簡易檢索 / 詳目顯示

研究生: 張泳紳
Chang, Yung-Shen
論文名稱: 多孔性奈米銀線/奈米碳管/聚醯亞胺複合材料薄膜之製備及其在電磁波屏蔽的應用
Preparation of Porous Silver Nanowire/Carbon Nanotube/Polyimide Composite film for Electromagnetic Interference Shielding
指導教授: 許聯崇
Hsu, Lien-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 140
中文關鍵詞: 多孔性聚醯亞胺電磁波屏蔽奈米複合材料
外文關鍵詞: Porous Polyimide, EMI Shielding, Nanocomposite
相關次數: 點閱:42下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用非溶劑誘導相分離(Non-solvent Induced Phase Separation, NIPS)製備並利用混和溶液法(Solution mixing)混摻由奈米銀線(Silver nanowire, AgNW)和多壁奈米碳管(Multi-wall Carbon nanotube, MWCNT)組成之多孔性聚醯亞胺薄膜複合材料,並探討其對電磁波屏蔽效率之影響。
    本研究分成兩個部分,使用聚醯亞胺6FDA/4,4’-ODA並由兩步驟合成法合成出聚醯胺酸(Polyamic acid, PAA)作為聚醯亞胺前驅物,製備PAA/AgNW(PPI)、PAA/AgNW/MWCNT(PPIC、PPC)等高分子混和導電填料之溶液,形成之薄膜利用FT-IR鑑定其確認經過高溫環化後成功合成聚醯亞胺,利用TGA鑑定PI/AgNW薄膜中銀線固含量,使用SEM鑑定多孔薄膜中的孔洞結構,並測量導電效果、電磁波屏蔽效果。
    利用奈米碳管取代部分奈米銀線的PPIC、PPC薄膜不僅可以降低聚醯亞胺薄膜因銀所造成的熱性質損失,更能達到輕量化、降低成本、增加電磁波吸收效果等目標,本研究中添加奈米銀線的PPI-6薄膜在厚度為29.3μm下其導電率為1.89×102 S/cm,在X-band頻段下其電磁波屏蔽效果可達45.76 dB,透過添加奈米碳管取代部分奈米銀線,PPIC-4薄膜在厚度92.6μm下,導電率為4.39×101 S/cm,電磁波屏蔽效果可達51.90 dB,於此同時,填料成本降低49%、密度減輕39 %,且Td,5%相較PPI-6提升了21.9 ℃。

    This study utilizes Non-solvent Induced Phase Separation (NIPS) to fabricate porous polyimide composite films and employs the solution mixing method to blend the composite films with silver nanowires (AgNW) and multi-wall carbon nanotubes (MWCNT). The objective is to investigate the effects of these composites on electromagnetic interference (EMI) shielding effectiveness. By partially replacing the silver nanowires with carbon nanotubes, the PPIC and PPC films not only reduce the thermal property loss caused by silver in the polyimide films but also achieve the goals of lightweight, cost reduction, and enhanced EMI absorption.
    In the study, our best sample,PPI-6 film, with only added silver nanowires, has a conductivity of 1.89×102 S/cm at a thickness of 29.3 μm and an EMI shielding effectiveness of up to 45.76 dB in the X-band frequency range. By substituting some of the silver nanowires with carbon nanotubes, the PPIC-4 film achieves a conductivity of 4.39×101 S/cm at a thickness of 92.6 μm and an EMI shielding effectiveness of up to 51.90 dB. Meanwhile, the filler cost is reduced by 49%, density is decreased by 39%, and Td,5% is increased by 21.9 °C compared to PPI-6.

    摘要 I Extended Abstract III 致謝 XXXI 目錄 XXXII 表目錄 XXXVI 圖目錄 XXXVII 第一章 緒論 1 1.1 前言 1 1.2 研究目的與動機 2 第二章 文獻回顧 4 2.1 多孔性聚醯亞胺 4 2.1.1 誘導相分離 5 2.1.2 冷凍乾燥法(Freeze drying) 8 2.1.3 超臨界流體(Supercritical fluid) 10 2.1.4 化學發泡法 11 2.1.4.1 一步驟法(One-pot method) 11 2.1.4.2 兩步驟法(Two-step method) 13 2.2 導電閾值 15 2.3 奈米銀線合成及應用 16 2.4 奈米碳管 20 2.5 奈米碳管與奈米銀線交互作用 22 2.6 電磁波屏蔽原理概述 24 2.7 電磁波屏蔽材料 28 2.7.1 真空沉積(Vacuum-assisted filtration)薄膜材料 29 2.7.2 混合高分子複合材料 30 2.7.3 噴塗、浸泡奈米銀線和其他導電填料材料 33 第三章 實驗方法與步驟 34 3.1 實驗藥品與使用儀器 34 3.1.1 實驗藥品 34 3.1.2 使用儀器 35 3.2 實驗步驟 36 3.2.1 奈米銀線溶液置換 36 3.2.2 奈米碳管分散溶液配置 37 3.2.3 聚醯亞胺合成 38 3.2.4 非溶劑相分離浴 41 3.3 薄膜製備實驗設計 42 3.3.1 聚醯亞胺/奈米銀線薄膜(PPI)製備 42 3.3.2 聚醯亞胺/奈米銀線/奈米碳管薄膜(PPIC, PPC)製備 43 3.4 儀器分析與性質測量 46 3.4.1 向量網路分析儀 46 3.4.2 熱重損失分析儀(TGA) 48 3.4.3 傅立葉轉換紅外光光譜儀 49 3.4.4 X-ray繞射分析儀 50 3.4.5 場發射掃描式電子顯微鏡 51 3.4.6 霍爾量測分析儀 52 3.4.7 孔隙率測定 53 第四章 結果與討論 54 4.1 聚醯亞胺/奈米銀線(PPI)薄膜分析 54 4.1.1 傅立葉轉換紅外光光譜儀FTIR鑑定 54 4.1.2 X-ray繞射分析儀XRD分析 55 4.1.3 熱重損失分析儀TGA分析 56 4.1.4 孔隙率測定 58 4.1.5 導電率分析 60 4.1.6 電磁波屏蔽效率測試 61 4.1.7 場發射掃描式電子顯微鏡SEM鑑定 65 4.2 聚醯亞胺/羧酸化奈米碳管/奈米銀線(PPIC&PPC)薄膜分析 69 4.2.1 孔隙率測定 69 4.2.2 導電率分析 72 4.2.3 電磁波屏蔽效率測試 75 4.2.4 場發射掃描式電子顯微鏡SEM鑑定 81 4.3 PPI&PPIC&PPC總結 84 第五章 結論 90 第六章 參考文獻 92

    1. Moon, J.-H., Health effects of electromagnetic fields on children. Clinical and experimental pediatrics, 2020. 63(11): p. 422.
    2. Afilipoaei, C. and H. Teodorescu-Draghicescu, A Review over Electromagnetic Shielding Effectiveness of Composite Materials, in The 14th International Conference on Interdisciplinarity in Engineering—INTER-ENG 2020. 2020.
    3. Albreem, M.A. 5G wireless communication systems: Vision and challenges. in 2015 International Conference on Computer, Communications, and Control Technology (I4CT). 2015. IEEE.
    4. Jiang, D., et al., Electromagnetic Interference Shielding Polymers and Nanocomposites - A Review. Polymer Reviews, 2019. 59(2): p. 280-337.
    5. Jiang, D., et al., Electromagnetic interference shielding polymers and nanocomposites-a review. Polymer Reviews, 2019. 59(2): p. 280-337.
    6. Wang, M., et al., Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review. Carbon, 2021. 177: p. 377-402.
    7. Wang, Y.-Y., et al., Lightweight and robust carbon nanotube/polyimide foam for efficient and heat-resistant electromagnetic interference shielding and microwave absorption. ACS applied materials & interfaces, 2020. 12(7): p. 8704-8712.
    8. Zhan, Y., et al., Recent advances and perspectives on silver-based polymer composites for electromagnetic interference shielding. Journal of Materials Chemistry C, 2023.
    9. Shi, Y.-Y., et al., Enhancing the Interaction of Carbon Nanotubes by Metal–Organic Decomposition with Improved Mechanical Strength and Ultra-Broadband EMI Shielding Performance. Nano-Micro Letters, 2024. 16(1): p. 1-14.
    10. Zhu, M., et al., An ultrastrong and antibacterial silver nanowire/aligned cellulose scaffold composite film for electromagnetic interference shielding. ACS Applied Materials & Interfaces, 2022. 14(12): p. 14520-14531.
    11. Jones, R.S., R.R. Draheim, and M. Roldo, Silver nanowires: Synthesis, antibacterial activity and biomedical applications. Applied Sciences, 2018. 8(5): p. 673.
    12. Bayraktar, I., et al., 3D printed antibacterial silver nanowire/polylactide nanocomposites. Composites Part B: Engineering, 2019. 172: p. 671-678.
    13. Von Klemperer, C.J. and D. Maharaj, Composite electromagnetic interference shielding materials for aerospace applications. Composite Structures, 2009. 91(4): p. 467-472.
    14. Liaw, D.-J., et al., Advanced polyimide materials: Syntheses, physical properties and applications. Progress in Polymer Science, 2012. 37(7): p. 907-974.
    15. Tan, X. and D. Rodrigue, A review on porous polymeric membrane preparation. Part II: Production techniques with polyethylene, polydimethylsiloxane, polypropylene, polyimide, and polytetrafluoroethylene. Polymers, 2019. 11(8): p. 1310.
    16. Weiser, E.S., et al., Polyimide foams for aerospace vehicles. High Performance Polymers, 2000. 12(1): p. 1-12.
    17. Shen, Y.X., M.S. Zhan, and K. Wang, Effects of monomer structures on the foaming processes and thermal properties of polyimide foams. Polymers for Advanced Technologies, 2010. 21(10): p. 704-709.
    18. Zhang, C., et al., Rational design and fabrication of lightweight porous polyimide composites containing polyaniline modified graphene oxide and multiwalled carbon nanotube hybrid fillers for heat-resistant electromagnetic interference shielding. Polymer, 2021. 224: p. 123742.
    19. Jheng, L.-C., et al., A novel asymmetric polybenzimidazole membrane for high temperature proton exchange membrane fuel cells. Journal of Materials Chemistry A, 2014. 2(12): p. 4225-4233.
    20. Cervellere, M.R., et al., Phase-field modeling of non-solvent induced phase separation (NIPS) for PES/NMP/Water with comparison to experiments. Journal of Membrane Science, 2021. 619: p. 118779.
    21. Tsai, H., et al., Morphology control of polysulfone hollow fiber membranes via water vapor induced phase separation. Journal of Membrane Science, 2006. 278(1-2): p. 390-400.
    22. Echigo, Y., N. Miki, and I. Tomioka, Preparation of poly (bis (trialkylammonium) 4, 4′‐oxydiphenylenepyromellitamate) films: A useful polyimide precursor film. Journal of Polymer Science Part A: Polymer Chemistry, 1997. 35(12): p. 2493-2499.
    23. Xue, T., et al., 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro Letters, 2023. 15(1): p. 45.
    24. Wang, Z., et al., Influence of supercritical fluid parameters on the polyimide aerogels in a high-efficiency supercritical drying process. Polymer, 2023. 268: p. 125713.
    25. Yu, F., et al., Preparation and properties of rigid polyimide foams derived from dianhydride and isocyanate. Journal of applied polymer science, 2013. 127(6): p. 5075-5081.
    26. Tian, H., et al., Effect of dibutyltin dilaurate and triethanolamine catalysts on structure and properties of polyimide foams. Journal of Vinyl and Additive Technology, 2019. 25(4): p. 385-395.
    27. Yan, L., et al., Improved thermal stability and flame resistance of flexible polyimide foams by vermiculite reinforcement. Journal of applied polymer science, 2017. 134(20).
    28. Xu, X., et al., The synthesis and properties of isocyanate-based polyimide foam composites containing MWCNTs of various contents and diameters. RSC advances, 2022. 12(9): p. 5546-5556.
    29. Liu, X.Y., et al., Preparation and performance of a novel polyimide foam. Polymers for Advanced Technologies, 2012. 23(3): p. 677-685.
    30. Yun, S., et al., Preparation and Properties of High-Temperature-Resistant, Lightweight, Flexible Polyimide Foams with Different Diamine Structures. Polymers, 2023. 15(12): p. 2609.
    31. Qi, X.-Y., et al., Enhanced electrical conductivity in polystyrene nanocomposites at ultra-low graphene content. ACS applied materials & interfaces, 2011. 3(8): p. 3130-3133.
    32. Zhang, X., et al., Preparation of highly thermally conductive but electrically insulating composites by constructing a segregated double network in polymer composites. Composites Science and Technology, 2019. 175: p. 135-142.
    33. Safdar, F., et al., Polymeric textile-based electromagnetic interference shielding materials, their synthesis, mechanism and applications–A review. Journal of Industrial Textiles, 2022. 51(5_suppl): p. 7293S-7358S.
    34. Zhang, R. and M. Engholm, Recent progress on the fabrication and properties of silver nanowire-based transparent electrodes. Nanomaterials, 2018. 8(8): p. 628.
    35. Liu, C.-H. and X. Yu, Silver nanowire-based transparent, flexible, and conductive thin film. Nanoscale research letters, 2011. 6: p. 1-8.
    36. Prokes, S.M. and K.L. Wang, Novel methods of nanoscale wire formation. Mrs Bulletin, 1999. 24(8): p. 13-19.
    37. Zhang, P., et al., Silver nanowires: Synthesis technologies, growth mechanism and multifunctional applications. Materials Science and Engineering: B, 2017. 223: p. 1-23.
    38. Bergin, S.M., et al., The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale, 2012. 4(6): p. 1996-2004.
    39. Wiley, B., Y. Sun, and Y. Xia, Polyol synthesis of silver nanostructures: control of product morphology with Fe (II) or Fe (III) species. Langmuir, 2005. 21(18): p. 8077-8080.
    40. Sun, Y., et al., Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano letters, 2003. 3(7): p. 955-960.
    41. Zhang, C., et al., Carbon nanotubes: a summary of beneficial and dangerous aspects of an increasingly popular group of nanomaterials. Frontiers in Oncology, 2021. 11: p. 693814.
    42. Wusiman, K., et al., Thermal performance of multi-walled carbon nanotubes (MWCNTs) in aqueous suspensions with surfactants SDBS and SDS. International Communications in Heat and Mass Transfer, 2013. 41: p. 28-33.
    43. Liu, Y.-L., Effective approaches for the preparation of organo-modified multi-walled carbon nanotubes and the corresponding MWCNT/polymer nanocomposites. Polymer Journal, 2016. 48(4): p. 351-358.
    44. Saini, P., et al., Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding. Materials Chemistry and Physics, 2009. 113(2-3): p. 919-926.
    45. Woo, J.S., et al., Electrically robust metal nanowire network formation by in-situ interconnection with single-walled carbon nanotubes. Scientific reports, 2014. 4(1): p. 4804.
    46. Khaligh, H.H. and I.A. Goldthorpe, Failure of silver nanowire transparent electrodes under current flow. Nanoscale research letters, 2013. 8: p. 1-6.
    47. Zhao, J., et al., Electrical breakdown of nanowires. Nano letters, 2011. 11(11): p. 4647-4651.
    48. Kondawar, S.B. and P.R. Modak, Theory of EMI shielding, in Materials for potential emi shielding applications. 2020, Elsevier. p. 9-25.
    49. Xing, Y., et al., Multilayer ultrathin MXene@ AgNW@ MoS2 composite film for high-efficiency electromagnetic shielding. ACS Applied Materials & Interfaces, 2023. 15(4): p. 5787-5797.
    50. Jia, F., et al., Asymmetric c-MWCNT/AgNWs/PANFs hybrid film constructed by tailoring conductive-blocks strategy for efficient EMI shielding. Carbon, 2024. 217: p. 118600.
    51. Xu, L., et al., The reinforced electromagnetic interference shielding performance of thermal reduced graphene oxide films via polyimide pyrolysis. ACS omega, 2022. 7(13): p. 10955-10962.
    52. He, J., et al., Absorption-dominated electromagnetic interference shielding assembled composites based on modular design with infrared camouflage and response switching. Composites Science and Technology, 2023. 231: p. 109799.
    53. Zou, K., et al., Extreme environment-bearable polyimide film with a three-dimensional Ag microfiber conductive network for ultrahigh electromagnetic interference shielding. Science China Materials, 2023. 66(4): p. 1578-1586.
    54. Cheng, M., et al., Transparent and flexible electromagnetic interference shielding materials by constructing sandwich AgNW@ MXene/wood composites. ACS nano, 2022. 16(10): p. 16996-17007.
    55. Song, Y., et al., Sodium dodecyl sulfate (SDS) intercalated MgAl layered double hydroxides film to enhance the corrosion resistance of AZ31 magnesium alloy. Surface and Coatings Technology, 2021. 422: p. 127524.
    56. Nasir, S., et al., Potential valorization of by-product materials from oil palm: A review of alternative and sustainable carbon sources for carbon-based nanomaterials synthesis. BioResources, 2019. 14(1): p. 2352-2388.
    57. Green, R., Hall Efiect Measurements Essential for Characterizing High Carrier Mobility. Keithley Instruments Inc, 2011.
    58. Chun, K.-Y., et al., Effects of solvent on the pore formation in asymmetric 6FDA–4, 4′ ODA polyimide membrane: terms of thermodynamics, precipitation kinetics, and physical factors. Journal of Membrane Science, 2000. 169(2): p. 197-214.
    59. Chun, K.-Y., et al., Alteration of the solubility of 4, 4′-hexafluoroisopropylidene diphtalic anhydride-4, 4-oxydianline polyimide by experimental and theoretical methods. Polymer journal, 2000. 32(5): p. 406-410.
    60. Lee, T.-W., S.-E. Lee, and Y.G. Jeong, Highly effective electromagnetic interference shielding materials based on silver nanowire/cellulose papers. ACS applied materials & interfaces, 2016. 8(20): p. 13123-13132.
    61. Southward, R.E. and D.W. Thompson, Inverse CVD: A novel synthetic approach to metallized polymeric films. Advanced Materials, 1999. 11(12): p. 1043-1047.
    62. Southward, R.E., D.W. Thompson, and A.K. St. Clair, Control of reflectivity and surface conductivity in metallized polyimide films prepared via in situ silver (I) reduction. Chemistry of materials, 1997. 9(2): p. 501-510.
    63. Parameswarreddy, G., et al., Investigation on the enhancement of electromagnetic shielding with efficient use of short carbon fiber in MWCNT‐epoxy nanocomposites. Polymer Composites, 2023. 44(3): p. 1522-1533.
    64. Sharika, T., et al., Excellent electromagnetic shield derived from MWCNT reinforced NR/PP blend nanocomposites with tailored microstructural properties. Composites Part B: Engineering, 2019. 173: p. 106798.
    65. Feng, H., et al., Enhanced polarization via Joule heating in wood-derived carbon materials for absorption-dominated EMI shielding. Materials Horizons, 2024. 11(2): p. 468-479.
    66. Molleman, B. and T. Hiemstra, Surface structure of silver nanoparticles as a model for understanding the oxidative dissolution of silver ions. Langmuir, 2015. 31(49): p. 13361-13372.
    67. Rengaswamy, K., et al., Effective attenuation of electromagnetic waves by Ag adorned MWCNT-polybenzoxazine composites for EMI shielding application. Composites Science and Technology, 2022. 223: p. 109411.
    68. Zhan, Z., et al., Ultrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shielding. Journal of Materials Chemistry C, 2019. 7(32): p. 9820-9829.
    69. Zhang, Y., et al., Flexible, robust, sandwich structure polyimide composite film with alternative MXene and Ag NWs layers for electromagnetic interference shielding. Journal of Materials Science & Technology, 2023. 159: p. 194-203.
    70. Cao, W., et al., Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding. Nano-Micro Letters, 2019. 11: p. 1-17.
    71. Huang, H.-D., et al., Cellulose composite aerogel for highly efficient electromagnetic interference shielding. Journal of Materials Chemistry A, 2015. 3(9): p. 4983-4991.

    無法下載圖示 校內:2029-07-30公開
    校外:2029-07-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE