簡易檢索 / 詳目顯示

研究生: 翁佩詒
Wong, Pei-Yi
論文名稱: 探討PM2.5、真菌孢子與基因多型性對於孩童氣喘之影響
Effects of PM2.5, fungal spores, and gene polymorphism on childhood asthma
指導教授: 蘇慧貞
Su, Huey-Jen
吳治達
Wu, Chih-Da
學位類別: 博士
Doctor
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 189
中文關鍵詞: PM2.5真菌孢子單核苷酸多態性通勤時間Geo-AI模型兒童氣喘
外文關鍵詞: PM2.5, fungal spore, SNPs, rush hour, machine learning, Geo-AI model, childhood asthma
ORCID: 0000-0001-5498-7232
相關次數: 點閱:55下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氣喘為全球不可忽視的重要公共衛生與兒童健康議題,影響氣喘之因素中環境因子如空氣中PM2.5、真菌孢子與基因易感性為重要之危險因子,有相同基因型的人暴露在不同程度污染的情況下,其氣喘表現的結果可能有所差異。因此,釐清基因與環境的交互作用,對於氣喘病程的控制、以及氣喘精準醫學的發展均具有實質的重要意義。基於前述研究背景,本研究之研究目的為發展高時空解析度之大範圍周界PM2.5與真菌孢子地理人工智慧模型 (Geospatial-artificial intelligence model, Geo-AI model),並利用推估之PM2.5與真菌孢子濃度,釐清環境暴露與基因交互作用對兒童氣喘相關呼吸道症狀的影響。
    本研究透過建立Geo-AI模型,模擬早上 (7:00–9:00) 與下午 (16:00–18:00) 通勤時段的PM2.5與早上通勤時段之真菌孢子濃度空間分布,在資料庫建置方面,小時PM2.5濃度觀測值蒐集自台灣本島之環境部空品監測站,並將其計算為通勤時段之平均濃度;此外,本研究於台南市設置50個真菌孢子採樣點,以採集並計算總真菌孢子濃度,同時蒐集空間解釋變數資料庫,包含:空氣污染物、氣象參數、土地利用與土地覆蓋資訊、地標資料、道路與衛星影像資料等,在地標資料的部分,本研究特別收集了寺廟與中式餐飲等資訊以探討特殊排放源對於PM2.5的影響,針對真菌孢子變化的部分,我們納入木材工廠、紡織、造紙業等與真菌有關之特殊排放源當作預測變數之一,之後結合機器學習演算法,建立Geo-AI推估模型,並透過機器學習可解釋性指標 ”沙普利加法解釋 (SHapley Additive exPlanations, SHAP)” 指標的方式探討各個重要變數對模型之貢獻程度;最後藉由測試資料、十折交叉驗證與分地區、季節驗證檢驗模式的穩健性與可外推性。
    為探討氣喘易感基因與環境暴露對於兒童氣喘的影響,本研究以病例對照研究設計搭配全基因組關聯分析 (Genome-wide association study, GWAS) 探討環境基因交互作用對於氣喘嚴重程度的影響。本研究自台南市四間國小共招募168名6-12歲之氣喘與非氣喘受試者,蒐集其唾液以萃取DNA,並將檢體送至中研院基因體研究中心分析每位受試者的單核甘酸多態性 (Single-Nucleotide Polymorphism, SNP),進而計算每位受試者氣喘易感基因之基因風險分數,同時透過中文之ISAAC兒童過敏及氣喘問卷 (The International Study of Asthma and Allergies in Childhood Questionnaires) 進行氣喘症狀調查,透過家長填寫之氣喘相關症狀問卷調查成果做為後續分析之氣喘自變數;另一方面,本研究藉由智慧型配戴裝置 (Fitbit Charge 4) 同步記錄學童上學路徑,做為後續通勤暴露評估之參考通勤路徑。健康資料庫建立完成後,本研究透過廣義加性模型 (Generalized additive model, GAM) 分析PM2.5、真菌孢子與基因風險分數 (Genetic risk score, GRS) 對於兒童氣喘呼吸道症狀嚴重程度的影響。
    Geo-AI模型結果顯示,PM2.5預測能力於早上與下午通勤時間之R2分別為0.90與0.94,兩個時段之模型皆具有高度預測能力,真菌孢子預測能力則為0.96,模型推估成果可以應用於後續流行病學探討環境暴露與疾病之關係。在國小學童暴露PM2.5、真菌孢子、基因體與氣喘之關聯性分析部分,經GWAS研究發現4個SNPs與氣喘顯著相關,分別是:rs4862096、rs9925480、rs7630840以及rs151181731,其中每個 SNP 的基因變異皆達到顯著水準,表示其可能在氣喘的發病機制中扮演重要角色;進一步分析PM2.5、真菌孢子與GRS之交互作用,單污染物模型顯示國小學童暴露於真菌孢子與帶有氣喘易感基因會顯著提高呼吸道症狀風險,相對風險 (Relative risk, RR) 分別為1.287 (95% CI=1.079–1.536) 與1.043 (95% CI=1.027–1.060),PM2.5也具有正相關但不顯著。雙污染物模型則顯示基因變異會調整原有之環境暴露風險,在交互作用模型中進一步證明,PM2.5與真菌孢子交互作用具有顯著正相關 (OR=1.048, 95% CI=1.016–1.081),基因變異則使整體環境基因交互作用降低,但是不顯著,而在單一SNP與環境暴露的交互作用中則發現rs4862096、rs151181731及rs9925480與PM2.5及真菌孢子暴露有顯著交互作用,顯示基因變異對於調控環境暴露與氣喘之間關係的重要影響,分別是TENM3、C6orf118與SHISA9基因。未來需要更多研究探討顯著氣喘易感基因對人體影響的生理機制,並透過重複性研究探討顯著基因與環境暴露於不同族群的效應程度。

    Asthma is one of the most common chronic diseases among children. Among the factors affecting asthma, PM2.5, fungal spores, and genetic susceptibility are factors which have great effects on asthma development. People who have the same genotype might have different asthma severity owing to genetic susceptibility. Thus, to clarify the interaction between gene and environmental exposures is important specifically for controlling asthma progression and developing precise medicine for asthma. The goal of this study is to develop prediction models to estimate the variation of PM2.5 and fungal spore concentrations with a high spatiotemporal resolution and use the estimations to investigate the relationship between environmental exposure, genetics, and childhood asthma exacerbation.
    This study aims to establish Geo-AI models to simulate the spatial distribution of PM2.5 during morning (7:00–9:00) and evening (16:00–18:00) commuting hours, as well as fungal spore concentrations during morning commuting hours. For database construction, hourly PM2.5 concentrations were collected from the air quality monitoring stations and aggregated into mean concentrations for the commuting periods. Additionally, 50 fungal spore sampling sites were established in Tainan City to measure and calculate total fungal spore concentrations. A spatial explanatory variable database was compiled, encompassing air pollutants, meteorological parameters, land use and land cover information, landmarks, road networks, and satellite-derived data. Specifically, landmark data included information on temples and Chinese restaurants to investigate the influence of unique emission sources on PM2.5 concentrations. For fungal spore variations, emission sources related to fungi, such as timber factories, textiles, and paper industries, were incorporated as predictive variables. These datasets were integrated with machine learning algorithms to develop the Geo-AI estimation model. Model robustness and generalizability were further validated using test data, 10-fold cross-validation, and independent validations across different regions and seasons.
    To investigate the impact of asthma susceptibility genes and environmental exposures on childhood asthma, this study utilized a case-control design combined with genome-wide association study (GWAS) to examine the gene-environment interactions affecting asthma severity. A total of 168 children aged 6–12 years, including asthmatic and non-asthmatic participants, were recruited from four elementary schools in Tainan City. Saliva samples were collected for DNA extraction and subsequently analyzed to identify single-nucleotide polymorphisms (SNPs) for each participant. Genetic risk scores (GRS) for asthma susceptibility were calculated for all subjects. Asthma symptoms were assessed using the questionnaire, completed by parents to provide self-reported data on asthma-related symptoms. To evaluate commuting exposures, children's commuting routes were recorded using wearable devices (Fitbit Charge 4), providing reference pathways for subsequent exposure assessments. Upon establishing the health database, this study employed a generalized additive model (GAM) to analyze the effects of PM2.5, fungal spores, and genetic risk scores on the severity of respiratory symptoms in children with asthma.
    The Geo-AI model results indicated high predictive performance for PM2.5 concentrations, with R² values of 0.90 and 0.94 for the morning and dusk commuting periods, respectively. Similarly, the Geo-AI model demonstrated a high predictive accuracy for fungal spore concentrations, with an R2 of 0.96. The predictions could be applied to further investigations on the relationship between environmental exposures and health outcomes.
    Regarding the associations among PM2.5 exposure, fungal spores, genomic data, and asthma in elementary school children, the GWAS identified four SNPs significantly associated with asthma: rs4862096, rs9925480, rs7630840, and rs151181731. Each SNP reached significance, suggesting a potential role in the pathogenesis of asthma. Further analysis of the interactions among PM2.5, fungal spores, and GRS revealed that exposure to fungal spores and children with a higher GRS significantly increased the risk of respiratory symptoms, with relative risks (RRs) of 1.287 (95% CI: 1.079–1.536) for fungal spores and 1.043 (95% CI: 1.027–1.060) for genetic susceptibility in single-pollutant models. While PM2.5 exposure showed a positive association with respiratory symptoms, it was not statistically significant. The two-pollutant model indicated that genetic variation modifies the existing environmental exposure risks. Interaction models further demonstrated a significant positive interaction between PM2.5 and fungal spores (OR=1.048, 95% CI: 1.016–1.081). However, GRS appeared to reduce the overall environmental gene interaction effect, though this reduction was not statistically significant. Significant interactions were observed between single SNPs and environmental exposures, specifically rs4862096, rs151181731, and rs9925480 with PM2.5 and fungal spore exposure. These findings highlight the critical role of genetic variation in modulating the relationship between environmental exposure and asthma, especially TENM3, C6orf118, and SHISA9 genes. Future studies are needed to explore the physiological mechanisms underlying the effects of significant asthma susceptibility genes on human health and to validate these findings through replication studies in diverse populations to assess the extent of gene-environmental effects.

    摘要 iii Abstract v 誌謝 viii Table of Contents ix List of Figures xiii List of Tables xv 1. Introduction 1 2. Literature Review 5 2.1 Physiological pathway of asthma exacerbation 6 2.2 Risk factors 7 2.3 Epidemiological studies of exposure to PM2.5 on childhood asthma 11 2.4 Epidemiological studies of exposure to fungal spores on childhood asthma 12 2.5 Seasonality of fungal spore concentrations 13 2.6 Influential factors of fungal spores 19 2.7 Sampling and analysis methodology for fungal spores 20 2.8 Geographic-based air pollution estimation methods 25 2.9 Gene-environmental interactions on asthma 31 2.10 Associations between PM2.5 and genes on asthma 34 2.11 Associations between fungi and genes on asthma 37 2.12 Summary of literature review 39 3. Overview of study objectives and framework 40 3.1 Study objectives 40 3.2 Significance of the study 42 4. Estimating PM2.5 exposure with high spatiotemporal resolution in rush hours 43 4.1 Introduction 43 4.2 Materials and methods 45 4.2.1 Study area 45 4.2.2 Air pollution data 47 4.2.3 Meteorological factors 48 4.2.4 Geospatial databases 48 4.2.5 Sociological factors 52 4.2.6 Geo-AI prediction model 52 4.2.7 Model validation 54 4.2.8 Implications of Geo-AI model for rush hour exposure windows 55 4.3 Results 57 4.3.1 PM2.5 measurements from monitoring station 57 4.3.2 The identified features 59 4.3.3 Performance of Geo-AI prediction models 60 4.3.4 Implications of Geo-AI model for rush hour exposure windows 64 4.4 Discussion 68 4.5 Summary 71 5. Application of Geo-AI models in estimating the spatial and temporal variation of fungal spore concentration in Tainan City, Taiwan 72 5.1 Introduction 72 5.2Materials and methods 74 5.2.1 Study area and fungal spore sampling sites 74 5.2.2 Fungal spore assessment 75 5.2.3 Potential predictor variables 77 5.2.4 Development and validation of the Geo-AI model 80 5.2.5 Prediction maps of fungal spore 83 5.3 Results 83 5.3.1 Descriptive statistics of fungal spores 83 5.3.2 Important predictor variables of fungal spores 89 5.3.3 Geo-AI model for predicting fungal spores 91 5.3.4 Spatial and temporal variations in fungal spore distribution 95 5.4 Discussion 99 5.5 Summary 103 6. Investigating the effects between commute period exposure to PM2.5, fungal spores, and SNPs on childhood asthma 104 6.1 Introduction 104 6.2 Materials and Methods 106 6.2.1 Study design and participants 106 6.2.2 Genotyping, imputation, and quality control 107 6.2.3 Key adjustment factors 108 6.2.4 Statistical analysis 109 6.3 Results 113 6.3.1 Characteristics of study population 113 6.3.2 Genome-wide associations with asthma 116 6.3.3 Association between genetic variants, environmental exposure, and asthmatic respiratory symptoms 119 6.4 Discussion 127 6.5 Summary 132 7. Conclusion 133 8. Future work 134 Publication 135 Reference 139 Appendices 167 Appendix 1. List of sampling sites 167 Appendix 2. IRB approval certificate 173

    AAFA, 2018. Asthma Capitals Report. https://www.aafa.org/wp-content/uploads/2022/10/aafa-2018-asthma-capitals-report.pdf
    Adamov, S., Lemonis, N., Clot, B., Crouzy, B., Gehrig, R., Graber, M.J., Sallin, C., Tummon, F., 2021. On the measurement uncertainty of Hirst-type volumetric pollen and spore samplers. Aerobiologia (Bologna). 1–15.
    Ahn, J., Shin, D., Kim, K., Yang, J., 2017. Indoor air quality analysis using deep learning with sensor data. Sensors 17, 2476.
    Al-Subai, A.A.T., 2002. Air-borne fungi at Doha, Qatar. Aerobiologia (Bologna). 18, 175–183.
    Alexeeff, S.E., Schwartz, J., Kloog, I., Chudnovsky, A., Koutrakis, P., Coull, B.A., 2015. Consequences of kriging and land use regression for PM2.5 predictions in epidemiologic analyses: insights into spatial variability using high-resolution satellite data. J. Expo. Sci. Environ. Epidemiol. 25, 138–144.
    Almeida, J.S., 2002. Predictive non-linear modeling of complex data by artificial neural networks. Curr. Opin. Biotechnol. 13, 72–76.
    Alvarez-Pedrerol, M., Rivas, I., López-Vicente, M., Suades-González, E., Donaire-Gonzalez, D., Cirach, M., deCastro, M., Esnaola, M., Basagaña, X., Dadvand, P., 2017. Impact of commuting exposure to traffic-related air pollution on cognitive development in children walking to school. Environ. Pollut. 231, 837–844.
    Anees-Hill, S., Douglas, P., Pashley, C.H., Hansell, A., Marczylo, E.L., 2022. A systematic review of outdoor airborne fungal spore seasonality across Europe and the implications for health. Sci. Total Environ. 818, 151716.
    Ansari, T.U., Valsan, A.E., Ojha, N., Ravikrishna, R., Narasimhan, B., Gunthe, S.S., 2015. Model simulations of fungal spore distribution over the Indian region. Atmos. Environ. 122, 552–560.
    Antony-Babu, S., Singleton, I., 2009. Effect of ozone on spore germination, spore production and biomass production in two Aspergillus species. Antonie Van Leeuwenhoek 96, 413–422.
    Apangu, G.P., Frisk, C.A., Adams-Groom, B., Satchwell, J., Pashley, C.H., Skjøth, C.A., 2020. Air mass trajectories and land cover map reveal cereals and oilseed rape as major local sources of Alternaria spores in the Midlands, UK. Atmos. Pollut. Res. 11, 1668–1679.
    Asher, M.I. ea, Keil, U., Anderson, H.R., Beasley, R., Crane, J., Martinez, F., Mitchell, E.A., Pearce, N., Sibbald, B., Stewart, A.W., 1995. International Study of Asthma and Allergies in Childhood (ISAAC): rationale and methods. Eur. Respir. J. 8, 483–491.
    Asher, M.I., Rutter, C.E., Bissell, K., Chiang, C.Y., ElSony, A., Ellwood, E., Ellwood, P., García-Marcos, L., Marks, G.B., Morales, E., 2021. Worldwide trends in the burden of asthma symptoms in school-aged children: Global Asthma Network Phase I cross-sectional study. Lancet 398, 1569–1580.
    Babaan, J., Hsu, F.T., Wong, P.Y., Chen, P.C., Guo, Y.L., Lung, S.C.C., Chen, Y.C., Wu, C.D., 2023. A Geo-AI-based Ensemble Mixed Spatial Prediction Model with Fine Spatial-Temporal Resolution for Estimating Daytime/Nighttime/Daily Average Ozone Concentrations Variations in Taiwan. J. Hazard. Mater. 130749.
    Balami, S., Vašutová, M., Godbold, D., Kotas, P., Cudlín, P., 2020. Soil fungal communities across land use types. iForest-Biogeosciences For. 13, 548.
    Balenga, N.A., Klichinsky, M., Xie, Z., Chan, E.C., Zhao, M., Jude, J., Laviolette, M., Panettieri Jr, R.A., Druey, K.M., 2015. A fungal protease allergen provokes airway hyper-responsiveness in asthma. Nat. Commun. 6, 6763.
    Barnett, S.B.L., Nurmagambetov, T.A., 2011. Costs of asthma in the United States: 2002-2007. J. Allergy Clin. Immunol. 127, 145–152.
    Bartemes, K.R., Kita, H., 2018. Innate and adaptive immune responses to fungi in the airway. J. Allergy Clin. Immunol. 142, 353–363.
    Batra, M., Vicendese, D., Newbigin, E., Lambert, K. a, Tang, M., Abramson, M.J., Dharmage, S.C., Erbas, B., 2022. The association between outdoor allergens–pollen, fungal spore season and high asthma admission days in children and adolescents. Int. J. Environ. Health Res. 32, 1393–1402.
    Baxi, S.N., Sheehan, W.J., Sordillo, J.E., Muilenberg, M.L., Rogers, C.A., Gaffin, J.M., Permaul, P., Lai, P.S., Louisias, M., Petty, C.R., 2019. Association between fungal spore exposure in inner-city schools and asthma morbidity. Ann. Allergy, Asthma Immunol. 122, 610–615.
    Beasley, R., Semprini, A., Mitchell, E.A., 2015. Risk factors for asthma: is prevention possible? Lancet 386, 1075–1085.
    Beelen, R., Hoek, G., Vienneau, D., Eeftens, M., Dimakopoulou, K., Pedeli, X., Tsai, M.Y., Künzli, N., Schikowski, T., Marcon, A., 2013. Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe–The ESCAPE project. Atmos. Environ. 72, 10–23.
    Ben, Y., Ma, F., Wang, H., Hassan, M.A., Yevheniia, R., Fan, W., Li, Y., Dong, Z., 2019. A spatio-temporally weighted hybrid model to improve estimates of personal PM2. 5 exposure: Incorporating big data from multiple data sources. Environ. Pollut. 253, 403–411.
    Beuchat, L.R., 2017. Influence of water activity on sporulation, germination, outgrowth, and toxin production, in: Water Activity. Routledge, pp. 137–151.
    Boitano, S., Flynn, A.N., Sherwood, C.L., Schulz, S.M., Hoffman, J., Gruzinova, I., Daines, M.O., 2011. Alternaria alternata serine proteases induce lung inflammation and airway epithelial cell activation via PAR2. Am. J. Physiol. Cell. Mol. Physiol. 300, L605–L614.
    Bowatte, G., Lodge, C., Lowe, A.J., Erbas, B., Perret, J., Abramson, M.J., Matheson, M., Dharmage, S.C., 2015. The influence of childhood traffic‐related air pollution exposure on asthma, allergy and sensitization: a systematic review and a meta‐analysis of birth cohort studies. Allergy 70, 245–256.
    Bowatte, G., Lodge, C.J., Knibbs, L.D., Lowe, A.J., Erbas, B., Dennekamp, M., Marks, G.B., Giles, G., Morrison, S., Thompson, B., 2017. Traffic-related air pollution exposure is associated with allergic sensitization, asthma, and poor lung function in middle age. J. Allergy Clin. Immunol. 139, 122–129.
    Bowatte, G., Lodge, C.J., Lowe, A.J., Erbas, B., Dennekamp, M., Marks, G.B., Perret, J., Hui, J., Wjst, M., Gurrin, L.C., 2016a. Do variants in GSTs modify the association between traffic air pollution and asthma in adolescence? Int. J. Mol. Sci. 17, 485.
    Bowatte, G., Lodge, C.J., Perret, J.L., Matheson, M.C., Dharmage, S.C., 2016b. Interactions of GST polymorphisms in air pollution exposure and respiratory diseases and allergies. Curr. Allergy Asthma Rep. 16, 1–9.
    Breiman, L., 2001. Random forests. Mach. Learn. 45, 5–32.
    Briggs, D.J., Collins, S., Elliott, P., Fischer, P., Kingham, S., Lebret, E., Pryl, K., VanReeuwijk, H., Smallbone, K., Van DerVeen, A., 1997. Mapping urban air pollution using GIS: a regression-based approach. Int. J. Geogr. Inf. Sci. 11, 699–718.
    Brook, R.D., Rajagopalan, S., Pope III, C.A., Brook, J.R., Bhatnagar, A., Diez-Roux, A.V, Holguin, F., Hong, Y., Luepker, R.V, Mittleman, M.A., 2010. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 121, 2331–2378.
    Brus, D.J., Heuvelink, G.B.M., 2007. Optimization of sample patterns for universal kriging of environmental variables. Geoderma 138, 86–95.
    Burge, H.A., 2002. An update on pollen and fungal spore aerobiology. J. Allergy Clin. Immunol. 110, 544–552.
    Carvalho, A., DeLuca, A., Bozza, S., Cunha, C., D’Angelo, C., Moretti, S., Perruccio, K., Iannitti, R.G., Fallarino, F., Pierini, A., 2012. TLR3 essentially promotes protective class I–restricted memory CD8+ T-cell responses to Aspergillus fumigatus in hematopoietic transplanted patients. Blood, J. Am. Soc. Hematol. 119, 967–977.
    Carvalho, T.C., Peters, J.I., Williams III, R.O., 2011. Influence of particle size on regional lung deposition--what evidence is there? Int J Pharm 406, 1–10. https://doi.org/10.1016/j.ijpharm.2010.12.040
    Ceter, T., 2018. Effects of global-warming and climate-changes on atmospheric fungi spores distribution. Commun. Fac. Sci. Univ. Ankara Ser. C Biol. 27, 263–272.
    Chang, C.W., Chung, H., Huang, C.F., Su, H.J.J., 2001. Exposure of workers to airborne microorganisms in open-air swine houses. Appl. Environ. Microbiol. 67, 155–161.
    Chen, C.C., Chen, H.Y., Su, K.Y., Hong, Q.S., Yan, B.S., Chen, C.H., Pan, S.H., Chang, Y.L., Wang, C.J., Hung, P.F., 2014. Shisa3 is associated with prolonged survival through promoting β-catenin degradation in lung cancer. Am. J. Respir. Crit. Care Med. 190, 433–444.
    Chen, C., Chao, H.J., Chan, C., Chen, B., Guo, Y.L., 2014. Current asthma in schoolchildren is related to fungal spores in classrooms. Chest 146, 123–134.
    Chen, J., deHoogh, K., Gulliver, J., Hoffmann, B., Hertel, O., Ketzel, M., Bauwelinck, M., vanDonkelaar, A., Hvidtfeldt, U.A., Katsouyanni, K., 2019. A comparison of linear regression, regularization, and machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide. Environ. Int. 130, 104934.
    Chen, T., Guestrin, C., 2016. Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining. ACM, pp. 785–794.
    Chen, Z., Salam, M.T., Eckel, S.P., Breton, C.V, Gilliland, F.D., 2015. Chronic effects of air pollution on respiratory health in Southern California children: findings from the Southern California Children’s Health Study. J. Thorac. Dis. 7, 46.
    Cho, J.H., Moon, J.W., 2022. Integrated artificial neural network prediction model of indoor environmental quality in a school building. J. Clean. Prod. 344, 131083.
    Chowdhary, A., Agarwal, K., Meis, J.F., 2016. Filamentous fungi in respiratory infections. What lies beyond Aspergillosis and Mucormycosis? PLoS Pathog. 12, e1005491.
    Correia, C., Martins, V., Cunha-Lopes, I., Faria, T., Diapouli, E., Eleftheriadis, K., Almeida, S.M., 2020. Particle exposure and inhaled dose while commuting in Lisbon. Environ. Pollut. 257, 113547.
    Cressie, N., 1988. Spatial prediction and ordinary kriging. Math. Geol. 20, 405–421.
    D’agostino, R., Pearson, E.S., 1973. Tests for departure from normality. Empirical results for the distributions of b 2 and√ b. Biometrika 60, 613–622.
    Dai, X., Bowatte, G., Lowe, A.J., Matheson, M.C., Gurrin, L.C., Burgess, J.A., Dharmage, S.C., Lodge, C.J., 2018. Do glutathione S-transferase genes modify the link between indoor air pollution and asthma, allergies, and lung function? A systematic review. Curr. Allergy Asthma Rep. 18, 1–15.
    Dananché, C., Gustin, M.P., Cassier, P., Loeffert, S.T., Thibaudon, M., Bénet, T., Vanhems, P., 2017. Evaluation of hirst-type spore trap to monitor environmental fungal load in hospital. PLoS One 12, e0177263.
    deHoogh, K., Gulliver, J., vanDonkelaar, A., Martin, R.V, Marshall, J.D., Bechle, M.J., Cesaroni, G., Pradas, M.C., Dedele, A., Eeftens, M., 2016. Development of West-European PM2.5 and NO2 land use regression models incorporating satellite-derived and chemical transport modelling data. Environ. Res. 151, 1–10.
    DeHoogh, K., Wang, M., Adam, M., Badaloni, C., Beelen, R., Birk, M., Cesaroni, G., Cirach, M., Declercq, C., Dedele, A., 2013. Development of land use regression models for particle composition in twenty study areas in Europe. Environ. Sci. Technol. 47, 5778–5786.
    DeMarco, R., Locatelli, F., Sunyer, J., Burney, P., 2000. Differences in incidence of reported asthma related to age in men and women: a retrospective analysis of the data of the European Respiratory Health Survey. Am. J. Respir. Crit. care Med. 162, 68–74.
    DeNazelle, A., Bode, O., Orjuela, J.P., 2017. Comparison of air pollution exposures in active vs. passive travel modes in European cities: A quantitative review. Environ. Int. 99, 151–160.
    deRooij, M.M.T., Heederik, D.J.J., vanNunen, E.J.H.M., vanSchothorst, I.J., Maassen, C.B.M., Hoek, G., Wouters, I.M., 2018. Spatial variation of endotoxin concentrations measured in ambient PM10 in a livestock-dense area: implementation of a land-use regression approach. Environ. Health Perspect. 126, 17003.
    Demenais, F., Margaritte-Jeannin, P., Barnes, K.C., Cookson, W.O.C., Altmüller, J., Ang, W., Barr, R.G., Beaty, T.H., Becker, A.B., Beilby, J., 2018. Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks. Nat. Genet. 50, 42–53.
    Denning, D.W., O’driscoll, B.R., Hogaboam, C.M., Bowyer, P., Niven, R.M., 2006. The link between fungi and severe asthma: a summary of the evidence. Eur. Respir. J. 27, 615–626.
    DeSouza, P., Lu, R., Kinney, P., Zheng, S., 2021. Exposures to multiple air pollutants while commuting: evidence from Zhengzhou, China. Atmos. Environ. 247, 118168.
    Devereux, G., Seaton, A., 2005. Diet as a risk factor for atopy and asthma. J. Allergy Clin. Immunol. 115, 1109–1117.
    Di, Q., Amini, H., Shi, L., Kloog, I., Silvern, R., Kelly, J., Sabath, M.B., Choirat, C., Koutrakis, P., Lyapustin, A., 2019. An ensemble-based model of PM2.5 concentration across the contiguous United States with high spatiotemporal resolution. Environ. Int. 130, 104909.
    Didan, K., Munoz, A.B., Solano, R., Huete, A., 2015. MODIS vegetation index user’s guide (MOD13 series). Univ. Arizona Veg. Index Phenol. Lab.
