簡易檢索 / 詳目顯示

研究生: 曾昱瑋
Tseng, Yu-Wei
論文名稱: 邊界元素法分析光學膠之膠合熱彈行為及其視窗化軟體設計
Analysis of the Thermoelastic Behavior of Optical Adhesive Bonding Using the Boundary Element Method and the Design of a Window-Based Software Interface
指導教授: 夏育群
Shiah, Yui-Chuin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 100
中文關鍵詞: 疊層板三維熱應力三維熱傳導
外文關鍵詞: Laminated Plate, Three-dimensional thermal stress, Three-dimensional heat transfer
相關次數: 點閱:16下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究主要在探討三維疊層融入薄板之複合材料在受到熱傳及熱彈等等的熱效應時各層間的溫度、應力、應變和其熱疲勞壽命的表現,並提出關於薄層等向性材料在受到熱效應時的有效模擬方法。根據前研究者所記錄的相關研究結果可以得知,薄疊層板複合材料常因各層之間的應力關係造成所謂脫膠的現象,由於疊層厚度極薄的關係,因此在計算及分析數值的過程中會出現近似奇異的積分,這個問題導致在最後結果的分析上存在些許的困難及挑戰。針對這一問題的解決辦法,本論文採用了一種 FG-Squircular mapping的映射技術,將因熱效應所產生之邊界奇異積分做正規化,詳細方法是利用將局部固有座標的正方形域映射到單位圓上,以在極座標系統下進行積分,成功減少了積分函數的奇異性。最後,我們提出了四個不同範例進行分析討論,這些範例包含了不同材料和邊界條件,以多加確認所提出的方法是否能夠在多種情況下進行精準的分析。

    This study investigates the thermal response of 3D laminated composite plates under heat conduction and thermoelastic effects, focusing on interlayer temperature, stress, strain, and thermal fatigue life. An effective simulation method is proposed for thin isotropic layers under thermal loads. Due to high interlayer stress, delamination often occurs, and the extremely thin layers lead to nearly singular integrals during analysis. To address this, the FG-Squircular mapping technique is used to normalize boundary singularities by mapping a local square domain to a unit circle in polar coordinates, effectively reducing singular behavior. Four cases with varying materials and boundary conditions are analyzed to verify the method’s accuracy.

    摘要 I 誌謝 VI 目錄 VII 圖目錄 IX 符號 XVIII 第一章 導論 1 1-1 前言 1 1-2 研究動機與目的 4 1-3 文獻回顧 5 1-4 研究過程 6 第二章 理論回顧 8 2-1 等向性彈性力學的邊界積分方程 8 2-2 體積分轉化成面積分 11 第三章 熱效應之近似奇異積分正規化 14 3-1 引入熱效應之近似奇異積分正規化 14 3-2 映設源點座標 14 第四章 視窗介面軟體設計 19 4-1 視窗化軟體操作流程 20 4-2 視窗化軟體回顧 21 4-3 含熱應力效應之視窗化軟體設計 23 4-4 含熱傳效應之視窗化軟體設計 26 第五章 數值範例分析 29 5-1 範例一、五層疊層薄板受四周絕熱效應 30 5–2 範例二、五層疊層薄板受四周熱對流效應 41 5-3 範例三、五層疊層薄板上下溫度相同且受四周絕熱效應 52 5-4 範例四、五層疊層薄板上下溫度相同且受四周熱對流效應 63 5–5 討論 74 第六章 未來展望 75 參考文獻 76

    [1]. A.H. Puppo, H.A. Evensen, Interlaminar shear in laminated composites under generalized plane stress, Journal of Composite Materials, 4, pp. 204–220, (1970).
    [2]. T. Kant, K. Swaminathan, Estimation of transverse/interlaminar stresses in laminated composites—a selective review and survey of current developments, Composite Structures, 49, pp. 65–75, (2000).
    [3]. P.W. Hsu, C.T. Herakovich, Edge effects in angle-ply composite laminates, Journal of Composite Materials, 11, pp. 422–428, (1977).
    [4]. N.J. Pagano, On the calculation of interlaminar normal stress in composite laminate, Journal of Composite Materials, 8, pp. 65–81, (1974).
    [5]. R.B. Pipes, N.J. Pagano, Interlaminar stresses in composite laminates an approximate elasticity solution, ASME Journal of Applied Mechanics, 41, pp. 668–672, (1974).
    [6]. S. Tang, A. Levy, A boundary layer theory. Part II: extension of laminated finite strip, Journal of Composite Materials, 9, pp. 42–52, (1975).
    [7]. S.S. Wang, I. Choi, Boundary-layer effects in composite laminates. Part I: free-edge stress singularities, ASME Journal of Applied Mechanics, 49, pp. 541–548, (1982).
    [8]. M.M.S. Vilar, P. Khaneh Masjedi, D.A. Hadjiloizi, Paul M. Weaver, Analytical interlaminar stresses of composite laminated beams with orthotropic tapered layers, Composite Structures, 319, 117063, (2023).
    [9]. N.J. Pagano, Stress fields in composite laminates, International Journal of Solids and Structures, 14, pp. 385–400, (1978).
    [10]. W.-L. Yin, Free edge effects in anisotropic laminates under extension, bending and twisting. Part I: a stress-function-based variational approach, Journal of Applied Mechanics, 61, pp. 410–415, (1994).
    [11]. Ojo S.O., Weaver P.M., Efficient strong unified formulation for stress analysis of non-prismatic beam structures, Composite Structures, 272, 114190, (2021).
    [12]. Bin Huang, Heung Soo Kim, Ji Wang, Jianke Du, Interlaminar stress analysis of magneto-electro-elastic composite layered laminates using a stress function based iterative approach, Composites Part B: Engineering, 90, pp. 406–415, (2016).
    [13]. Tian Z-S, Yang Q-P, Wang A-P, Three-dimensional stress analyses around cutouts in laminated composites by special hybrid finite elements, Journal of Composite Materials, 50(1), pp. 75–98, (2016). doi:10.1177/0021998315570509
    [14]. Y.C. Shiah, Kuo-Wei Hsu, Two-dimensional analysis of interlaminar stresses in thin anisotropic composites subjected to inertial loads by regularized boundary integral equation, Composites Part B: Engineering, 159, pp. 105–113, (2019).
    [15]. Ali Delbariani-Nejad, Amin Farrokhabadi, Mohammad Fotouhi, Finite element reliability analysis of edge delamination onset due to interlaminar stresses in composite laminates, Composite Structures, 288, 115410, (2022).
    [16]. Wei Li, Yuchen Chen, Coupled higher-order layerwise mechanics and finite element formulations for laminated composite beams with active SMA layers, European Journal of Mechanics - A/Solids, 107, 105380, (2024).
    [17]. Pedro Bührer Santana, António Joaquim Mendes Ferreira, Herbert Martins Gomes, Volnei Tita, Nonlinear finite element damage analysis of laminated shells by Carrera Unified Formulation, Composite Structures, 348, 118494, (2024).
    [18]. Y.C. Shiah, Analytical Transformation of the Volume Integral for the BEM Treating 3D Anisotropic Elastostatics Involving Body Force, Computer Methods in Applied Mechanics and Engineering, 278, pp. 404–422, (2014).
    [19]. Y.C. Shiah, Wen-Sheng Hwang, Guan-Chyun Shiah, BEM Stress Analysis for Thin Multilayered Composites Subjected to Inertial Loads, Journal of Composite Materials, Vol. 43, No. 4 , pp. 349–366, (2009).
    [20]. Y.C. Shiah, Shang-Yu Ye, New treatment of the Self-Weight and the Inertial Effects of Rotation for the BEM formulation of 2D Anisotropic Solids, Engineering Analysis with Boundary Elements, Volume 73, pp. 170–180, (2016).
    [21]. H. Ma, N. Kamiya, A general algorithm for the numerical evaluation of nearly singular boundary integrals of various orders for two- and three-dimensional elasticity, Computational Mechanics, 29, pp. 277–288, (2002). https://doi.org/10.1007/s00466-002-0340-0.
    [22]. Scuderi Letizia, On the computation of nearly singular integrals in 3D BEM collocation, International Journal for Numerical Methods in Engineering, 74, pp. 1733–1770, (2007). https://doi.org/10.1002/nme.2229.
    [23]. H. Ma, N. Kamiya, Distance transformation for the numerical evaluation of near singular boundary integrals with various kernels in boundary element method, Engineering Analysis with Boundary Elements, 26, pp. 329–339, (2002). https://doi.org/10.1016/S0955-7997(02)00004-8.
    [24]. J.C.F. Telles, A self-adaptive co-ordinates transformation for efficient numerical evaluation of general boundary element integrals, International Journal for Numerical Methods in Engineering, 24, pp. 959–973, (1987). https://doi.org/10.1002/nme.1620240509.
    [25]. K. Hayami, Variable transformations for nearly singular integrals in the boundary element method, Publications of the Research Institute for Mathematical Sciences, 41, pp. 821–842, (2005). http://DOI/10.2977/prims/1145474596.
    [26]. Xianyun Qin, Jianming Zhang, Guizhong Xie, Fenglin Zhou, Guanyao Li, A general algorithm for the numerical evaluation of nearly singular integrals on 3D boundary element, Journal of Computational and Applied Mathematics, 235, pp. 4174–4186, (2011). https://doi.org/10.1016/j.cam.2011.03.012.
    [27]. X.L. Chen, Y.J. Liu, An advanced 3D boundary element method for characterizations of composite materials, Engineering Analysis with Boundary Elements, 29, pp. 513–523, (2005). https://doi.org/10.1016/j.enganabound.2004.12.013.
    [28]. P.R. Johnston, Application of sigmoidal transformation to weakly singular and nearly-singular boundary element integrals, International Journal for Numerical Methods in Engineering, 45, pp. 1333–1348, (1999). https://doi.org/10.1002/(SICI)1097-0207(19990810)45:10<1333::AID-NME632>3.0.CO;2-Q.
    [29]. B.M. Johnston, P.R. Johnston, D. Elliott, A sinh transformation for evaluating two-dimensional nearly singular boundary element integrals, International Journal for Numerical Methods in Engineering, 69, pp. 1460–1479, (2007). https://doi.org/10.1002/nme.1816.
    [30]. S. Wu, On the evaluation of nearly singular kernel integrals in boundary element analysis, Numerical Methods in Engineering, 11, pp. 331–337, (1995). https://doi.org/10.1002/cnm.1640110406.
    [31]. Y.C. Shiah, M.R. Hematiyan, Interlaminar stresses analysis of three-dimensional composite laminates by the boundary element method, Journal of Mechanics, 34, pp. 829–837, (2018). https://doi.org/10.1017/jmech.2018.8.
    [32]. Y.C. Shiah, Kuo-Wei Hsu, Two-dimensional analysis of interlaminar stresses in thin anisotropic composites subjected to inertial loads by regularized boundary integral equation, Composites Part B: Engineering, 159, pp. 105–113, (2019). https://doi.org/10.1016/j.compositesb.2018.09.088.
    [33]. M.G He, C.L. Tan, A self-regularization technique in boundary element method for 3-D Stress Analysis, CMES – Computer Modeling in Engineering & Sciences, 95, pp. 317–349, (2013). https://doi.org/10.3970/cmes.2013.095.315.
    [34]. Fong Chamberlain, Analytical methods for squaring the disc, https://arxiv.org/pdf/1509.06344, 1–33, (2014).
    [35]. B.M. Johnston, P.R. Johnston, D. Elliott, A sinh transformation for evaluating two-dimensional nearly singular boundary element integrals, International Journal for Numerical Methods in Engineering, 69, pp. 1460–1479, (2007).
    [36]. Xiaochao Li, Yu Su, Three-dimensional stress analysis of thin structures using a boundary element method with sinh transformation for nearly singular integrals, Computers and Mathematics with Applications, 72 issue 11, pp. 2773–2787, (2016).
    [37]. Y.C. Shiah, C.L. Tan, Higher-Order Green’s Function Derivatives and BEM Evaluation of Stresses at Interior Points in a 3D Generally Anisotropic Solid, CMES – Computer Modeling in Engineering & Sciences, 78, pp. 95–108, (2011).
    [38]. Y.C. Shiah, C.L. Tan, V.G. Lee, Evaluation of Explicit-form Fundamental Solutions for Displacements and Stresses in 3D Anisotropic Elastic Solids, CMES – Computer Modeling in Engineering & Sciences, Vol. 34, No. 3, pp. 205–226, (2008).
    [39]. Y.C. Shiah, Jin-Jia Zhan, M.R. Hematiyan, An efficient scheme of calculating nearly singular integrals for the 3D BEM modeling of thin media, Engineering Analysis with Boundary Elements, 169, 106005, (2024).
    [40]. Y.C. Shiah, C.L. Tan, C.Y. Wang, Efficient Computation of the Green’s Function and its Derivatives for Three-Dimensional Anisotropic Elasticity in BEM Analysis, Engineering Analysis with Boundary Elements, 36, pp. 1746–1755, (2012).
    [41]. J.C. Lachat, J.O. Watson, Effective numerical treatment of boundary integral equations: A formulation for three-dimensional elastostatics, International Journal for Numerical Methods in Engineering, 10, pp. 991–1005, (1976). https://doi.org/10.1002/nme.1620100503.
    [42]. M. Critescu, G. Loubignac, Gaussian quadrature formulas for functions with singularities in 1/r over triangles and quadrangles, in Brebbia, C.A. (Ed.), Recent Advances in the Boundary Element Method, Pentech Press, London, (1978).
    [43]. M. H. Aliabadi, The Boundary Element Method, Volume 2: Applications in Solids and Structures, Wiley, London, ISBN: 978-0-470-84298-0, (2002).
    [44]. Andrew N. Cleland, Foundations of Nanomechanics: from solid-state theory to device applications, Springer, ISBN: 9783662052877, p. 186, (2013)
    [45]. Y.C. Shiah, C.L. Tan, Thermoelastic analysis of 3D generally anisotropic bodies by the boundary element method, European Journal of Computational Mechanics, 2:1-2, pp. 91–108, (2016).
    [46] https://www.kgk-tape.co.jp/english/products/EnglishMGSRT1810.pdf

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE