeO2 Films,” J. Vac. Sci. Technol. B, 21, 1169-1175 (2003).
82. P. Burroughs, A. Hamnett, A. F. Orchard, G. Thornton, “Satellite Structure in the X-ray Photoelectron Spectra of Some Binary and Mixed Oxides of Lanthanum and Cerium,” J. Chem. Soc. Dalton Trans., 17, 1686-1698 (1976).
83. B. Bouchaud, J. Balmain, G. Bonnet and F. Pedraza, “pH-distribution of Cerium Species in Aqueous Systems,” J. Rare Earths, 30, 559-562 (2012).