    Ding, L., Abebe, T., Beyene, J., Wilke, R.A., Goldberg, A., Woo, J.G., Martin, L.J., Rothenberg, M.E., Rao, M., Hershey, G.K.K., 2013. Rank-based genome-wide analysis reveals the association of ryanodine receptor-2 gene variants with childhood asthma among human populations. Hum. Genomics 7, 1–17.
    Dominici, F., Peng, R.D., Bell, M.L., Pham, L., McDermott, A., Zeger, S.L., Samet, J.M., 2006. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. Jama 295, 1127–1134.
    Du, C., Liu, S., Yu, X., Li, X., Chen, C., Peng, Y., Dong, Y., Dong, Z., Wang, F., 2013. Urban boundary layer height characteristics and relationship with particulate matter mass concentrations in Xi’an, central China. Aerosol Air Qual. Res. 13, 1598–1607.
    Duggal, P., Gillanders, E. M., Holmes, T. N., Bailey-Wilson, J. E. 2008. Establishing an adjusted p-value threshold to control the family-wide type 1 error in genome wide association studies. BMC genomics, 9, 1–8.
    Eeftens, M., Beelen, R., deHoogh, K., Bellander, T., Cesaroni, G., Cirach, M., Declercq, C., Dedele, A., Dons, E., deNazelle, A., 2012. Development of land use regression models for PM2.5, PM2.5 absorbance, PM10 and PMcoarse in 20 European study areas; results of the ESCAPE project. Environ. Sci. Technol. 46, 11195–11205.
    Emygdio, A.P.M., Degobbi, C., Gonçalves, F.L.T., deFátima Andrade, M., 2018. One year of temporal characterization of fungal spore concentration in São Paulo metropolitan area, Brazil. J. Aerosol Sci. 115, 121–132.
    Erbas, B., Jazayeri, M., Lambert, K.A., Katelaris, C.H., Prendergast, L.A., Tham, R., Parrodi, M.J., Davies, J., Newbigin, E., Abramson, M.J., 2018. Outdoor pollen is a trigger of child and adolescent asthma emergency department presentations: A systematic review and meta‐analysis. Allergy 73, 1632–1641.
    Ernst, P., Ghezzo, H., Becklake, M.R., 2002. Risk factors for bronchial hyperresponsiveness in late childhood and early adolescence. Eur. Respir. J. 20, 635–639.
    Fan, J., Li, S., Fan, C., Bai, Z., Yang, K., 2016. The impact of PM2.5 on asthma emergency department visits: a systematic review and meta-analysis. Environ. Sci. Pollut. Res. 23, 843–850.
    Feliziani, V., Marfisi, R.M., 1992. Pollen aerobiological monitoring with the personal volumetric air sampler (PVAS). Correlation with a fixed Hirst type sampling station. Aerobiologia (Bologna). 8, 471–477.
    Fernández-Rodríguez, S., Sadyś, M., Smith, M., Tormo-Molina, R., Skjøth, C.A., Maya-Manzano, J.M., Silva-Palacios, I., Gonzalo-Garijo, Á., 2015. Potential sources of airborne Alternaria spp. spores in South-west Spain. Sci. Total Environ. 533, 165–176.
    Fleischer, N.L., Merialdi, M., vanDonkelaar, A., Vadillo-Ortega, F., Martin, R.V, Betran, A.P., Souza, J.P., Neill, M.S.O., 2014. Outdoor air pollution, preterm birth, and low birth weight: analysis of the world health organization global survey on maternal and perinatal health. Environ. Health Perspect. 122, 425–430.
    Forouzanfar, M.H., Afshin, A., Alexander, L.T., Anderson, H.R., Bhutta, Z.A., Biryukov, S., Brauer, M., Burnett, R., Cercy, K., Charlson, F.J., 2016. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1659–1724.
    Friedman, J.H., 2001. Greedy function approximation: a gradient boosting machine. Ann. Stat. 1189–1232.
    Gehring, U., Wijga, A.H., Hoek, G., Bellander, T., Berdel, D., Brüske, I., Fuertes, E., Gruzieva, O., Heinrich, J., Hoffmann, B., 2015. Exposure to air pollution and development of asthma and rhinoconjunctivitis throughout childhood and adolescence: a population-based birth cohort study. lancet Respir. Med. 3, 933–942.
    Gref, A., Merid, S.K., Gruzieva, O., Ballereau, S., Becker, A., Bellander, T., Bergström, A., Bossé, Y., Bottai, M., Chan-Yeung, M., 2017. Genome-wide interaction analysis of air pollution exposure and childhood asthma with functional follow-up. Am. J. Respir. Crit. Care Med. 195, 1373–1383.
    Grinn-Gofroń, A., Bosiacka, B., Bednarz, A., Wolski, T., 2018. A comparative study of hourly and daily relationships between selected meteorological parameters and airborne fungal spore composition. Aerobiologia (Bologna). 34, 45–54.
    Grinn-Gofroń, A., Çeter, T., Pinar, N.M., Bosiacka, B., Çeter, S., Keçeli, T., Myśliwy, M., Şahin, A.A., Bogawski, P., 2020. Airborne fungal spore load and season timing in the Central and Eastern Black Sea region of Turkey explained by climate conditions and land use. Agric. For. Meteorol. 295, 108191.
    Grinn-Gofroń, A., Strzelczak, A., 2013. Changes in concentration of Alternaria and Cladosporium spores during summer storms. Int. J. Biometeorol. 57, 759–768.
    Gusareva, E.S., Gaultier, N.P.E., Premkrishnan, B.N.V, Kee, C., Lim, S.B.Y., Heinle, C.E., Purbojati, R.W., Nee, A.P., Lohar, S.R., Yanqing, K., 2020. Taxonomic composition and seasonal dynamics of the air microbiome in West Siberia. Sci. Rep. 10, 21515.
    Gustafsson, P.M., Kjellman, B., 2000. Asthma from childhood to adulthood: course and outcome of lung function. Respir. Med. 94, 466–474.
    Hadebe, S., Brombacher, F., Brown, G.D., 2018. C-type lectin receptors in asthma. Front. Immunol. 9, 733.
    Halonen, J.I., Lanki, T., Yli-Tuomi, T., Kulmala, M., Tiittanen, P., Pekkanen, J., 2008. Urban air pollution, and asthma and COPD hospital emergency room visits. Thorax 63, 635–641. https://doi.org/10.1136/thx.2007.091371
    Hastie, T.J., 2017. Generalized additive models, in: Statistical Models in S. Routledge, pp. 249–307.
    Hernandez-Pacheco, N., Pino-Yanes, M., Flores, C., 2019. Genomic predictors of asthma phenotypes and treatment response. Front. Pediatr. 7, 6.
    Ho, H.M., Rao, C.Y., Hsu, H.H., Chiu, Y.H., Liu, C.M., Chao, H.J., 2005. Characteristics and determinants of ambient fungal spores in Hualien, Taiwan. Atmos. Environ. 39, 5839–5850.
    Hoek, G., Beelen, R., DeHoogh, K., Vienneau, D., Gulliver, J., Fischer, P., Briggs, D., 2008. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos. Environ. 42, 7561–7578.
    Hsu, C.Y., Lin, T.-W., Babaan, J.B., Asri, A.K., Wong, P.-Y., Chi, K.H., Ngo, T.H., Yang, Y.H., Pan, W.C., Wu, C.D., 2023. Estimating the Daily Average Concentration Variations of PCDD/Fs in Taiwan Using a Novel Geo-AI Based Ensemble Mixed Spatial Model. J. Hazard. Mater. 131859.
    Hsu, C.Y., Xie, H.X., Wong, P.Y., Chen, Y.C., Chen, P.C., Wu, C.D., 2022. A mixed spatial prediction model in estimating spatiotemporal variations in benzene concentrations in Taiwan. Chemosphere 301, 134758.
    Huang, C.Y., Lee, C.C., Li, F.C., Ma, Y.P., Su, H.J.J., 2002. The seasonal distribution of bioaerosols in municipal landfill sites: a 3-yr study. Atmos. Environ. 36, 4385–4395.
    Hughes, K.M., Price, D., Torriero, A.A.J., Symonds, M.R.E., Suphioglu, C., 2022. Impact of fungal spores on asthma prevalence and hospitalization. Int. J. Mol. Sci. 23, 4313.
    Hwang, B.F., Liu, I.P., Huang, T.P., 2012. Gene–environment interaction between interleukin-4 promoter and molds in childhood asthma. Ann. Epidemiol. 22, 250–256.
    Hwang, B.F., Young, L.H., Tsai, C.H., Tung, K.Y., Wang, P.C., Su, M.W., Lee, Y.L., 2013. Fine particle, ozone exposure, and asthma/wheezing: effect modification by glutathione S-transferase P1 polymorphisms. PLoS One 8, e52715.
    Hyde, P., Mahalov, A., 2020. Contribution of bioaerosols to airborne particulate matter. J. Air Waste Manage. Assoc. 70, 71–77.
    Ianovici, N., 2016. Atmospheric concentrations of selected allergenic fungal spores in relation to some meteorological factors, in Timişoara (Romania). Aerobiologia (Bologna). 32, 139–156.
    Idrose, N.S., Dharmage, S.C., Lowe, A.J., Lambert, K.A., Lodge, C.J., Abramson, M.J., Douglass, J.A., Newbigin, E.J., Erbas, B., 2020. A systematic review of the role of grass pollen and fungi in thunderstorm asthma. Environ. Res. 181, 108911.
    Irga, P.J., Torpy, F.R., 2016. A survey of the aeromycota of Sydney and its correspondence with environmental conditions: grass as a component of urban forestry could be a major determinant. Aerobiologia (Bologna). 32, 171–185.
    Islam, T., Berhane, K., McConnell, R., Gauderman, W.J., Avol, E., Peters, J.M., Gilliland, F.D., 2009. Glutathione-S-transferase (GST) P1, GSTM1, exercise, ozone and asthma incidence in school children. Thorax 64, 197–202.
    James, T.Y., Vilgalys, R., 2001. Abundance and diversity of Schizophyllum commune spore clouds in the Caribbean detected by selective sampling. Mol. Ecol. 10, 471–479.
    Janssen, R.H.H., Heald, C.L., Steiner, A.L., Perring, A.E., Huffman, J.A., Robinson, E.S., Twohy, C.H., Ziemba, L.D., 2021. Drivers of the fungal spore bioaerosol budget: observational analysis and global modeling. Atmos. Chem. Phys. 21, 4381–4401.
    Jarjour, N.N., Kelly, E.A.B., 2002. Pathogenesis of asthma. Med. Clin. 86, 925–936.
    Ji, H., Biagini Myers, J.M., Brandt, E.B., Brokamp, C., Ryan, P.H., Khurana Hershey, G.K., 2016. Air pollution, epigenetics, and asthma. Allergy, Asthma Clin. Immunol. 12, 1–14.
    Jung, D.Y., Leem, J.H., Kim, H.C., Kim, J.H., Hwang, S.S., Lee, J.Y., Kim, B.J., Hong, Y.C., Hong, S.J., Kwon, H.J., 2015. Effect of traffic-related air pollution on allergic disease: results of the children’s health and environmental research. Allergy. Asthma Immunol. Res. 7, 359–366.
    Kallawicha, K., Chen, Y.C., Chao, H.J., Shen, W.C., Chen, B.Y., Chuang, Y.C., Guo, Y.L., 2017. Ambient fungal spore concentration in a subtropical metropolis: Temporal distributions and meteorological determinants. Aerosol Air Qual. Res. 17, 2051–2063.
    Kallawicha, K., Lung, S.C.C., Chuang, Y.C., Wu, C.D., Chen, T.H., Tsai, Y.J., Chao, H.J., 2015a. Spatiotemporal distributions and land-use regression models of ambient bacteria and endotoxins in the greater Taipei area. Aerosol Air Qual. Res. 15, 1448–1459.
    Kallawicha, K., Tsai, Y.J., Chuang, Y.C., Lung, S.C.C., Wu, C.D., Chen, T.H., Chen, P.C., Chompuchan, C., Chao, H.J., 2015b. The spatiotemporal distributions and determinants of ambient fungal spores in the Greater Taipei area. Environ. Pollut. 204, 173–180.
    Kamińska, J.A., 2019. A random forest partition model for predicting NO2 concentrations from traffic flow and meteorological conditions. Sci. Total Environ. 651, 475–483.
    Karmakar, B., SenGupta, K., Kaur, A., Roy, A., Gupta Bhattacharya, S., 2020. Fungal bio-aerosol in multiple micro-environments from eastern India: source, distribution, and health hazards. SN Appl. Sci. 2, 1–14.
    Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.Y., 2017. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 30, 3146–3154.
    Keet, C.A., McCormack, M.C., Pollack, C.E., Peng, R.D., McGowan, E., Matsui, E.C., 2015. Neighborhood poverty, urban residence, race/ethnicity, and asthma: Rethinking the inner-city asthma epidemic. J. Allergy Clin. Immunol. 135, 655–662.
    Kerkhof, M., Postma, D.S., Brunekreef, B., Reijmerink, N.E., Wijga, A.H., DeJongste, J.C., Gehring, U., Koppelman, G.H., 2010. Toll-like receptor 2 and 4 genes influence susceptibility to adverse effects of traffic-related air pollution on childhood asthma. Thorax 65, 690–697.
    Kilic, M., Altunoglu, M.K., Akdogan, G.E., Akpınar, S., Taskın, E., Erkal, A.H., 2020. Airborne fungal spore relationships with meteorological parameters and skin prick test results in Elazig, Turkey. J. Environ. Heal. Sci. Eng. 18, 1271–1280.
    Kim, K.W., Kim, D.Y., Yoon, D., Kim, K., Jang, H., Schoettler, N., Kim, E.G., Kim, M.N., Hong, J.Y., Lee, J., 2022. Genome‐wide association study identifies TNFSF15 associated with childhood asthma. Allergy 77, 218–229.
    Kim, S.Y., Peel, J.L., Hannigan, M.P., Dutton, S.J., Sheppard, L., Clark, M.L., Vedal, S., 2012. The temporal lag structure of short-term associations of fine particulate matter chemical constituents and cardiovascular and respiratory hospitalizations. Env. Heal. Perspect 120, 1094–1099. https://doi.org/10.1289/ehp.1104721
    Kim, T.K., 2015. T test as a parametric statistic. Korean J. Anesthesiol. 68, 540–546.
    Knutsen, A.P., Bush, R.K., Demain, J.G., Denning, D.W., Dixit, A., Fairs, A., Greenberger, P.A., Kariuki, B., Kita, H., Kurup, V.P., 2012. Fungi and allergic lower respiratory tract diseases. J. Allergy Clin. Immunol. 129, 280–291.
    Knutsen, A.P., Vijay, H.M., Kariuki, B., Santiago, L.A., Graff, R., Wofford, J.D., Shah, M.R., 2010. Association of IL-4RA single nucleotide polymorphisms, HLA-DR and HLA-DQ in children with Alternaria-sensitive moderate-severe asthma. Clin. Mol. allergy 8, 1–9.
    Korhonen, A., Relvas, H., Miranda, A.I., Ferreira, J., Lopes, D., Rafael, S., Almeida, S.M., Faria, T., Martins, V., Canha, N., 2021. Analysis of spatial factors, time-activity and infiltration on outdoor generated PM2.5 exposures of school children in five European cities. Sci. Total Environ. 785, 147111.
    Kottur, S.V, Mantha, S.S., 2015. An integrated model using Artificial Neural Network (ANN) and Kriging for forecasting air pollutants using meteorological data. Int. J. Adv. Res. Comput. Commun. Eng 4, 146–152.
    Kumar, A., Mishra, R.K., Sarma, K., 2020. Mapping spatial distribution of traffic induced criteria pollutants and associated health risks using kriging interpolation tool in Delhi. J. Transp. Heal. 18, 100879.
    Lee, J.Y.Y., Miao, Y., Chau, R.L.T., Hernandez, M., Lee, P.K.H., 2023. Artificial intelligence-based prediction of indoor bioaerosol concentrations from indoor air quality sensor data. Environ. Int. 174, 107900.
    Lee, Y.L., Lin, Y., Lee, Y.C., Wang, J., Hsiue, T., Guo, Y.L., 2004. Glutathione S‐transferase P1 gene polymorphism and air pollution as interactive risk factors for childhood asthma. Clin. Exp. Allergy 34, 1707–1713.
    Levetin, E., Horner, W.E., Scott, J.A., Barnes, C., Baxi, S., Chew, G.L., Grimes, C., Kennedy, K., Larenas-Linnemann, D., Miller, J.D., 2016. Taxonomy of allergenic fungi. J. Allergy Clin. Immunol. Pract. 4, 375–385.
    Li, R., Cui, L., Fu, H., Meng, Y., Li, J., Guo, J., 2020. Estimating high-resolution PM1 concentration from Himawari-8 combining extreme gradient boosting-geographically and temporally weighted regression (XGBoost-GTWR). Atmos. Environ. 117434.
    Li, T., Zhang, Y., Wang, J., Xu, D., Yin, Z., Chen, H., Lv, Y., Luo, J., Zeng, Y., Liu, Y., 2018. All-cause mortality risk associated with long-term exposure to ambient PM2· 5 in China: a cohort study. Lancet Public Heal. 3, e470–e477.
    Li, Xin, Yang, T., Zeng, Z., Li, Xiaodong, Zeng, G., Liang, J., Xiao, R., Chen, X., 2021. Underestimated or overestimated? Dynamic assessment of hourly PM2.5 exposure in the metropolitan area based on heatmap and micro-air monitoring stations. Sci. Total Environ. 779, 146283.
    Li, Y.F., Gauderman, W.J., Avol, E., Dubeau, L., Gilliland, F.D., 2006. Associations of tumor necrosis factor G-308A with childhood asthma and wheezing. Am. J. Respir. Crit. Care Med. 173, 970–976.
    Lin, Z.Z., Cai, S.F., Utsugi, W., 2004. An atlas of airborne fungal spores in Southern Taiwan. Fengshan Trop. Hortic. Exp. Branch. Fengshan, Taiwan Taiwan Agric. Res. Institute, Counc. Agric.
    Liu, C., Henderson, B.H., Wang, D., Yang, X., Peng, Z., 2016. A land use regression application into assessing spatial variation of intra-urban fine particulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations in City of Shanghai, China. Sci. Total Environ. 565, 607–615.
    Liu, K., Hua, S., Song, L., 2022. PM2.5 exposure and asthma development: the key role of oxidative stress. Oxid. Med. Cell. Longev. 2022, 3618806.
    Liu, K.F.R., 2015. Using GIS and kriging to analyze the spatial distributions of the health risk of indoor air pollution. J. Geosci. Environ. Prot. 3, 20.
    Liu, W.T., Ma, C.M., Liu, I.J., Han, B.C., Chuang, H.C., Chuang, K.J., 2015. Effects of commuting mode on air pollution exposure and cardiovascular health among young adults in Taipei, Taiwan. Int. J. Hyg. Environ. Health 218, 319–323.
    Liu, Z., Cheng, K., Li, H., Cao, G., Wu, D., Shi, Y., 2018. Exploring the potential relationship between indoor air quality and the concentration of airborne culturable fungi: a combined experimental and neural network modeling study. Environ. Sci. Pollut. Res. 25, 3510–3517.
    Lundberg, S.M., Lee, S.I., 2017. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 30.
    Lung, S.C., Kao, M., 2003. Worshippers’ exposure to particulate matter in two temples in Taiwan. J. Air Waste Manag. Assoc. 53, 130–135.
    Ma, Y., Yu, Z., Jiao, H., Zhang, Y., Ma, B., Wang, F., Zhou, J., 2019. Short-term effect of PM2.5 on pediatric asthma incidence in Shanghai, China. Environ. Sci. Pollut. Res. 26, 27832–27841.
    MacIntyre, E.A., Brauer, M., Melén, E., Bauer, C.P., Bauer, M., Berdel, D., Bergström, A., Brunekreef, B., Chan-Yeung, M., Klümper, C., 2014. GSTP1 and TNF gene variants and associations between air pollution and incident childhood asthma: the traffic, asthma and genetics (TAG) study. Environ. Health Perspect. 122, 418–424.
    Mainelis, G., 2020. Bioaerosol sampling: Classical approaches, advances, and perspectives. Aerosol Sci. Technol. 54, 496–519.
    Makena, M.R., Ranjan, A., Thirumala, V., Reddy, A.P., 2020. Cancer stem cells: Road to therapeutic resistance and strategies to overcome resistance. Biochim. Biophys. Acta (BBA)-Molecular Basis Dis. 1866, 165339.
    Martínez-Bracero, M., Alcázar, P., Velasco-Jiménez, M.J., Galán, C., 2019. Fungal spores affecting vineyards in Montilla-Moriles southern Spain. Eur. J. plant Pathol. 153, 1–13.
    Martinez-Bracero, M., Markey, E., Clancy, J.H., McGillicuddy, E.J., Sewell, G., O’Connor, D.J., 2022. Airborne fungal spore review, new advances and automatisation. Atmosphere (Basel). 13, 308.
    McCreanor, J., Cullinan, P., Nieuwenhuijsen, M.J., Stewart-Evans, J., Malliarou, E., Jarup, L., Harrington, R., Svartengren, M., Han, I.-K., Ohman-Strickland, P., 2007. Respiratory effects of exposure to diesel traffic in persons with asthma. N. Engl. J. Med. 357, 2348–2358.
    McHugh, M.L., 2013. The chi-square test of independence. Biochem. medica 23, 143–149.
    Melbourne, C.A., Erzurumluoglu, A.M., Shrine, N., Chen, J., Tobin, M.D., Hansell, A.L., Wain, L.V, 2022. Genome-wide gene-air pollution interaction analysis of lung function in 300,000 individuals. Environ. Int. 159, 107041.
    Mendell, M.J., Mirer, A.G., Cheung, K., Tong, M., Douwes, J., 2011. Respiratory and allergic health effects of dampness, mold, and dampness-related agents: a review of the epidemiologic evidence. Environ. Health Perspect. 119, 748–756.
    Meng, X., Chen, L., Cai, J., Zou, B., Wu, C., Fu, Q., Zhang, Y., Liu, Y., Kan, H., 2015. A land use regression model for estimating the NO2 concentration in Shanghai, China. Environ. Res. 137, 308–315.
    Mhuireach, G., Johnson, B.R., Altrichter, A.E., Ladau, J., Meadow, J.F., Pollard, K.S., Green, J.L., 2016. Urban greenness influences airborne bacterial community composition. Sci. Total Environ. 571, 680–687.
    Mims, J.W., 2015. Asthma: definitions and pathophysiology, in: International Forum of Allergy & Rhinology. Wiley Online Library, pp. S2–S6.
    Minelli, C., Wei, I., Sagoo, G., Jarvis, D., Shaheen, S., Burney, P., 2011. Interactive effects of antioxidant genes and air pollution on respiratory function and airway disease: a HuGE review. Am. J. Epidemiol. 173, 603–620.
    Mirabelli, M.C., Golan, R., Greenwald, R., Raysoni, A.U., Holguin, F., Kewada, P., Winquist, A., Flanders, W.D., Sarnat, J.A., 2015. Modification of traffic-related respiratory response by asthma control in a population of car commuters. Epidemiology 26, 546.
    MOTC, 2023. National travel survey.
    Muilenberg, M., 1999. A practical guide to aeroallergen identification, in: Proceedings of the American College of Allergy and Immunology Annual Meeting. Chicago, USA.
    Murrison, L.B., Brandt, E.B., Myers, J.B., Hershey, G.K.K., 2019. Environmental exposures and mechanisms in allergy and asthma development. J. Clin. Invest. 129, 1504–1515.
    Murthy, B.S., Latha, R., Tiwari, A., Rathod, A., Singh, S., Beig, G., 2020. Impact of mixing layer height on air quality in winter. J. Atmos. Solar-Terrestrial Phys. 197, 105157.
    Myers, R.A., Scott, N.M., Gauderman, W.J., Qiu, W., Mathias, R.A., Romieu, I., Levin, A.M., Pino-Yanes, M., Graves, P.E., Villarreal, A.B., 2014. Genome-wide interaction studies reveal sex-specific asthma risk alleles. Hum. Mol. Genet. 23, 5251–5259.
    Nieuwenhuis, M.A., Siedlinski, M., van denBerge, M., Granell, R., Li, X., Niens, M., van derVlies, P., Altmüller, J., Nürnberg, P., Kerkhof, M., 2016. Combining genomewide association study and lung eQTL analysis provides evidence for novel genes associated with asthma. Allergy 71, 1712–1720.
    Nissen, M., Slim, S., Jäger, K., Flaucher, M., Huebner, H., Danzberger, N., Fasching, P.A., Beckmann, M.W., Gradl, S., Eskofier, B.M., 2022. Heart rate measurement accuracy of Fitbit Charge 4 and Samsung Galaxy Watch Active2: device evaluation study. JMIR Form. Res. 6, e33635.
    Nowakowska, M., Wrzesińska, M., Kamiński, P., Szczechura, W., Lichocka, M., Tartanus, M., Kozik, E.U., Nowicki, M., 2019. Alternaria brassicicola–Brassicaceae pathosystem: insights into the infection process and resistance mechanisms under optimized artificial bio-assay. Eur. J. plant Pathol. 153, 131–151.
    Núñez, A., Amo de Paz, G., Ferencova, Z., Rastrojo, A., Guantes, R., García, A.M., Alcamí, A., Gutiérrez-Bustillo, A.M., Moreno, D.A., 2017. Validation of the hirst-type spore trap for simultaneous monitoring of prokaryotic and eukaryotic biodiversities in urban air samples by next-generation sequencing. Appl. Environ. Microbiol. 83, e00472-17.
    Nurmagambetov, T., Kuwahara, R., Garbe, P., 2018. The economic burden of asthma in the United States, 2008–2013. Ann. Am. Thorac. Soc. 15, 348–356.
    O’Byrne, P.M., 2011. Therapeutic strategies to reduce asthma exacerbations. J Allergy Clin Immunol 128, 255–257. https://doi.org/10.1016/j.jaci.2011.03.035
    Ober, C., Yao, T., 2011. The genetics of asthma and allergic disease: a 21st century perspective. Immunol. Rev. 242, 10–30.
    Olaniyan, T., Dalvie, M.A., Röösli, M., Naidoo, R.N., Künzli, N., deHoogh, K., Berman, D., Parker, B., Leaner, J., Jeebhay, M.F., 2020. Short term seasonal effects of airborne fungal spores on lung function in a panel study of schoolchildren residing in informal settlements of the Western Cape of South Africa. Environ. Pollut. 260, 114023.
    Olsen, Y., Begovic, T., Skjøth, C.A., Rasmussen, K., Gosewinkel, U., Hertel, O., Sigsgaard, T., 2019a. Grain harvesting as a local source of Cladosporium spp. in Denmark. Aerobiologia (Bologna). 35, 373–378.
    Olsen, Y., Gosewinkel, U.B., Skjøth, C.A., Hertel, O., Rasmussen, K., Sigsgaard, T., 2019b. Regional variation in airborne Alternaria spore concentrations in Denmark through 2012–2015 seasons: the influence of meteorology and grain harvesting. Aerobiologia (Bologna). 35, 533–551.
    Overton, N.L., Simpson, A., Bowyer, P., Denning, D.W., 2017. Genetic susceptibility to severe asthma with fungal sensitization. Int. J. Immunogenet. 44, 93–106.
    Overton, N.L.D., Denning, D.W., Bowyer, P., Simpson, A., 2016. Genetic susceptibility to allergic bronchopulmonary aspergillosis in asthma: a genetic association study. Allergy, Asthma Clin. Immunol. 12, 1–13.
    Pagès, M., Kleiber, D., Violleau, F., 2020. Ozonation of three different fungal conidia associated with apple disease: Importance of spore surface and membrane phospholipid oxidation. Food Sci. Nutr. 8, 5292–5297.
    Parry, P., 2019. auto_ml [WWW Document].
    Patel, T.Y., Buttner, M., Rivas, D., Cross, C., Bazylinski, D.A., Seggev, J., 2018. Variation in airborne fungal spore concentrations among five monitoring locations in a desert urban environment. Environ. Monit. Assess. 190, 1–10.
    Pearce, N., Aït-Khaled, N., Beasley, R., Mallol, J., Keil, U., Mitchell, E., Robertson, C., 2007. Worldwide trends in the prevalence of asthma symptoms: phase III of the International Study of Asthma and Allergies in Childhood (ISAAC). Thorax 62, 758–766.
    Pearlman, D.S., 1999. Pathophysiology of the inflammatory response. J. Allergy Clin. Immunol. 104, s132–s137.
    Peel, J.L., Tolbert, P.E., Klein, M., Metzger, K.B., Flanders, W.D., Todd, K., Mulholland, J.A., Ryan, P.B., Frumkin, H., 2005. Ambient air pollution and respiratory emergency department visits. Epidemiology 16, 164–174.
    Perez, L., Declercq, C., Iñiguez, C., Aguilera, I., Badaloni, C., Ballester, F., Bouland, C., Chanel, O., Cirarda, F.B., Forastiere, F., 2013. Chronic burden of near-roadway traffic pollution in 10 European cities (APHEKOM network). Eur. Respir. J. 42, 594–605.
    Peters, A., Wichmann, H.E., Tuch, T., Heinrich, J., Heyder, J., 1997. Respiratory effects are associated with the number of ultrafine particles. Am J Respir Crit Care Med 155, 1376–1383. https://doi.org/10.1164/ajrccm.155.4.9105082
    Pfeifer, N., Mandlburger, G., 2018. LiDAR data filtering and digital terrain model generation, in: Topographic Laser Ranging and Scanning. CRC Press, pp. 349–378.
    Pollart, S.M., Compton, R.M., Elward, K.S., 2011. Management of acute asthma exacerbations. Am. Fam. Physician 84.
    Priyamvada, H., Singh, R.K., Akila, M., Ravikrishna, R., Verma, R.S., Gunthe, S.S., 2017. Seasonal variation of the dominant allergenic fungal aerosols–One year study from southern Indian region. Sci. Rep. 7, 11171.
    Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.V., Gulin, A., 2017. CatBoost: unbiased boosting with categorical features. arXiv Prepr. arXiv1706.09516.
    Pun, V.C., Kazemiparkouhi, F., Manjourides, J., Suh, H.H., 2017. Long-term PM2.5 exposure and respiratory, cancer, and cardiovascular mortality in older US adults. Am. J. Epidemiol. 186, 961–969.
    Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A.R., Bender, D., Maller, J., Sklar, P., DeBakker, P.I.W., Daly, M.J., 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575.
    Raissi, M., Perdikaris, P., Karniadakis, G.E., 2017. Machine learning of linear differential equations using Gaussian processes. J. Comput. Phys. 348, 683–693.
    Ren, J.T., Feng, K., Wang, P., Peng, W.H., Jia, H.Y., Liu, K., Lu, H.J., 2013. Relationship between the gene polymorphism in fibroblast growth factor-10 and susceptibility to chronic obstructive pulmonary disease 220 cases. Chinese J. Tuberc. Respir. Dis. 36, 935–939.
    Ren, X., Mi, Z., Georgopoulos, P.G., 2020. Comparison of Machine Learning and Land Use Regression for fine scale spatiotemporal estimation of ambient air pollution: Modeling ozone concentrations across the contiguous United States. Environ. Int. 142, 105827.
    Rezvani, M., Wilde, J., Vitt, P., Mailaparambil, B., Grychtol, R., Krueger, M., Heinzmann, A., 2013. Association of a FGFR‐4 gene polymorphism with bronchopulmonary dysplasia and neonatal respiratory distress. Dis. Markers 35, 633–640.
    Rick, E.M., Woolnough, K., Pashley, C.H., Wardlaw, A.J., 2016. Allergic fungal airway disease. J Investig Allergol Clin Immunol 26, 344–354.
    Rodrigues, J., Caruthers, C., Azmeh, R., Dykewicz, M.S., Slavin, R.G., Knutsen, A.P., 2016. The spectrum of allergic fungal diseases of the upper and lower airways. Expert Rev. Clin. Immunol. 12, 531–550.
    Rogers, C., Muilenberg, M., 2001. Comprehensive Guidelines for the operation of Hirst-Type suction bioaerosol samplers. Pan-American Aerobiol. Assoc. Standarized Protoc.
    Roy, S., Gupta Bhattacharya, S., 2020. Airborne fungal spore concentration in an industrial township: distribution and relation with meteorological parameters. Aerobiologia (Bologna). 36, 575–587.
    Sadyś, M., Kennedy, R., West, J.S., 2016. Potential impact of climate change on fungal distributions: analysis of 2 years of contrasting weather in the UK. Aerobiologia (Bologna). 32, 127–137.
    Salva, J., Vanek, M., Schwarz, M., Gajtanska, M., Tonhauzer, P., Ďuricová, A., 2021. An assessment of the on-road mobile sources contribution to particulate matter air pollution by AERMOD dispersion model. Sustainability 13, 12748.
    Ščevková, J., Hrabovský, M., Kováč, J., Rosa, S., 2019. Intradiurnal variation of predominant airborne fungal spore biopollutants in the Central European urban environment. Environ. Sci. Pollut. Res. 26, 34603–34612.
    Schyvens, A.M., VanOost, N.C., Aerts, J.M., Masci, F., Peters, B., Neven, A., Dirix, H., Wets, G., Ross, V., Verbraecken, J., 2024. Accuracy of Fitbit Charge 4, Garmin Vivosmart 4, and WHOOP Versus Polysomnography: Systematic Review. JMIR mHealth uHealth 12, e52192.
    Sharma, S., Sharma, P., Khare, M., 2017. Photo-chemical transport modelling of tropospheric ozone: A review. Atmos. Environ. 159, 34–54.
    Sharpe, R.A., Bearman, N., Thornton, C.R., Husk, K., Osborne, N.J., 2015. Indoor fungal diversity and asthma: a meta-analysis and systematic review of risk factors. J. Allergy Clin. Immunol. 135, 110–122.
    Shtein, A., Kloog, I., Schwartz, J., Silibello, C., Michelozzi, P., Gariazzo, C., Viegi, G., Forastiere, F., Karnieli, A., Just, A.C., 2019. Estimating daily PM2.5 and PM10 over Italy using an ensemble model. Environ. Sci. Technol. 54, 120–128.
    Sidel, F.F.Ben, Bouziane, H., delMar Trigo, M., ElHaskouri, F., Bardei, F., Redouane, A., Kadiri, M., Riadi, H., Kazzaz, M., 2015. Airborne fungal spores of Alternaria, meteorological parameters and predicting variables. Int. J. Biometeorol. 59, 339–346.
    Sikdar, S., Wyss, A.B., Lee, M.K., Hoang, T.T., Richards, M., Freeman, L.E.B., Parks, C., Thorne, P.S., Hankinson, J.L., Umbach, D.M., 2021. Interaction between Genetic Risk Scores for reduced pulmonary function and smoking, asthma and endotoxin. Thorax 76, 1219–1226.
    Simpson, A., Martinez, F.D., 2010. The role of lipopolysaccharide in the development of atopy in humans. Clin. Exp. Allergy 40, 209–223.
    Smith, B.M., Traboulsi, H., Austin, J.H.M., Manichaikul, A., Hoffman, E.A., Bleecker, E.R., Cardoso, W.V, Cooper, C., Couper, D.J., Dashnaw, S.M., 2018. Human airway branch variation and chronic obstructive pulmonary disease. Proc. Natl. Acad. Sci. 115, E974–E981.
    Song, J., Ding, Z., Zheng, H., Xu, Z., Cheng, J., Pan, R., Yi, W., Wei, J., Su, H., 2022. Short-term PM1 and PM2.5 exposure and asthma mortality in Jiangsu Province, China: What’s the role of neighborhood characteristics? Ecotoxicol. Environ. Saf. 241, 113765.
    Sordillo, J.E., Lutz, S.M., Jorgenson, E., Iribarren, C., McGeachie, M., Dahlin, A., Tantisira, K., Kelly, R., Lasky‐Su, J., Sakornsakolpat, P., 2021. A polygenic risk score for asthma in a large racially diverse population. Clin. Exp. Allergy 51, 1410–1420.
    Stikker, B., Trap, L., Sedaghati-Khayat, B., deBruijn, M.J.W., vanIjcken, W.F.J., deRoos, E., Ikram, A., Hendriks, R.W., Brusselle, G., vanRooij, J., 2024. Epigenomic partitioning of a polygenic risk score for asthma reveals distinct genetically driven disease pathways. Eur. Respir. J. 64.
    Su, H.J., Wu, P.C., Chen, H.L., Lee, F.C., Lin, L.L., 2001. Exposure assessment of indoor allergens, endotoxin, and airborne fungi for homes in southern Taiwan. Environ. Res. 85, 135–144.
    Su, H.J.J., Chen, H.L., Huang, C.F., Lin, C.Y., Li, F.C., Milton, D.K., 2002. Airborne fungi and endotoxin concentrations in different areas within textile plants in Taiwan: a 3-year study. Environ. Res. 89, 58–65.
    Su, H.J.J., Wu, P.C., Lei, H.Y., Wang, J.Y., 2005. Domestic exposure to fungi and total serum IgE levels in asthmatic children. Mediators Inflamm. 2005, 167–170.
    Su, H.J.J., Wu, P.C., Lin, C.Y., 2001. Fungal exposure of children at homes and schools: a health perspective. Arch. Environ. Heal. An Int. J. 56, 144–149.
    Su, H.J., Wu, P.C., Chien, H.P., 2006. Levels of indoor airborne microbes associated with ventilation efficiency in naturally-ventilated residences. Int. J. Vent. 5, 313–321.
    Su, M.W., Tsai, C.H., Tung, K.Y., Hwang, B.F., Liang, P.-H., Chiang, B.L., Yang, Y.H., Lee, Y.L., 2013. GSTP 1 is a hub gene for gene–air pollution interactions on childhood asthma. Allergy 68, 1614–1617.
    Subbarao, P., Mandhane, P.J., Sears, M.R., 2009. Asthma: epidemiology, etiology and risk factors. Can. Med. Assoc. J. 181, E181–E190.
    Svartengren, M., Strand, V., Bylin, G., Jarup, L., Pershagen, G., 2000. Short-term exposure to air pollution in a road tunnel enhances the asthmatic response to allergen. Eur. Respir. J. 15, 716–724.
    Taliun, D., Harris, D.N., Kessler, M.D., Carlson, J., Szpiech, Z.A., Torres, R., Taliun, S.A.G., Corvelo, A., Gogarten, S.M., Kang, H.M., 2021. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 590, 290–299.
    Tétreault, L.F., Doucet, M., Gamache, P., Fournier, M., Brand, A., Kosatsky, T., Smargiassi, A., 2016. Childhood exposure to ambient air pollutants and the onset of asthma: an administrative cohort study in Québec. Env. Heal. Perspect 124, 1276.
    Thacher, J.D., Gruzieva, O., Pershagen, G., Melén, E., Lorentzen, J.C., Kull, I., Bergström, A., 2017. Mold and dampness exposure and allergic outcomes from birth to adolescence: data from the BAMSE cohort. Allergy 72, 967–974.
    Tham, R., Erbas, B., Dharmage, S.C., Tang, M.L.K., Aldakheel, F., Lodge, C.J., Thomas, P.S., Taylor, P.E., Abramson, M.J., Lowe, A.J., 2019. Outdoor fungal spores and acute respiratory effects in vulnerable individuals. Environ. Res. 178, 108675.
    Tham, R., Katelaris, C.H., Vicendese, D., Dharmage, S.C., Lowe, A.J., Bowatte, G., Taylor, P., Burton, P., Abramson, M.J., Erbas, B., 2017a. The role of outdoor fungi on asthma hospital admissions in children and adolescents: A 5-year time stratified case-crossover analysis. Environ. Res. 154, 42–49.
    Tham, R., Vicendese, D., Dharmage, S.C., Hyndman, R.J., Newbigin, E., Lewis, E., O’Sullivan, M., Lowe, A.J., Taylor, P., Bardin, P., 2017b. Associations between outdoor fungal spores and childhood and adolescent asthma hospitalizations. J. Allergy Clin. Immunol. 139, 1140–1147.
    Tischer, C.G., Hohmann, C., Thiering, E., Herbarth, O., Müller, A., Henderson, J., Granell, R., Fantini, M.P., Luciano, L., Bergström, A., 2011. Meta‐analysis of mould and dampness exposure on asthma and allergy in eight European birth cohorts: an ENRIECO initiative. Allergy 66, 1570–1579.
    Vauclin, M., Vieira, S.R., Vachaud, G., Nielsen, D.R., 1983. The use of cokriging with limited field soil observations. Soil Sci. Soc. Am. J. 47, 175–184.
    Vercelli, D., 2008. Discovering susceptibility genes for asthma and allergy. Nat. Rev. Immunol. 8, 169–182.
    Von Elm, E., Altman, D. G., Egger, M., Pocock, S. J., Gøtzsche, P. C., Vandenbroucke, J. P., 2007. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. The lancet, 370(9596), 1453-1457.
    Vu, B.N., Tapia, V., Ebelt, S., Gonzales, G.F., Liu, Y., Steenland, K., 2021. The association between asthma emergency department visits and satellite-derived PM2.5 in Lima, Peru. Environ. Res. 199, 111226.
    Wan, Y.I., Shrine, N.R.G., Artigas, M.S., Wain, L.V, Blakey, J.D., Moffatt, M.F., Bush, A., Chung, K.F., Cookson, W., Strachan, D.P., 2012. Genome-wide association study to identify genetic determinants of severe asthma. Thorax 67, 762–768.
    Wang, C.Y., Lim, B.S., Wang, Y.H., Huang, Y.C.T., 2021. Identification of High Personal PM2.5 Exposure during Real Time Commuting in the Taipei Metropolitan Area. Atmosphere (Basel). 12, 396.
    Watanabe, M., Noma, H., Kurai, J., Hantan, D., Burioka, N., Nakamoto, S., Sano, H., Taniguchi, J., Shimizu, E., 2016. Association between outdoor fungal concentrations during winter and pulmonary function in children with and without asthma. Int. J. Environ. Res. Public Health 13, 452.
    Wei, W., Ramalho, O., Malingre, L., Sivanantham, S., Little, J.C., Mandin, C., 2019. Machine learning and statistical models for predicting indoor air quality. Indoor Air 29, 704–726.
    Weissert, L., Alberti, K., Miles, E., Miskell, G., Feenstra, B., Henshaw, G.S., Papapostolou, V., Patel, H., Polidori, A., Salmond, J.A., 2020. Low-cost sensor networks and land-use regression: Interpolating nitrogen dioxide concentration at high temporal and spatial resolutiona in Southern California. Atmos. Environ. 117287.
    West, J.S., Kimber, R.B.E., 2015. Innovations in air sampling to detect plant pathogens. Ann. Appl. Biol. 166, 4–17.
    Wong, P.Y., Lee, H.Y., Zeng, Y.T., Chern, Y.R., Chen, N.T., Lung, S.C.C., Su, H.J., Wu, C.D., 2021. Using a Land Use Regression Model with Machine Learning to Estimate Ground Level PM2.5. Environ. Pollut. 116846.
    Wong, P.Y., Su, H.J., Lung, S.C.C., Liu, W.Y., Tseng, H.T., Adamkiewicz, G., Wu, C.D., 2024. Explainable geospatial-artificial intelligence models for the estimation of PM2.5 concentration variation during commuting rush hours in Taiwan. Environ. Pollut. 123974.
    Wong, P.Y., Su, H.J., Lung, S.C.C., Wu, C.D., 2023. An ensemble mixed spatial model in estimating long-term and diurnal variations of PM2.5 in Taiwan. Sci. Total Environ. 161336.
    Woo, J., Rudasingwa, G., Kim, S., 2019. Assessment of daily personal PM2.5 Exposure Level according to four major activities among Children. Appl. Sci. 10, 159.
    Wu, C.D., Zeng, Y.T., Lung, S.C.C., 2018. A hybrid kriging/land-use regression model to assess PM2.5 spatial-temporal variability. Sci. Total Environ. 645, 1456–1464.
    Wu, C., Chen, Y., Pan, W., Zeng, Y., Chen, M., Guo, Y.L., Lung, S.C., 2017. Land-use regression with long-term satellite-based greenness index and culture-specific sources to model PM2.5 spatial-temporal variability. Environ. Pollut. 224, 148–157.
    Wu, P.C., Su, H.J., Lin, C.Y., 2000. Characteristics of indoor and outdoor airborne fungi at suburban and urban homes in two seasons. Sci. Total Environ. 253, 111–118.
    Wu, P.C., Tsai, J.C., Li, F.C., Lung, S.C., Su, H.J., 2004. Increased levels of ambient fungal spores in Taiwan are associated with dust events from China. Atmos. Environ. 38, 4879–4886.
    Xie, Y., Su, N., Yang, J., Tan, Q., Huang, S., Jin, M., Ni, Z., Zhang, B., Zhang, D., Luo, F., 2020. FGF/FGFR signaling in health and disease. Signal Transduct. Target. Ther. 5, 181.
    Xu, H., Ta, W., Yang, L., Feng, R., He, K., Shen, Z., Meng, Z., Zhang, N., Li, Y., Zhang, Y., 2020. Characterizations of PM2.5-bound organic compounds and associated potential cancer risks on cooking emissions from dominated types of commercial restaurants in northwestern China. Chemosphere 261, 127758.
    Yang, J., Zeng, J., Goddard, M.E., Wray, N.R., Visscher, P.M., 2017. Concepts, estimation and interpretation of SNP-based heritability. Nat. Genet. 49, 1304–1310.
    Yucesoy, B., Kaufman, K.M., Lummus, Z.L., Weirauch, M.T., Zhang, G., Cartier, A., Boulet, L.-P., Sastre, J., Quirce, S., Tarlo, S.M., 2015. Genome-wide association study identifies novel loci associated with diisocyanate-induced occupational asthma. Toxicol. Sci. 146, 192–201.
    Zhan, Y., Luo, Y., Deng, X., Grieneisen, M.L., Zhang, M., Di, B., 2018. Spatiotemporal prediction of daily ambient ozone levels across China using random forest for human exposure assessment. Environ. Pollut. 233, 464–473.
    Zhang, Z., Reponen, T., Hershey, G.K.K., 2016. Fungal exposure and asthma: IgE and non-IgE-mediated mechanisms. Curr. Allergy Asthma Rep. 16, 1–12.
    Zhao, L., Wang, J., Gao, H.O., Xie, Y., Jiang, R., Hu, Q., Sun, Y., 2017. Evaluation of particulate matter concentration in Shanghai’s metro system and strategy for improvement. Transp. Res. Part D Transp. Environ. 53, 115–127.
    Zhou, S., Lin, R., 2019. Spatial-temporal heterogeneity of air pollution: The relationship between built environment and on-road PM2.5 at micro scale. Transp. Res. Part D Transp. Environ. 76, 305–322.
    Zhu, Q., Lin, H.S., 2010. Comparing ordinary kriging and regression kriging for soil properties in contrasting landscapes. Pedosphere 20, 594–606.
    Zimmerman, D., Pavlik, C., Ruggles, A., Armstrong, M.P., 1999. An experimental comparison of ordinary and universal kriging and inverse distance weighting. Math. Geol. 31, 375–390.
    Zuo, L., Otenbaker, N.P., Rose, B.A., Salisbury, K.S., 2013. Molecular mechanisms of reactive oxygen species-related pulmonary inflammation and asthma. Mol. Immunol. 56, 57–63.

    無法下載圖示 校內:2026-01-15公開
    校外:2026-01-15公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE