| 研究生: |
莊正成 Juang, Jeng-Cherng |
|---|---|
| 論文名稱: |
由地球表面至軌道之最省燃料軌跡 Minimum-Fuel Trajectory from the Earth Surface to the Orbit |
| 指導教授: |
許棟龍
Sheu, Dong-long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 最佳控制 、最省燃料軌跡 |
| 外文關鍵詞: | minimum-fuel trajectory, optimal control |
| 相關次數: | 點閱:46 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文之目的在於分析三節火箭自地球表面至軌道之最省燃料軌跡,以瞭解火箭至軌道之最大酬載。本文以未定參數法,將非線性最佳控制問題,轉化成一組非線性代數聯立方程式,再以Newton-Raphson Method解此組聯立方程式,以得到參數值,進而得控制變數、軌跡特性與最大酬載。研究論文中係假設燃料消耗率為常數,推力維持為各節火箭初始重量的四倍,在此基礎下,研究比衝、推重比與各節燃燒時間對於最大酬載的影響。在給定初始重量及比衝值的情況下,經廣泛的參數研究,本論文獲得火箭最佳分節時間點及每節之最佳推重比。
The objective of this thesis is to analyze the minimum-fuel trajectory of a three-stage rocket from the earth surface to a designated orbit in order to determine the maximum payload which the rocket can carry.The nonlinear optimal control problem is solved by using an approximate parametric optimization method.As a result, the original optimal control problem is converted to a set of simultaneous nonlinear algebraic equations with a set of unknown parameters. Newton-Raphson method is then used to solve the set of simultaneous equations to determine the unknow parameters. Accordingly, the optimal control, and then the optimal trajectory and the maximum payload are determined.In this thesis, the fuel consumption rate is assumed to be constant and thrust maintain at four times of the initial weight of rocket in each stage.Based on these assumptions, the effects of the specific impulse, the thrust-to-weight ratio and burning time in each stage on the maximum payload are studied.Given a set of weight and specific impulse, in this thesis, the optimal time of burning and the thrust-to-weight ratio for each stage of rocket are obtained upon vast parametric studies.
1.Fortescue,Peter. W.,and Stark,John.P.W.,Spacecraft System Engineering,Wiley,Second Edition,1995.
2.Vallado,D.A.,McClain,W.D.,and Larson,W.J.,Fundamentals of Astrodynamics and Applications,McGraw-Hill,1976.
3.Bate,R.R.,Muller,D.D.,and White,J.E.,Fundamentals of Astrodynamics,Dover,New York,1971.
4.Hale,F.J.,Introduction to Space Flight,Prentice Hall,1994.
5.Golan,O.M.,and Breakwell,J.V.,"Minimum Fuel Lunar Trajectories for A Low-Thrust Power-Limited Spacecraft,"AIAA/AHS Astrodynamics Conference,Portland,Oregon,U.S.A.,1990,pp.926-932.
6.Colasurdo,G.,Pastrone,D.,and Cassalino,L.,"Optimization of Rocket Ascent Trajectories Using an Indirect Procedure,"AIAA Paper,95-3323-CP,1995,pp.1375-1383.
7.Herman,A.L.and Spencer,D.B.,"Optimal Low-Thrust LEO to GEO/HEO Trajectories,"
AAS Paper,99-408,1999,pp.1663-1680.
8.Nah,R.S.,Vadali,S.R.,and Braden,E.,"Fuel-Optimal Three-Dimensional Earth-Mars
Trajectories with Low-Thrust Exhaust-Modulated Plasma Propulsion,"AAS Paper,00-132,2000,pp.531-550.
9.Humi,M.,and Carter,T.,"Fuel-Optimal Rendezvous in a Central Force Field with Linear Drag,"AAS Paper,01-236,2001,pp.1875-1891.
10.李賢得:「最省燃料連續低推力之同平面軌道轉換,」國立成功大學航太所碩士論文,2001.
11.Bryson,A.E.,Jr.,and Ho,Y.C.,Applied Optimal Control,Wiley,New York,1975.
12.Kane,T.R.,Likins,P.W.,and Levinson,D.A.,Spacecraft Dynamics,McGraw-Hill,1983,pp.4-9.