| 研究生: |
洪維宣 Hung, Wei-Shyum |
|---|---|
| 論文名稱: |
循序二次規畫法結合粒子群演算法進行船艏肩部線型最佳化之研究 The Research on Optimizing Shoulder of Ship Bow by Combining Particle Swarm Optimization and Sequential Quadratic Programming |
| 指導教授: |
陳政宏
Chen, Jeng-Horng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 粒子群演算法 、序列二次規劃法 、最佳化 、電腦輔助設計軟體 、耐海性 |
| 外文關鍵詞: | Particles Swarm Optimization, Sequential Quadratic Programming, ship resistance, seakeeping, optimization |
| 相關次數: | 點閱:166 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年為了降低營運成本,航商開始重視燃油成本的問題,而船廠為了滿足船東的需求也開始著重於低油耗高效能的船型研究。
一般來說船舶的耗油多寡主要來自於動力機械效能與航行時受到的阻力,而航行阻力大小又受到船舶外型所影響。一個好的船型能夠有效的降低航行阻力進而達到減少油耗。現今船型的設計主要是利用人工的方式來調整船型,而本研究提出一個以自動化的方式來調整船舶線型,並以水動力性能做為評估的標準進而設計出性能較好的船型。
在本研究中我們用以C#作為程式主體並結合了套裝軟體SHIPFLOW、建模工具Rhinoceros、耐海性計算程式與最佳化演算法,並以此架構來解決船型最佳化問題。首先我們利用Rhinoceros來達到船體變形,並利用SHIPFLOW與耐海性計算程式進行水動力性能的計算,最後將結果輸入到最佳化程序中,並以粒子群演算法(PSO)與循序二次規劃法(SQP)進行目標函數的最佳化搜尋,來達到最佳化船型的設計。
而本研究的結果發現結合粒子群演算法(PSO)與循序二次規劃法(SQP)於船艏肩部線型最佳化,不論是單目標或多目標都能夠提升運算效率並改善船舶性能。
In recent years, in order to reduce operating costs, shiponwers gradually pay attention to fuel costs problem. Shipyards also focus on the development of low fuel consumption ship to meet owner’s requirements.
Generally, the fuel consumption is almost caused by power machinery effectiveness and sailing resistance. However, the sailing resistance is affected by the shape of ship, and a good ship shape can effectively reduce resistance and achieve reduction of fuel consumption. Nowadays, the ship lines design is modified by manual method. This method must invest a lot of time and manpower. Therefore, it is proposed an automated way to modify ship lines, using hydrodynamic performance to evaluate and assist ship design in this study.
In current study, C# has been used to integrate the CFD software “SHIPFLOW”, modeling software “Rhinoceros”, seakeeping simulation program and optimization algorithm. Then using this framework solves ship optimization problems. First of all, Rhinoceros used to achieve ship transform. SHIPFLOW and seakeeping simulation program are applied to evaluate hydrodynamic performance. Finally, import calculation result into optimization program, then use Particle Swarm optimization (PSO) and Sequential Quadratic Programming (SQP) to conduct the optimization search and achieve ship optimization. It can be concluded that combining Particle Swarm optimization (PSO) and Sequential Quadratic Programming (SQP) applied on bow shoulder optimization, can increase the calculation efficiency and improve the ship performance.
Keyword: Particles Swarm Optimization、Sequential Quadratic Programming, ship resistance, seakeeping, optimization
Azadivar, F. (1992) A tutorial on simulation optimization, in Proceedings ofthe 1992 Winter Simulation Conference, Dec 13-16 1992, Arlington, VA, pp. 198-204.
Campana, E. F.; Peri, D.; Tahara, Y.; and Stern, F. (2006). Shape optimization in ship hydrodynamics using computational fluid dynamics. Computer Methods in Applied Mechanics and Engineering, 196(1), 634-651.
Chou Chia-Hung. (2002). Optimizing Hull Surface. National Cheng Kung University: Department of Systems and Naval Mechatronic Engineering. 周家宏(2002),最佳化船型預測之研究,國立成功大學系統及船舶機電工程學系碩博士班碩士論文。
Coello, C. A. C.; Pulido, G. T.; and Lechuga, M. S. (2004). Handling multiple objectives with particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8(3), 256-279.
Deb, K.; Pratap, A.; Agarwal, S.; and Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197.
Eberhart, R. C.; & Kennedy, J. (1995). A new optimizer using particle swarm theory. In Proceedings of the sixth international symposium on micro machine and human science Vol. 1, pp. 39-43.
Hu, D. K. (2007). The hydrodynamic analysis of the steady flow and unsteady flow for the trimaran ship moving in waves. National Cheng Kung University: Department of Systems and Naval Mechatronic Engineering. 胡登凱(2007),波浪中三體船之穩態及非穩態之流體動力解析,國立成功大學系統及船舶機電工程學系碩博士班碩士論文。
Han, S. P. (1977). A globally convergent method for nonlinear programming.Journal of optimization theory and applications, 22(3), 297-309.
Guo, B. J.; Steen, S.; and Deng, G. B. (2012). Seakeeping prediction of KVLCC2 in head waves with RANS. Applied Ocean Research, 35, 56-67.
Kim, W. J.; Van, S. H.; and Kim, D. H. (2001). Measurement of flows around modern commercial ship models. Experiments in Fluids, 31(5), 567-578.
Kim, C. H.; Chou, F. S.; and Tien, D. (1980). Motions and hydrodynamic loads of a ship advancing in oblique waves (No. 8).
Kirkpatrick, S., Gelatt Jr, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing.
Kim, S.Y.; and Paolo, Bulgarelli. SIMMAN. (2008) [Online]. Retrieved: http://www.simman2008.dk/KVLCC/KVLCC2/kvlcc2_geometry.html,(2005/11/18)
Korvin-Kroukovsky, B. V.; and Jacobs, W. R. (1957). Pitching and heaving motions of a ship in regular waves, Transactions SNAME, 65, pp. 590-632.
Lin, W. C. (2013). Implementation of Particle Swarm Optimization Algorithm for Preliminary Ship Design. National Cheng Kung University: Department of Systems and Naval Mechatronic Engineering. 林暐傑(2013),應用多目標粒子群法於船型初步設計之研究,國立成功大學系統及船舶機電工程學系碩博士班碩士論文。
Liu, H. S. (2012). The Implementation of Particle Swarm Optimization Algorithm for Optimizing Bulbous Bow. National Cheng Kung University: Department of Systems and Naval Mechatronic Engineering. 劉皓翔(2012),應用多目標粒子群演算法於船舶球形艏最佳化設計之研究,國立成功大學系統及船舶機電工程學系碩博士班碩士論文。
Liao, P. Y. (1998). Three-Dimensional Solution for a Ship Motion in Waves. National Cheng Kung University: Department of Systems and Naval Mechatronic Engineering. 廖培元(1998),波浪中船體運動之三維解,國立成功大學系統及船舶機電工程學系碩博士班碩士論文。
Luenberger, D. G.; and Ye, Y. (2008). Linear and nonlinear programming. Springer Science & Business Media (Vol. 116).
Nordås, D. E. (2012). Optimization of Bow Shape for Large, Slow Ships. Norwegian University of Science and Technology: Department of Marine Technology.
Peri, D.; Rossetti, M.; and Campana, E. F. (2001). Design optimization of ship hulls via CFD techniques. Journal of Ship Research, 45(2), 140-149.
Peri, D.; and Campana, E. F. (2003). Multidisciplinary design optimization of a naval surface combatant. Journal of Ship Research, 47(1), 1-12.
Pinto, A.; Peri, D.; and Campana, E. F. (2007). Multiobjective optimization of a containership using deterministic particle swarm optimization. Journal of Ship Research, 51(3), 217-228.
Piegl, L.; and Tiller, W. (1997). The NURBS book. 1997. Monographs in Visual Communication.
Raquel, C. R.; and Naval Jr, P. C. (2005). An effective use of crowding distance in multiobjective particle swarm optimization. In Proceedings of the 7th Annual conference on Genetic and Evolutionary Computation pp. 257-264; ACM.
Salvesen, N.; Tuck, E. O.; and Faltinsen, O. (1970). Ship motions and sea loads.Trans. SNAME, 78, 250-287.
Shi, Y.; and Eberhart, R. C. (1998). Parameter selection in particle swarm optimization. In Evolutionary programming VII. Springer Berlin Heidelberg, 591-600.
Shi, Y.; and Eberhart, R. (1998). A modified particle swarm optimizer. InEvolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on. IEEE, 69-73.
Versprille, K. J. (1975). Computer-aided design applications of the rational B-spline approximation form.
Wilson, R. B. (1963). A simplicial method for convex programming. Harvard University, Cambridge, MA.
Wu, Y. C. (2007). Three-dimensional analysis on the nonlinear hydrodynamic forces for the trimaran ship advancing in waves. National Cheng Kung University: Department of Systems and Naval Mechatronic Engineering. 吳宜親(2007),波浪中三體船非線性力之三維解,國立成功大學系統及船舶機電工程學系碩博士班碩士論文。