| 研究生: |
蔡曜澤 Tsai, Yao-Tse |
|---|---|
| 論文名稱: |
Noryl射出成型的空孔缺陷分析 Analysis of Voids Defect in Injection Molding Process |
| 指導教授: |
周榮華
Chou, Jung-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系碩士在職專班 Department of Engineering Science (on the job class) |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | Noryl 、射出成型 、空孔 、料溫 、射出壓力 |
| 外文關鍵詞: | Noryl, injection molding, voids, injection temperature |
| 相關次數: | 點閱:178 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文在探討以工程塑料Noryl GFN3 進行射出加工時,在材料內部出現的空孔問題。Noryl材料最初由美國GE公司所開發的高分子材料,由於其加工性優良、尺寸穩定性好、吸水率低、絕緣性佳、耐熱性能、耐酸鹼、密度低及阻燃性高等特性,因而受到工業界廣泛應用。本實驗所使用的Nory材料為Sabic公司所生產的塑料產品,並添加有30%的玻璃纖維成份,故在品名上加註有GFN3字樣做區分。
本實驗是以射出成型方法加工出一塊厚度為40mm的工件,觀察其冷卻後空孔型態的差異。實驗開始首先刻意將材料的射出劑量做適當的減量,以確保材料冷卻收縮後可有適當的空孔數量供觀察。研究以射出參數中的”料溫”與”射出壓力”做為控制因子,進行2因子3水準的全因子實驗。射注後的工件透過 X-ray 進行非破壞式的缺陷檢測,再將所得到的底片經由灰階影像處理,以利於計算實驗後的空孔尺寸及數量。最終歸納出空孔的型態與各控制因子的相關性。由實驗結果中發現,高料溫及低射注壓力的參數條件可將材料內部的孔缺陷細化,以及材料內部的空孔尺寸越小,冷卻收縮的變形量越小 。
關鍵字 : Noryl、射出成型、空孔、料溫、射出壓力
Extended Abstract
Analysis of Voids Defect in Injection Molding Process
Author: Yao-Tse Tsai
Advisor: Jung-Hua Chou
Department of Engineering Science College of Science
SUMMARY
This thesis explored the voids defect during injection which occurred in the core of engineering plastic Noryl GFN3. The experiments were based on injection molding technology to make the components with the thickness of 40mm and to observe the void characteristics after cooling. In the experiment, a shorter injection time was purposefully used to generate an enough number of holes for analysis. The injection control parameters were injection temperature and pressure with three levels each; i.e., a full factorial experiment of two factors with three levels each.
After the injection process, the work piece was inspected by the X- ray to observe the internal defects; the X-ray images were processed graphically using grayscales to obtain the size and quantity of the voids defect. Finally, summed voids patterns and each control factor correlation. The results showed that under conditions of high temperature and low pressure, the void size could be reduced; the void size could also be reduced.
Keywords: Noryl, injection molding, voids, injection temperature,
injection pressure
INTRODUCTION
Injection molding technology is a combination of multi-knowledge in order to have good quality. The technology is used extensively in plastic products, because not only the production is fast but also the profile can be controlled quite meticulously to suit a wide range of applications markets. On the other hand, despite the facts that the injection molding technology is good for mass production, short production cycle, stable quality, high precision and less waste, etc., defects could occur when the product thickness is large. This thesis explored mainly the relationship between the void defects and the injection molding process parameters.
MATERIALS AND METHODS
The material used in this experiment was Noryl GFN3, and the experiment deliberately used inadequate filling conditions in the injection molding process to generate void defects inside the mold components. Two parameters of injection pressure and injection temperature were used to design a 2-factors and 3-levels full factorial experiment. Then we used the X-ray non-destructive detection method to measure the characteristics of voids to determine the size and number of the defects. We also observed its deformation and surface defects after cooling to draw some conclusions. In this 2-factors 3-levels experiment, the nine experimental group, labeled from A to I as follows:
A: Injection temperature, 275℃; Injection pressure, 110 Mpa
B: Injection temperature, 275℃; Injection pressure, 160 Mpa
C: Injection temperature, 275℃; Injection pressure, 220 Mpa
D: Injection temperature, 285℃; Injection pressure, 110 Mpa
E: Injection temperature, 285℃; Injection pressure, 160 Mpa
F: Injection temperature, 285℃; Injection pressure, 220 Mpa
G: Injection temperature, 300℃; Injection pressure, 110 Mpa
H: Injection temperature, 300℃; Injection pressure, 160 Mpa
I: Injection temperature, 300℃; Injection pressure, 220 Mpa
RESULTS AND DISCUSSION
The average size of voids for each case is as below: A: diameter 2.21 mm; B: diameter 2.44 mm; C: diameter 2.67 mm D: diameter 2.49 mm; E: diameter 2.58 mm; F: diameter 2.42 mm; G: diameter 2.34 mm; H: diameter 1.51 mm; I: diameter 1.29 mm
For the surface quality checking results, in addition to the obvious bonding line on some parts, the rest had no obvious abnormalities. After comparing the deformation with voids of each experimental group, we are able to see that small voids had better ability of resisting deformation.
CONCLUSION
Under the conditions of injection temperature approaching 300℃ and lower injection pressure, the voids size was smaller.
2. For the injection pressure as lower as 110MPa alone, the voids could not be smaller.
3. The bonding line appeared easily in the condition of a low injection temperature.
4. A smaller void resisted deformation better.
[1] 熊小平,塑料注射成型,北京化學工業出版社,2006
[2] 歐陽渭城 譯,射出成型不良的對策,全華圖書,2007
[3] 徐正立、林秀春、唐兆璋、楊文禮 ,熱澆道技術在特厚件PC產品上的應用,映通公司、科盛科技公司技術文件
[4] 洪建儒,特厚件產品特性與品質研究,中原大學,
碩士論文,2005
[5] 鍾明修,超微細發炮射出成形製成之研究,中原大學,
博士論文,2006
[6] 林之韻,利用x-光微斷層攝影探討微孔洞的立體結構及連通性,中原大學,碩士論文,2005
[7] 科盛科技,模流分析技術與應用,全華圖書, 2007
[8] 魏綸群,塑膠射出成型製程時間最佳化設計,
元智大學,碩士論文,2008
[9] 李輝煌,田口方法,高立圖書有限公司,2013
[10] 伊堡內賢,工程塑膠,復漢出版社,1986
[11] 黃忠良,多孔材料學,復漢出版社,1999
[12] 邱曉雲 譯,Manufacturing Engineer and Technology,
文京圖書有限公司,1998
[13] 財團法人塑膠工業技術發展中心PIDC,射出料溫及壓力設定,
塑膠工業技術期刊,台北,1999
[14] 洪瑞庭,塑膠加工技術與工程,高立圖書有限公司,台北市,
2000年
[17] 林信隆 譯,塑膠射出成形 機械技術出版社,台北市,2000
[18] K.M.B.Jansen, D.J.Van Dijk, and M.H.Husselman,”Effect
of Processing Conditions on Shinkage in Injection
Molding”,Polymer Engineering and Science, 1998
[19] K. Han, J.NI, J. Toth and L. J. Lee,”Analysis of an
Injection/Compression Liquid Composite Molding
Process”, Polymer Composites, 1998
[20] Xin yi Zhao ,Wu Zhang ,Sean Lee and Clyde Roggenkamp”
The Porosities or Voids Included in Composite Resin
Restorations”, Trans Tech Publications, Switzerland,
2014
[21] S.A. Elsheikhi, K.Y. Benyounis,”Reference Module in
Materials Science and Materials Engineering”,
Elsevier,2015
[22] G Saint-Martin, F Schmidt, P Devos, C Levaillant,
“ Voids in short fiber-reinforced injection-module
parts: density control vs. mass control”, Elsevier,
December 2003
[23] Wenjea J. Tseng, Donyau Chiang,”Influence of molding
variables on defect formation and mechanical strength
of injection-molded ceramics”,Journal of Materials
Processing Technology, 1998
[24] A. Ameli, D. Jahani, M. Nofar, P.U. Jung, C.B. Park,
“Development of high void fraction polylactide composite
foams using injection molding: Mechanical and thermal
insulation properties”,Composites Science and
Technology, 2014
[25] T.Staffan Lundström ,”Measurement of void collapse
during resin transfer moulding Composites Part A”,
Applied Science and Manufacturing, 1997
[26] 德標機械 ,FKW-9090吨带供料系统 , 中國湖北 , 鄂州
http://www.114pifa.com/c/ezdbjx
[27] 兆基塑膠機械 ,中央供料系統 ,中國廣東,深圳
http://www.szzhaoji.com/product_view_79_201.html,
[28] 領大機械 ,熱循環烘箱,彰化
http://www.lingta.com.tw/product.html
[29] 羅任成,塑膠射出成型方法與塑膠材料特性 , 交通大學,
技術講義, 2006
[30] 張政雄,模內動態壓力對塑膠射出件之研究 , 台北科技大學,
碩士論文, 2010
[31] 劉 亞 倫, 超塑性鋁合金 5083 快速成形之空孔與金相組織研究,
中央大學, 碩士論文, 2001