| 研究生: |
陳泓昇 Chen, Hung-Sheng |
|---|---|
| 論文名稱: |
鎳基銲材52鈮含量對銲道影響 The Welding Characteristics of Filler Metal Alloy 52 with Niobium Addition |
| 指導教授: |
李驊登
Lee, Hwa-Teng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 失延裂紋 、凝固裂紋 、伽凡尼腐蝕 |
| 外文關鍵詞: | DDC, Solidification Cracking, Galvanic Corrosion |
| 相關次數: | 點閱:58 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為防止核電廠圍阻體覆銲處於銲接製程中產生裂紋,本文旨在針對添加不同Nb含量之鎳基Alloy 52銲材,進行銲接性、凝固裂紋敏感性、DDC敏感性與耐腐蝕性的討論。實驗使用GTAW銲接程序,檢視不同比例Nb添加對於稀釋率的影響,藉由橫向拘束試驗,研究銲件凝固裂紋敏感性,並以顯微組織觀察與成分分析,觀察銲件冶金行為變化,最後利用單環動電位再活化技術(SL-EPR)與惠式試驗法(M-Huey Test),檢驗並綜合討論微組織變化對耐腐蝕性的影響。
在橫向拘束試驗結果上,以添加2.53% Nb銲件之凝固裂紋敏感性最高,這是由於銲件添加2.53% Nb使得Laves+ϒ共晶相析出降低凝固溫度,增加固液相共存區間,而使熱裂敏感性提高;添加0.02% Nb銲件之DDC敏感性最高,因Nb添加稀少,銲件晶界缺乏中等尺寸之NbC析出物釘扎(Pinning),而於覆銲時晶界產生遷移、滑移與類似潛變的現象。
比較不同Nb添加量銲道的微觀組織結果顯示,無Nb之52合金,主要由胞狀枝晶構成,於覆銲時因無法限制晶界遷移,而容易產生DDC;而添加Nb之銲件主要則是由柱狀枝晶與等軸晶構成,隨著Nb含量增加,析出物NbC粗大化情形就越明顯。
在腐蝕試驗上,Alloy 52因遷移晶界受阻於TiN而產生晶界缺鉻,造成沿晶腐蝕的情形;隨著Nb的增加,NbC粗大化情形增加,造成局部伽凡尼效應而產生蝕孔現象,抗腐蝕性降低。
This study investigates the weldability, solidification cracking susceptibility, ductility-dip cracking(DDC) susceptibility and corrosion resistance of Inconel Alloy 52 with different Niobium(Nb) content. By GTAW process, different dilution rates with different Nb content weldments were studied. Trans. Varestraint Test was used to predict the solidification cracking susceptibility. Microstructure and EDX analysis was used to realize the change of metallurgical behavior. Finally, combine the above results, the corrosion resistance was discussed after SL-EPR and Modified Huey Test.
After the Trans. Varestraint Test, it was indicated that the susceptibility of solidification cracking in 2.53% Nb weldment is the highest,. Because of the eutectic Laves phase precipitating, it lowers the melting temperature and increase the size of the crack susceptible solid + liquid mushy zone. Besides, the sensitivity of ductility-dip cracking in 0.02% Nb weldment is the highest. Due to the lack of extensive GB pinning by the medium size eutectic NbC-like precipitates, it cause GBs migrating, sliding and creep-like phenomenon in cladding.
Inspection on the fusion zone of weldments with different Nb content, it was shown that the alloy 52 without Nb content was cellular dendrite mainly. Owing to the unrestrained grain boundary migration in cladding, the DDC phenomenon occurred often at alloy 52. The alloy 52 with Nb content was columnar and equiaxed dendrite. The more Nb, the bigger size of eutectic NbC-like precipitates.The results of corrosion displayed that the alloy 52 weldment has worse IGC resistance because the entectic TiN precipitated at GBs. The more Nb content, the worse corrosion resistance because of the galvanic effect when the size of NbC is becoming bigger.
[1] 財團法人國家政策研究基金會, "核能發電之必要性," 國政研究報告, 2000.
[2] 林文昌, "我國二氧化碳減量的必要選擇—核能發電," 中華民國核能學會財團法人核能資訊中心核能簡訊, vol. 117, pp. 13-16, 2009.
[3] W. Bamford and J. Hal, "A Review Of Alloy 600 Cracking In Operating Nuclear Plants Including Alloy 82 And 182 Weld Behavior," 12th International Conference on Nuclear Engineering, vol. 1, pp. 131-139, 2004.
[4] J. Gorman, S. Hunt, P. Riccardella, and G. A. White, "PWR Reactor Vessel Alloy 600 Issues," Companion Guide to the ASME Boiler & Pressure Vessel Code, vol. 3, pp. 1-26, 2006.
[5] 核能管制處, "壓水式反應器頂蓋CRDM 穿越管焊道之安全管制," 2002.
[6] B. P. Miglin and G. J. Theus, "Stress Corrosion Cracking Of Alloy 600 And 690 In All-Volatile-Treated Water At Elevated Temperatures," EPRI-Report, vol. NP-5761M, 1988.
[7] M. Sennour, P. Laghoutaris, C. Guerre, and R. Molins, "Advanced Tem Characterization Of Stress Corrosion Cracking Of Alloy 600 In Pressurized Water Reactor Primary Water Environment," Journal of Nuclear Materials, vol. 393, pp. 254-266, 2009.
[8] W. E. Mayo, "Predicting Igscc/Iga Susceptibility Of Ni-Cr-Fe Alloys By Modeling Of Grain Boundary Chromium Depletion," Materials Science and Engineering, vol. A232, pp. 129-139, 1997.
[9] Y. S. Lim, H. P. Kim, J. H. Han, J. S. Kim, and H. S. Kwon, "Influence Of Laser Surface Melting On The Susceptibility To Intergranular Corrosion Of Sensitized Alloy 600," Corrosion Science, vol. 43, pp. 1321-1335, 2001.
[10] P. C. Riccardella, D. R. Pitcairn, A. J. Giannuzzi, and T. L. Gerber, "Weld Overlay Repairs From Conception To Long-Term Qualification," International Journal Of Pressure Vessels And Piping, vol. 34, pp. 59-82, 1988.
[11] M. G. Collins and J. C. Lippold, "An Investigation of Ductility Dip Cracking in Nickel-Based Filler Materials — Part I," Welding Research, pp. 288-295, 2003.
[12] A. J. Ramirez and J. C. Lippold, "New Insight Into The Mechanism Of Ductility-Dip Cracking In Ni-Base Weld Metals," Phenomena And Mechanisms, pp. 19-41.
[13] A. J. Ramirez and J. C. Lippold, "High Temperature Behavior Of Ni-Base Weld Metal Part I. Ductility And Microstructural Characterization," Materials Science And Engineering, vol. A 380, pp. 259-271, 2004.
[14] A. J. Ramirez and J. C. Lippold, "High Temperature Behavior Of Ni-Base Weld Metal Part Ii – Insight Into The Mechanism For Ductility Dip Cracking," Materials Science And Engineering, vol. A 380, pp. 245-258, 2004.
[15] R. Zhang, S. D. Kiser, and B. A. Baker, "A New Nicrfe Welding Product-Inconel Fm52MSS Provides Optimum Resistance To PWSCC And DDC."
[16] J. N. Dupont, "Microstructural Development And Solidification Cracking Susceptibility Of A Stabilized Stainless Steel," WELDING RESEARCH SUPPLEMENT, pp. 252-263, July 1999.
[17] R. E. Gold, D. L. Harrod, R. G. Aspden, and A. J. Baum, "Alloy 690 For Steam Generator Tubing Applications," EPRI-Report, vol. NP-6997-M, 1990.
[18] H. Nagano, K. Yamanaka, K. Kobayashi, and M. Inoue, "Development And Manufacturing System On Alloy 690 Tubing For Pwr Steam Generators," The Sumitomo Search, vol. 40, pp. 57-70, 1989.
[19] R. A. Page and A. McMinn, "Stress Corrosion Cracking Resistance Of Alloys 600 And 690 And Compatible Weld Metals In BWRs," EPRI-Report, vol. NP-1566-1, 1988.
[20] 郭聰源, "鎳基690合金銲接特性研究," 國立成功大學博士論文, 1999.
[21] 鄭勝隆, "銲料合金元素之添加對鎳基690與304L不銹鋼之銲接特性研究," 國立成功大學碩士論文, 1998.
[22] 葉東昌, "鎳基690合金銲件之特性與組織改善研究," 國立成功大學碩士論文, 1999.
[23] 杜青駿, "鎳基合金之銲接特性及銲道顯微組織分析之研究," 國立成功大學碩士論文, 1997.
[24] 鄭勝隆, "鎳基690合金與SUS 304L不銹鋼異種金屬銲接特性與微結構研究," 國立成功大學博士論文, 2003.
[25] 顏志軒, "銲料中添加不同Ti合金元素對鎳基690銲件之影響," 國立成功大學碩士論文, 2001.
[26] 楊仲霖, "電子束銲接製程參數對690合金與304L不銹鋼異種金屬銲接之影響," 國立成功大學碩士論文, 2002.
[27] 林永定, "鎳基690合金與SUS 304L不銹鋼異種金屬電子束銲接特性與微結構研究," 國立成功大學博士論文, 2007.
[28] 李孟軒, "GTAW與LBW製程對鎳基690合金對接銲之殘留應力研究," 國立成功大學碩士論文, 2007.
[29] E. Rabkin, Y. Amouyal, and L. Klinger, "Scanning Probe Microscopy Study Of Grain Boundary Migration In NiAl," Acta Materialia, vol. 52, pp. 4953-4959, 2004.
[30] G. A. Young, T. E. Capobianco, M. A. Penik, B. W. Morris, and J. J. Mcgee, "The Mechanism Of Ductility Dip Cracking In Nickel-Chromium Alloys," Welding Research, vol. 87, pp. 31-43, Feb. 2008.
[31] A. J. Craven, K. He, L. A. J. Garvie, and T. N. Baker, "Complex Heterogeneous Precipitation In Titanium-Niobium Microalloyed Al-killed HSLA Steels - I. (Ti,Nb)(C,N) Particles," Acta Materialia, vol. 48, pp. 3857-3868, 2000.
[32] N. Saito, S. Tanaka, and H. Sakamoto, "Effect Of Corrosion Potential And Microstructure On The Stress Corrosion Cracking Susceptibility Of Nickel-Base Alloys In High-Temperature Water," Corrosion Science, vol. 59, pp. 1064-1074, 2003.
[33] H. M. Tawancy, I. M. Allam, and N. M. Abbas, "Effect Of Ni3Nb Precipitation On The Corrosion-Resistance Of Inconel Alloy 625," Journal Of Materials Science Letters, vol. 9, pp. 343-347, 1990.
[34] R. Kovacheva, R. Dafinova, and M. Stanimirova, "Metallographic Investigation Of Transition Metals Nitrides," Prakt. Metallogr., vol. 33 No.5, pp. 247-255, 1996.
[35] H. B. Cary, "Modern Welding Technology," vol. 4th, 1988.
[36] D. W. Grandy, S. J. Findlan, and W. J. Childs, "Repair Welding Of SA508, Class 2 Pressure Vessel Steels Utilizing The Consistent Layer Temperbead Technique," Materials Ageing And Component Life Extension, pp. 961-978.
[37] 張益維, "實習壓水式核電廠反應爐管嘴Alloy 82/182銲道龜裂防治技術與經驗報告," 台灣電力公司出國實習報告書, 2011.
[38] S. Metals, "Inconel Filler Metal 52," Ni-Cr-Fe Filler Metal, p. 33.
[39] S. Metals, "Inconel Filler Metal 52M," Ni-Cr-Fe Filler Metal, p. 32.
[40] H. Chen, Y. Du, H. G. Xu, and Y. Liu, "Experimental Investigation Of The Nb-Ni Phase Diagram," Journal Of Material Science, vol. 40, pp. 6019-6022, 2005.
[41] G. Bao, K. Shinozaki, S. Iguro, M. Inkyo, Y. Mahara, and H. Watanabe, "Influence Of Heat Treatments And Chemical Composition On SCC Susceptibility During Repairing Procedure Of Overlaying Of Inconel 182 By Laser Surface Melting," Science And Technology Of Welding And Joining, vol. 10, pp. 706-716, 2005.
[42] S. Kou, "Welding Metallurgy," Wiley, 2003.
[43] G. D. Bengough, "A Study Of The Properties Of Alloys At High Temperatures," Journal Of The Institute Of Metal, vol. VII, pp. 123-174, 1912.
[44] F. N. Rhines and P. J. Wray, "Investigation Of The Intermediate Temperature Ductility Minimum In Metals," Transactions Of The ASML, vol. 54, pp. 117-128, 1961.
[45] F. F. Noecker and J. N. DuPont, "Metallurgical Investigation Into Ductility Dip Cracking In Ni-Based Alloys, Part I," Welding Journal, vol. 88(1), pp. 7-20, 2009.
[46] S. Yamaguchi, "Effect Of Minor Element On Hot Workability Of Nickel-Base Superalloys," Met. Technol., vol. 6(5), pp. 170-175, 1979.
[47] F. Matsuda, "Weldability Of Fe-36% Ni Alloy, Ii -Effect Of Chemical Composition On Reheated Hot Cracking In Weld Metal," Trans. JWRI, vol. 13(2), pp. 241-247, 1984.
[48] K. Nishimoto, H. Mori, and S. Hongoh, "Effect Of Sulfur And Thermal Cycleson Retheat Cracking Susceptibility In Multipass Weld Metal Of Fe-36% Ni Alloy," International Institute Of Welding, vol. IIW Doc. IX-1934-99, 1999.
[49] Y. C. Zhang, H. Nakagawa, and F. Matsuda, "Weldability Of Fe-36%Ni Alloy (Report Vi)," Transactions Of JWRI, vol. 14(5), pp. 125-134, 1985.
[50] J. M. Kikel and D. M. Parker, "Ductility Dip Cracking Susceptibility Of Filler Metal 52 And Alloy 690," Trands In Welding Research, Proceedings, 5th International Conference, Pine Mountain, GA, pp. 757-762, 1998.
[51] N. E. Nissley and J. C. Lippold, "Development Of The Strain-To-Fracture Test," Welding Research, vol. 82(12), pp. 355-364, 2003.
[52] J. C. Lippold, S. D. Kiser, and J. N. DuPont, "Welding Metallurgy And Weldability Of Nickel-Base Alloys," John Wiley & Sons, pp. 46-56, 2011.
[53] A. C. Lingerfelter and C. D. Lundin, "The Varestraint Test," Welding Journal, vol. 44(10), pp. 433-442, 1982.
[54] J. C. Lippold, "Recent Developments in Weldability Testing for Advanced Materials," ASM International. All Rights Reserved.
Joining of Advanced and Specialty Materials VII, 2005.
[55] 楊鎮豪, "鎳基182合金銲道於硫酸溶液中之應力腐蝕破裂行為," 國立成功大學碩士論文, 2006.
[56] S. L. McCracken and R. E. Smith, "Behavior And Hot Cracking Susceptibility Of Filler Metal 52m (Ernicrfe-7a) Overlays On Cast Austenitic Stainless Steel Base Materials," Hot Cracking Phenomena In Welds, vol. III, pp. 333-352, 2011.
[57] ASTM G5, "Standard Reference Test Method for Making Potentiodynamic Anodic Polarization Measurements," 2013.
[58] ASTM A262, "Standard Practices For Detecting Susceptibility To Intergranular Attack In Austenitic Stainless Steels," 2002.
[59] 許家旗, "雷射表面重熔法修補Alloy 82衰化之效果研究," 國立成功大學碩士論文, 2012.